Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Including push-pull amplifier

Subclass of:

330 - Amplifiers

330250000 - WITH SEMICONDUCTOR AMPLIFYING DEVICE (E.G., TRANSISTOR)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
330262000 Including push-pull amplifier 63
20090051434SIGNAL TRANSFER CIRCUIT AND CIRCUIT DEVICE USING SAME - A signal transfer circuit appropriate for use in realizing both high circuit stability and high current driving ability is disclosed. Signal transfer circuit A has current transfer circuit 02-26-2009
20090102561AMPLIFIER HAVING AN OUTPUT PROTECTION, IN PARTICULAR OPERATIONAL AMPLIFIER FOR AUDIO APPLICATION - An amplifier with an output protection having an input stage defining a feedback node, an output stage connected to the feedback node and defining an output node supplying an output voltage, and a feedback stage connected between the output and the feedback nodes. A mirror stage is connected to the feedback node and has the same structure as the output stage, the mirror stage defining a reference node connected to the feedback stage for generating a reference voltage to be compared to the output voltage by the feedback stage. The feedback stage generates a current limitation signal fed to the feedback node when a difference between the output and the reference voltages is higher than a threshold.04-23-2009
20100225397AMPLIFIER AND RADIO - An amplifier includes: a substrate; first to fourth amplifying units arranged on the substrate and each having first and second terminals, and each amplifying first and second signals to generate first and second amplified signals; a first inductive line arranged on the substrate, connecting the first terminal of the first amplifying unit and the first terminal of the second amplifying unit, and having a linear portion and a bending portion; a second inductive line arranged on the substrate, connecting the second terminal of the second amplifying unit and the first terminal of the third amplifying unit, and having a linear portion and a bending portion; a third inductive line arranged on the substrate, connecting the second terminal of the third amplifying unit and the first terminal of the fourth amplifying unit, and having a linear portion and a bending portion; a fourth inductive line arranged on the substrate, connecting the second terminal of the fourth amplifying unit and the second terminal of the first amplifying unit, and having a linear portion and a bending portion; and a fifth inductive line which establishes magnetic field coupling with the first to fourth inductive lines, and has third and fourth terminals, combines the plurality of the first amplified signals amplified to output the first combined signal from the third terminal, and combines the plurality of the second amplified signals to output the second combined signal from the fourth terminal.09-09-2010
20110115562Class Resonant-H Electrosurgical Generators - A generator for use with an electrosurgical device is provided. The generator has a gain stage electrically disposed between a first voltage rail and a second voltage rail, wherein the gain stage includes an input and an output. A voltage source operably coupled to the gain stage input and configured to provide an input signal thereto responsive to a drive control signal is also provided. The generator also has one or more sensors configured to sense an operational parameter of the amplifier and to provide a sensor signal corresponding thereto and a controller adapted to receive the sensor signal(s) and in response thereto provide a drive control signal to the voltage source. The generator has an amplifier output configured to supply an output voltage corresponding to the first voltage rail and the second voltage rail when the output of the gain stage falls between a voltage of the first voltage rail and a voltage of the second voltage rail and is configured to supply a peak voltage output when the voltage output is falls greater than the voltage of the first voltage rail or less than the voltage of the second voltage rail.05-19-2011
20110163810Low distortion cascode amplifier circuit - An audio amplifier circuit has a first cascode stage configured as a voltage gain stage and having an input for an audio signal, and an output. The circuit has a second cascode stage configured as a unity gain or near unity gain stage and having an input to receive an output from the first cascode stage, and a low impedance output to drive an output stage of an audio power amplifier. The first cascode stage has a first, input transistor having an input biased to a predetermined bias voltage, and a second, output transistor arranged to drive the second cascode stage. The first, input transistor of the first cascode stage may have a common-emitter configuration, and the second, output transistor may have a common-base configuration. The invention extends to an audio amplifier which includes a circuit of the invention.07-07-2011
20130063211Class A Push-Pull Amplifier - The invention relates to a “push-pull” amplifier, comprising an input (03-14-2013
20130141165PERFORMANCE OF OFF-CHIP CONNECTION FOR POWER AMPLIFIER - There is provided an integrated circuit comprising a main push-pull amplifier (06-06-2013
