Class / Patent application number | Description | Number of patent applications / Date published |
331035000 | Electromechanical (e.g., motor) | 8 |
20100073096 | MICRO ELECTRO-MECHANICAL SYSTEM BASED PROGRAMMABLE FREQUENCY SYNTHESIZER AND METHOD OF OPERATION THEREOF - A frequency synthesizer and a method of synthesizing an output signal. In one embodiment, the frequency synthesizer includes: (1) a substrate, (2) a resonator located on the substrate and comprising a micro electromechanical system device and a feedback amplifier coupled thereto, (3) a phase-locked loop located on the substrate and coupled to the resonator, (4) control logic located on the substrate and configured to control the phase-locked loop based on a known resonant frequency of the micro electromechanical system device and (5) a voltage-controlled oscillator located on the substrate and coupled to the phase-locked loop. | 03-25-2010 |
20100289587 | SYSTEM AND METHOD FOR REDUCING POWER CONSUMPTION OF AN OSCILLATOR - An apparatus for generating an oscillating signal including a negative-resistance circuit, a crystal, and a component to modify a series resonance of the crystal to decrease power consumption of the negative-resistance circuit in generating the oscillating signal. The component may include a positive-reactance circuit, one or more inductive elements, or pair of inductive elements coupled to the crystal. The apparatus may further include a frequency-tuning component for adjusting a frequency of the oscillating signal, such as a variable capacitor coupled to the crystal. The negative-resistance circuit may include a digital inverter circuit, an inverting analog amplifier, or a self-regulating circuit. The apparatus may further include a quiescent current source to supply a steady-state current to the negative-resistance circuit, and a start up current source to supply a boost current to the negative-resistance circuit only during start up to expedite the oscillating signal in reaching a defined steady-state condition. | 11-18-2010 |
20110298548 | Method and Apparatus to Improve Performance of GPSDO's and other Oscillators - In one embodiment, the present invention includes a method of correcting the frequency of a crystal oscillator. The method includes establishing an operating baseline for the crystal oscillator using a frequency reference, storing information in memory, and adjusting the frequency according to the information. The information corresponds to the operating baseline. Adjusting the frequency occurs in response to a power-on event and the absence of the frequency reference. | 12-08-2011 |
20120139647 | OSCILLATORS HAVING ARBITRARY FREQUENCIES AND RELATED SYSTEMS AND METHODS - Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal. | 06-07-2012 |
20130093525 | CIRCUIT AND METHOD FOR CORRECTING TEMPERATURE DEPENDENCE OF FREQUENCY FOR PIEZORESISTIVE OSCILLATORS - MEMS oscillators, which include a silicon-type, in particular piezoresistive resonators, can be used to provide a fixed, stable output frequency. Silicon has a natural temperature dependence of Young's modulus, therefore, as ambient temperature changes and/or the piezoresistive resonator is powered, the resonator temperature changes, and the resonance frequency of the resonator drifts. In order to account for the temperature drift of the piezoresistive resonator, the piezoresistive resonator itself is used as a temperature sensor. The relative resistance change of the piezoresistive resonator depends only on the relative temperature change and material property of the resonator. Therefore, an accurate temperature can be sensed directly on the piezoresistive resonator. The temperature drift information is provided to a frequency adjuster, which corrects the output frequency of the circuit. | 04-18-2013 |
20140159822 | Controller Unit and Device for Resetting an Oscillator Excited by a Harmonic Oscillation, and Yaw Rate Sensor - A controller unit includes a PI-controller for harmonic command variables. The transfer function of the PI-controller has a conjugate complex pole at a controller angular frequency ω | 06-12-2014 |
20140320219 | PASSIVE PHASE NOISE CANCELLATION ELEMENT - A passive electro-mechanical device that reduces phase noise in oscillators, thereby improving their frequency precision. The noise reduction device can consist of a pair of coupled nonlinear resonators that are driven parametrically—by modulating their natural frequency in time, through the output signal of a conventional oscillator at a frequency close to the sum of the linear mode frequencies. Above the threshold for parametric response, the coupled resonators can exhibit oscillation at an inherent frequency. The novel possibility for noise elimination is realized by tuning the system to operating points for which this periodic signal is immune to frequency noise in the drive signal, providing a way to clean the phase noise of the driving oscillator. | 10-30-2014 |
20160020773 | PHASE-LOCKED LOOP CIRCUIT WITH IMPROVED PERFORMANCE - A phase-locked loop circuit includes a phase detector, a charge pump, a capacitor, and a capacitor multiplier. The phase detector receives a reference frequency and a feedback frequency to generate a up/down signal. The charge pump, which includes a positive node and a negative node, receives the up/down signal to generate a first current. The capacitor is coupled to the negative node. The capacitor multiplier, coupled to the negative node, generates a second current which is the first current divided by a first scaling number. | 01-21-2016 |