Class / Patent application number | Description | Number of patent applications / Date published |
330292000 | Having compensation for interelectrode impedance | 6 |
20080238552 | SEMICONDUCTOR DEVICE - A semiconductor device includes a phase compensation circuit | 10-02-2008 |
20090066421 | Internal frequency compensation circuit for integrated circuit controllers - A frequency compensation circuit internal to an integrated circuit which comprises a transconductance amplifier having a first input configured to receive a reference voltage, a second input configured to receive an input voltage and an input current, a first output configured to output a first output current and a second output configured to output a second output current; and a compensation circuit connected to said second output of said transconductance amplifier, wherein said first output is connected to said second input. | 03-12-2009 |
20090261907 | INTEGRATED CIRCUIT HAVING ON DIE STRUCTURE PROVIDING CAPACITANCE IN AMPLIFIER FEEDBACK PATH - An amplifier structure includes shield conductors that are provided spatially adjacent to elongated feedback signal lines that couple a feedback circuit to an amplifier input. The shield conductors are provided between the feedback signal lines and a ground plane, which interrupts a parasitic capacitance that otherwise would be established between the feedback signal line and ground. The shield conductors are electrically coupled to the amplifier's outputs which create a capacitance between the output terminal and the feedback signal line. In some embodiments, the capacitance generated between the output terminal and the feedback signal line can suffice as a capacitor in a feedback path of the amplifier and be contained in an integrated circuit die on which the amplifier is manufactured. Optionally, a structure may be provided that eliminates common mode signals on the feedback lines while simultaneously preserving the common mode signals on the amplifier output terminals. In this option, a second amplifier is provided that, in response to common mode variations at the output terminal, generates counterbalancing voltage variations on a second circuit that is coupled to the feedback lines at their source. The two variations cancel each other out at nodes from which the feedback lines originate, which substantially reduces feedback common mode variation even when there is common mode variation at the output terminals. | 10-22-2009 |
20120313711 | DEVICE FOR NEUTRALIZING A SIGNAL OBTAINED BY MODULATING, ON TO A HIGH FREQUENCY CARRIER, A USEFUL SIGNAL DELIVERED BY A SYSTEM - The invention relates to a device for neutralizing a signal obtained by modulating, on to a high frequency carrier, a useful signal delivered by a system comprising a parasitic capacitance Cp that varies over time, the device comprising a neutralizing capacitance Cn, means for providing an adjustable gain G, said means being equipped with a JFET field-effect transistor (J | 12-13-2012 |
20130127541 | Analog Pre-distortion Linearizer - An analog pre-distortion linearizer having predetermined gain and phase characteristics as a function of input RF signal power is disclosed. The linearizer comprises a core circuit comprising an input terminal configured to receive an input RF signal; an output terminal configured to provide a processed version of that signal; a transistor having a gate, a drain, and a source; and a feedback circuit, presenting an impedance at the frequency of the RF signal, connected to the transistor. The gate is connected to the input terminal and the drain is connected to the output terminal. First and second dc bias voltages applied to the gate and drain respectively cause the transistor to operate at a quiescent bias point in a saturated region of the transistor I-V plane. The quiescent bias point and the impedance are selected such that the linearizer has the predetermined gain and phase characteristics. | 05-23-2013 |
20140306764 | CIRCUITS AND METHODS FOR COMPENSATING FOR MILLER CAPACITANCE - Amplifier circuits and methods of cancelling the Miller effects in amplifiers are disclosed herein. An embodiment of an amplifier circuit includes an input and an output. An amplifier is connected between the input and the output of the circuit. A voltage source is connected to the output, wherein the voltage source output is one hundred eighty degrees out of phase with the voltage output by the amplifier, and wherein the voltage source cancels gain due to the Miller effect of a Miller capacitance between the input and output. | 10-16-2014 |