20140022017INTEGRATOR INPUT ERROR CORRECTION CIRCUIT AND CIRCUIT METHOD - A circuit includes a first amplifier and a second amplifier, wherein first amplifier is configured to receive an input current at a first input of the first amplifier, and an output of the first op-mp is configured to drive a first input of the second amplifier. The circuit further includes a pull-up current source selectively coupled to the first input of the second amplifier, and a pull-down current source selectively coupled to the first input of the second amplifier. If the absolute value of the input current is larger than a predefined threshold current: i) the pull-up current source is configured to drive current into the first input of the second amplifier for a first polarity of the input current, and ii) the pull-down current source is configured to sink current from the first input of the second amplifier for a second polarity of the input current.01-23-2014
20150326180Control of cross-over point - There is provided an output stage comprising: a phase splitter for receiving an input signal and for generating first and second drive signals of opposite phase in dependence thereon; a DC offset signal generator for generating a DC offset signal; an adder for adding the DC offset signal to the first drive signal to provide a first modified drive signal; a subtractor for subtracting the DC offset signal from the second drive signal to provide a second modified drive signal; a first drive transistor associated with a first power supply voltage, for generating a first output signal in dependence on the first modified drive signal; a second drive transistor associated with a second power supply voltage, for generating a second output signal in dependence on the second modified drive signal; and a combiner for combining the first and second output signals to generate a phase combined output signal.11-12-2015
20160020733EFFICIENCY-OPTIMISED HIGH-FREQUENCY POWER AMPLIFIER - An amplifier according to the principle of load modulation comprises a first push-pull transistor, a second push-pull transistor and a balanced hybrid coupler. The first push-pull transistor is configured as a main amplifier and generates a balanced main-amplifier signal. The second push-pull transistor is configured as an auxiliary amplifier and generates a balanced auxiliary-amplifier signal. Outputs of the first push-pull transistor and of the second push-pull transistor are connected to the balanced hybrid coupler in such a manner that the balanced hybrid coupler combines the main-amplifier signal and the auxiliary amplifier signal according to the principle of load modulation to form a balanced output signal.01-21-2016
20160020739ACTIVE DEVICE WHICH HAS A HIGH BREAKDOWN VOLTAGE, IS MEMORY-LESS, TRAPS EVEN HARMONIC SIGNALS AND CIRCUITS USED THEREWITH - An active device and circuits utilized therewith are disclosed. In an aspect, the active device comprises an n-type transistor having a drain, gate and bulk and a p-type transistor having a drain, gate and bulk. The n-type transistor and the p-type transistor include a common source. The device includes a first capacitor coupled between the gate of the n-type transistor and the gate of the p-type transistor, a second capacitor coupled between the drain of the n-type transistor and the drain of p-type transistor and a third capacitor coupled between the bulk of the n-type transistor and the bulk of p-type transistor. The active device has a high breakdown voltage, is memory less and traps even harmonic signals.01-21-2016
330263000 Having complementary symmetry 21
330264000 And field effect transistor 14
20080278234Output stage - An output stage, comprising a first transistor operable to pull a voltage at an output node towards a first voltage, and a rechargeable energy store having a potential difference between first and second terminals wherein the rechargeable energy store is arranged to be controllably connected between the output node and a second voltage supply such that the voltage at the output node can be driven to a voltage outside of a range defined between the first and second voltages.11-13-2008
20080284515CIRCUITS FOR QUIESCENT CURRENT CONTROL - A circuit capable of quiescent current control, the circuit comprising a first operational transconductance amplifier (OTA) including a first output terminal, a first transistor including a first gate coupled to the first output terminal of the first OTA, a second OTA including a second output terminal, a second transistor including a second gate coupled to the second output terminal of the second OTA, a resistive load including a first terminal coupled to the first output terminal and the first gate, and a second terminal coupled to the second terminal and the second gate, a first current source capable of providing a first current flowing toward the first terminal of the resistive load, and a second current source capable of providing a second current flowing away from the second terminal of the resistive load.11-20-2008
20080290945CLASS AB OUTPUT STAGE AND METHOD FOR PROVIDING WIDE SUPPLY VOLTAGE RANGE - A class AB output stage includes first (M11-27-2008
20080297254CLASS AB AMPLIFIER - A class AB amplifier includes: a voltage amplifier stage operating off a first source voltage, and amplifying a differential input voltage to produce a first amplified voltage; a level shift stage coupled to the voltage amplifier stage and adjusting a direct current level of the first amplified voltage to produce a first shift voltage; and a power amplifier stage coupled to the level shift stage, operating off a second source voltage, and converting the first shift voltage to produce a first output current. The second source voltage is larger than the first source voltage.12-04-2008
20090033423OUTPUT BUFFER AND POWER AMPLIFIER COMPRISING THEREOF - The present invention relates an output buffer and a power amplifier having the same. The output buffer includes a push-pull circuit unit, an output unit, and a driver. The push-pull circuit unit includes transistors connected to each others in a push-pull formation between a high level power voltage and a low level power voltage. The output unit is connected to the high level power voltage and the low level power voltage, and the driver drives the output unit according to a signal from the push-pull circuit unit.02-05-2009
20090153248AMPLIFIER WITH DYNAMIC BIAS - Techniques are provided for dynamically biasing an amplifier to extend the amplifier's operating range while conserving power. In an embodiment, a detector is provided to measure the amplifier output to determine an operating region of the amplifier. The output of the detector may be input to a bias adjuster, which outputs a dynamic voltage level supplied to at least one bias transistor in the amplifier. Multiple embodiments of the detector and bias adjuster are disclosed.06-18-2009
20090153249RAIL TO RAIL BUFFER AMPLIFIER - A buffer amplifier having a wide output voltage range includes a first source follower circuit having a first current source and a first transistor, and a second source follower circuit having a second current source and a second transistor. The first source follower circuit has an output terminal connected to a gate of a third transistor and a source of a fourth transistor. The second source follower circuit has an output terminal connected to a gate of a fifth transistor and a source of a sixth transistor. First and second voltages are respectively supplied to the gates of the fourth and sixth transistors. The sixth transistor is operated in place of the fifth transistor in a low voltage range, and the fourth transistor is operated in place of the third transistor in a high voltage range.06-18-2009
20090212866CLASS AB AMPLIFIER - An amplifier is disclosed. An input transistor receives an input voltage. An impedance unit is coupled to a first electrode of the input transistor. A current source is coupled to a second electrode of the input transistor. A push-pull output circuit comprises a PMOS transistor and a NMOS transistor electrically connected in series to output an output voltage. The first electrode of the input transistor is coupled to a control terminal of the NMOS transistor. A level shifting unit is coupled between the first electrode of the input transistor and the push-pull output circuit, for shifting a voltage of the first electrode of the input transistor and providing a shifted voltage corresponding to the voltage of the first electrode of the input transistor to the control terminal of the PMOS transistor.08-27-2009
20090251217AMPLIFIER DESIGN WITH BIASING AND POWER CONTROL ASPECTS - Techniques for biasing an amplifier using a replica circuit are disclosed. In an embodiment, a replica circuit having substantially the same topology and sizing as a push-pull amplifier circuit is coupled to a main push-pull amplifier circuit. A transistor in the replica circuit may be biased using feedback to generate a predetermined DC output voltage level, and such bias level may be applied to a corresponding transistor in the main push-pull amplifier circuit. In another embodiment, a transistor in a current bias module may be used to bias corresponding transistors in the main push-pull amplifier circuit and the replica circuit. Further techniques are disclosed for configuring the amplifier to have a non-uniform step size with finer resolution at lower power levels and coarser resolution at higher power levels to reduce power consumption at lower power levels.10-08-2009
20100001800BOOTSTRAPPED CLASS AB CMOS OUTPUT STAGE - A bootstrapped class AB CMOS output circuit and method for generating a class AB output are disclosed. The bootstrapped class AB CMOS output circuit has a voltage offset circuit coupled to an NMOS transistor and a PMOS transistor. The voltage offset circuit has a capacitor bootstrapped between the NMOS transistor and the PMOS transistor to establish a voltage offset between the NMOS transistor and the PMOS transistor to effect a class AB output. The method for generating a class AB output in a semiconductor device having a capacitor coupled to the NMOS transistor and the PMOS transistor includes providing a voltage offset across the capacitor to effect a class AB output.01-07-2010
20100090766SELF CONFIGURING OUTPUT STAGES OF PRECISION AMPLIFIERS - Self configuring output stages of precision amplifiers that remain linear when operating into a load that may have a ground reference below the amplifier ground reference, that maintain full amplifier gain while approaching zero output, and that can provide a zero output even when operating into a load that may have a ground reference below the amplifier ground reference, that has a self configuring output stage operable with either a mid-rail or ground reference below amplifier ground, and which maintain a high output impedance when not selected even when the output is above the amplifier supply voltage, or when not powered, thereby allowing amplifier outputs from un-powered amplifiers or amplifiers operating at lower supply voltages to be connected in common for multiplexing to a common load.04-15-2010
20110163811Fast Class AB Output Stage - A system for a Class AB Amplifier output stage that includes a first push pull system connected to an output terminal including a first driving transistor coupled to the output terminal and a second push pull system connected to the output terminal including a second driving transistor coupled to the output terminal. The amplifier also includes a current mode amplifier where the current mode amplifier's output is coupled to the first driving transistor's gate. The amplifier further includes a pair of resistors, a first resistor coupled to a first input terminal of the current mode amplifier, a second resistor coupled to a second input terminal of the current mode amplifier and coupled to the second driving transistor.07-07-2011
20110221530CLASS AB AMPLIFIERS - A class AB amplifier includes a first inductor having a first terminal in communication with a voltage source terminal. A first transistor has a drain terminal in communication with a second terminal of the first inductor. A second transistor has a source terminal in communication with a source terminal of the first transistor. A second inductor has a first terminal in communication with a drain terminal of the second transistor and a second terminal in communication with a reference potential. The drain terminals of the first transistor and the second transistor are capacitively coupled together.09-15-2011
20130154743CLASS AB AMPLIFIERS - An amplifier includes a first switch and a second switch each having a first terminal and a second terminal. The first terminals of the first and second switches respectively communicate with a first tank circuit and a second tank circuit. The second terminal of the second switch communicates with the second terminal of the first switch. A first capacitance having a first terminal connected directly to (i) the second terminal of the first switch and (ii) the second terminal of the second switch. A second terminal of the first capacitance is connected directly to a first input voltage of the amplifier. A first load is connected across (i) the first terminal of the first switch and (ii) the first terminal of the second switch. The amplifier generates a first output across the first load.06-20-2013
330266000 And temperature compensation 1
20150084696AMPLIFICATION CIRCUIT - An amplification circuit includes a first power supply; a first bipolar transistor whose collector is connected to the first power supply; a first resistor one terminal of which is connected to an emitter of the first bipolar transistor; a second bipolar transistor whose collector is connected to the other terminal of the first resistor; a second power supply; a third bipolar transistor whose collector is connected to the second power supply; a second resistor one terminal of which is connected to an emitter of the third bipolar transistor; and a fourth bipolar transistor whose collector is connected to the other terminal of the second resistor. An emitter of the second bipolar transistor is directly connected to an emitter of the fourth bipolar transistor, thereby becoming an output terminal.03-26-2015
330267000 And particular biasing arrangement 6
20090002070METHODS AND APPARATUS TO CONTROL RAIL-TO-RAIL CLASS AB AMPLIFIERS - In one example, an amplifier for providing stable output quiescent current comprising includes a number of supply rails, an output device configured for providing an output voltage, the output device coupled to the plurality of supply rails, and an output quiescent current controller coupled to the plurality of supply rails and the output device, the output quiescent current controller to regulate the voltage in the output device to provide a consistent quiescent current in the output device.01-01-2009
20110133839ARRANGEMENT FOR CALIBRATING THE QUIESCENT OPERATING POINT OF A PUSH-PULL AMPLIFIER - A signal processing arrangement comprises an amplifier (AMP V06-09-2011
20140132349Self-Biasing Radio Frequency Circuitry - The present disclosure describes self-biasing radio frequency circuitry. In some aspects a radio frequency (RF) signal is amplified via a circuit having a first transistor configured to source current to an output of the circuit and a second transistor configured to sink current from the output of the circuit, and another signal is provided, without active circuitry, from the output of the circuit to a gate of the first transistor effective to bias a voltage at the output of the circuit. By so doing, the output of the circuit can be biased without active circuitry which can reduce design complexity of and substrate area consumed by the circuit.05-15-2014
20160013768Method and Apparatus for Class AB Audio Amplifier Output Stage Voltage Protection01-14-2016
330268000 To eliminate crossover distortion 2
20090295482DRIVING AMPLIFIER CIRCUIT WITH DIGITAL CONTROL - A driving amplifier circuit includes: a first driver for souring a load current to a load; a second driver for sinking the load current from the load; a first operational amplifier (op-amp) coupled to a differential input signal for driving the first driver; a second operational amplifier coupled to the differential input signal for driving the second driver; a first bias circuit for biasing the first driver; a second bias circuit for biasing the second driver; an enabling circuit, coupled to the first bias circuit and the second bias circuit, for enabling either the first bias circuit or the second bias circuit according to a control signal; and a digital control circuit, coupled to the enabling circuit, for monitoring currents of the first driver and the second driver to generate the control signal.12-03-2009
20140253238CLASS AB AMPLIFIERS - An amplifier including first, second, third, and fourth switches, each having first and second terminals. The first terminal of each switch communicates with a respective load. The second terminal of the first switch communicates with the second terminal of the second switch. The second terminal of the third switch communicates with the second terminal of the fourth switch. A first terminal of a first capacitance communicates with the second terminals of the first and second switches. A first terminal of a second capacitance communicates with the second terminals of the third and fourth switches. A first inductance communicates with second terminals of the first and second capacitances.09-11-2014
330269000 Having field effect transistor 11
20090002071Distributed Circular Geometry Power Amplifier Architecture - The present invention discloses a distributed power amplifier topology and device that efficiently and economically enhances the power output of an RF signal to be amplified. The power amplifier comprises a plurality of push-pull amplifiers interconnected in a novel circular geometry that preferably function as a first winding of an active transformer having signal inputs of adjacent amplification devices driven with an input signal of equal magnitude and opposite phase. The topology also discloses the use of a secondary winding that matches the geometry of primary winding and variations thereof that serve to efficiently combine the power of the individual power amplifiers. The novel architecture enables the design of low-cost, fully-integrated, high-power amplifiers in the RF, microwave, and millimeter-wave frequencies.01-01-2009
20110012679HIGH EFFICIENCY MICROWAVE AMPLIFIER - Disclosed is an apparatus and method for operating a microwave amplifier with improved efficiency and reduced harmonic emissions. The disclosed amplifier includes a variable rail voltage supply and a variable input drive stage. A controller continually monitors the amplifier output and adjusts the rail voltage and input drive signal to achieve high efficiency and low harmonic emissions. The amplifier may include a dynamic bias controller configured to operate the gain elements outside the linear region. Efficiencies of over 70% may be achieved by the disclosed amplifier.01-20-2011
20110248782RF POWER AMPLIFIER - A reduction is achieved in the primary-side input impedance of a transformer (voltage transformer) as an output matching circuit without involving a reduction in Q-factor. An RF power amplifier includes transistors, and a transformer as the output matching circuit. The transformer has a primary coil and a secondary coil which are magnetically coupled to each other. To the input terminals of the transistors, respective input signals are supplied. The primary coil is coupled to each of the output terminals of the transistors. From the secondary coil, an output signal is generated. The primary coil includes a first coil and a second coil which are coupled in parallel between the respective output terminals of the transistors, and each magnetically coupled to the secondary coil. By the parallel coupling of the first and second coils of the primary coil, the input impedance of the primary coil is reduced.10-13-2011
20120062320ANTI-POP CIRCUIT - Presently many audio chips suffer from pop issues, which is especially serious for single ended audio drivers. An audio pop is a disturbance in the output caused by a sudden transition of chip power, particularly when a chip is powered on or powered off. Furthermore, compensation networks included in the amplifiers on audio chips for stability offer a significant path for transmitting power disturbances to the output. Hence, circuitry is developed to suppress pops in the output stages of an amplifier.03-15-2012
20120188016CIRCUITRY FOR BIASING AMPLIFIERS - Integrated circuits with amplification circuitry are provided. The amplification circuitry may have an input terminal, an output terminal, a positive power supply terminal, and a ground terminal. The amplification circuitry may include first, second, and third stages. The first stage may provide biasing for the second stage. The second stage may provide biasing for the third stage. The second stage may provide paths for conveying an input signal from the input terminal to the third stage. The second stage may bias the amplifier to have low quiescent current and low shoot-through current. The second stage may prevent PVT variations such as supply voltage variations from affecting the quiescent current and shoot-through current of the amplifier. To increase the high-frequency response of the amplifier, capacitors may be added to the paths for conveying the input signal from the input terminal to the third stage.07-26-2012
20120299656Amplifier Component Comprising A Compensation Element - An amplifier component (11-29-2012
20120313707PUSH-PULL AMPLIFIER HAVING INDUCTIVE COMMON MODE DECOUPLING - A push-pull amplifier is provided for amplifying an input signal, having first and second amplifier elements. Each of the amplifier elements has a current-emitting electrode, a current-collecting electrode, and a current-controlling electrode. The input signal is supplied to the current-controlling electrodes of the amplifier elements via a respective input connection and a respective input inductor arranged between the respective input connection and the respective current-controlling electrode. The current-collecting electrodes are connected via a respective supply inductor having a common supply voltage. The current-emitting electrode of each amplifier element is connected to the current-collecting electrode of the other amplifier element via a respective capacitor. The current-emitting electrodes are connected to output connections on which the output signal can be picked up, and to a reference potential via a respective output inductor. The supply inductors of the amplifier elements are inductively coupled to the input inductors and the output inductors of the respectively other amplifier element.12-13-2012
20130113568PUSH-PULL LOW-NOISE AMPLIFIER WITH AREA-EFFICIENT IMPLEMENTATION - An amplifier integrated circuit (IC) includes a push-pull configuration including a push stage and a pull stage. A first loop of wire is configured to form a first degeneration inductance of the push stage. A second loop of wire is configured to form a first degeneration inductance of the pull stage. The first and second loops are concentric.05-09-2013
20130293307ACTIVE ANTENNA ARRANGEMENT WITH DOHERTY AMPLIFIER - A Doherty amplifier (11-07-2013
20150348883Integrated Circuit Arrangement - An integrated circuit arrangement comprising: 12-03-2015
20160204752Apparatus and Method in Apparatus07-14-2016
330271000 Having signal feedback means 2
20130278341RADIO FREQUENCY FRONT-END CIRCUIT AND OPERATION METHOD THEREOF - A radio frequency (RF) front-end circuit and an operating method thereof are provided. The proposed RF front-end circuit includes a first linear amplifier, a second linear amplifier, and a calibration unit. The first linear amplifier performs a high-frequency amplification on a RF signal to generate an amplified RF signal, and down-converts the amplified RF signal into an intermediate frequency (IF) signal. The second first linear amplifier performs a low-frequency amplification on the IF signal to generate an amplified IF signal. The calibration unit is coupled to the first and the second linear amplifiers, and receives a voltage gain fed back from the second linear amplifier. Then, the calibration unit performs an auto-calibration procedure according to the voltage gain fed back from the second linear amplifier to search for an input current value of the first linear amplifier, which correspondingly maximizes the voltage gain of the first amplifier.10-24-2013
20140176241High-frequency bandwidth amplifying circuit - A high-frequency bandwidth amplifier circuit comprises: a push-pull amplifier, a feedback resistor, a first active inductor, and a second active inductor. An input terminal of the push-pull amplifier is connected with an external input terminal. An output terminal of the push-pull amplifier is connected with an output port. A first end of the feedback resistor is connected with the external input terminal A second end of the feedback resistor is connected with the output port. A first end of the first active inductor is connected with an external power source. A second end of the first active inductor is connected with the output port. A first end of the second active inductor is grounded. A second end of the second active inductor is connected with the output port.06-26-2014
330273000 Having particular biasing arrangement 4
20090160555APPARATUS FOR POWER AMPLIFICATION BASED ON ENVELOPE ELIMINATION AND RESTORATION (EER) AND PUSH-PULL SWITCHING - A power amplifying apparatus based on envelope elimination and restoration (EER) includes a voltage amplifier to amplify a high frequency component of an envelope signal, a switching amplifier to generate a low frequency component signal of a drain bias based on a first pulse width modulation (PWM) signal that corresponds to a low frequency component of the envelope signal, and a push-pull switch, connected to the switching amplifier in parallel, to add a high frequency component signal to an output of the switching amplifier by pushing or pulling current to or from the output of the switching amplifier.06-25-2009
20130099864POWER AMPLIFIER - A power amplifier according to the present invention includes: an input-side transformer which has an annular primary coil which is a first metal line and a plurality of linear secondary coils which are second metal lines, and matches input impedance and divides the input signal into a plurality of split signals; push-pull amplifiers each including a pair of transistors for amplifying one of the split signals; and an output-side transformer which has an annular secondary coil which is a third metal line and a plurality of linear primary coils which are fourth metal lines, and combines the amplified split signals and matches output impedance, two input terminals of the pair of transistors being connected to each other via each of the second metal lines and two output terminal of the pair of transistors being connected to each other via each of the fourth metal lines.04-25-2013
330274000 To eliminate crossover distortion 2
20100134187METHODS AND APPARATUS TO REDUCE IDLE CURRENT IN POWER AMPLIFIERS - Power amplifiers with reduced idle currents are described. In some examples, a power amplifier includes a driver configured to generate a control signal based on an input signal. The power amplifier also includes a first output transistor configured to selectively provide an output signal via an output channel that has a resistance based on the control signal, and a channel adjuster configured to generate several digital signals based on the control signal. A composite switch, which includes several segment transistors, is included to selectively increase or decrease the output channel resistance based on the digital signals.06-03-2010
20130207724CROSSOVER PERFORMANCE OF POWER AMPLIFIER - There is provided an amplifier arrangement comprising a main push pull amplifier (08-15-2013
330275000 Having balanced to unbalanced circuitry and vice versa 1
20140361834FOUR LC ELEMENT BALUN - A balun includes an unbalanced port having a single-ended terminal, a balanced port having first and second differential terminals, and first and second series resonant LC circuits. The first series resonant LC circuit is connected between the first and second differential terminals, and includes a first element of a first type and one element of a second type connected in series. The second series resonant LC circuit is connected between the single-ended terminal and ground, and includes second and third elements of the first type and the one element of the second type connected in series. The one element of the second type is shared by the first and second series resonant LC circuits. The first differential terminal is connected between the one element of the second type and the third element of the first type.12-11-2014
330276000 Having transformer 13
20080204139Reconfigurable distributed active transformers - Reconfigurable distributed active transformers are provided. The exemplary embodiments provided allow changing of the effective number and configuration of the primary and secondary windings, where the distributed active transformer structures can be reconfigured dynamically to control the output power levels, allow operation at multiple frequency bands, maintain a high performance across multiple channels, and sustain desired characteristics across process, temperature and other environmental variations. Integration of the distributed active transformer power amplifiers and a low noise amplifier on a semiconductor substrate can also be provided.08-28-2008
20100117737RF POWER AMPLIFIER - A reduction is achieved in the primary-side input impedance of a transformer (voltage transformer) as an output matching circuit without involving a reduction in Q-factor. An RF power amplifier includes transistors, and a transformer as the output matching circuit. The transformer has a primary coil and a secondary coil which are magnetically coupled to each other. To the input terminals of the transistors, respective input signals are supplied. The primary coil is coupled to each of the output terminals of the transistors. From the secondary coil, an output signal is generated. The primary coil includes a first coil and a second coil which are coupled in parallel between the respective output terminals of the transistors, and each magnetically coupled to the secondary coil. By the parallel coupling of the first and second coils of the primary coil, the input impedance of the primary coil is reduced.05-13-2010
20100148872POWER AMPLIFIER HAVING TRANSFORMER - A power amplifier amplifying and compositing differential signals and capable of suppressing harmonics is provided. The power amplifier includes first amplifiers amplifying a first input signal and a second input signal, which are differential signals, a first coil receiving the first input signal and the second input signal amplified by the first amplifiers, a second coil magnetically coupled with the first coil and outputting a composite signal of the amplified first input signal and second input signal, a third coil magnetically coupled with the second coil, and a first capacitor coupled between both ends of the third coil, wherein one end of the first capacitor is coupled to a ground node.06-17-2010
20100156537SOLID-STATE RF POWER AMPLIFIER FOR RADIO TRANSMITTERS - An RF power amplifier includes a push-pull amplifier having field effect transistors. Temperature compensating bias circuitry provides a temperature compensated bias voltage to the transistors for decreasing the bias voltage thereof as temperature increases. The temperature compensating bias circuitry includes a temperature sensor generating a temperature signal. A first amplifier provides a first temperature dependent voltage based on the temperature signal. A second amplifier provides a second temperature dependent voltage based on the temperature signal. The first and second temperature dependent voltages change at substantially the same rate in response to the temperature signal. A potentiometer receives the first and second temperature dependent voltages such that a voltage across the potentiometer remains substantially constant when the first and second temperature dependent voltages change. An output of the bias circuitry is connected to at least one of the transistors and supplies the temperature compensated bias voltage to the at least one of the transistors.06-24-2010
20100164628DISTRIBUTED ACTIVE TRANSFORMER AMPLIFIER WITH DIFFERENTIAL POWER COMBINER - A power amplifier formed by a plurality of pairs of transistors, each pair including a first transistor and a second transistor having each a respective input terminal and a respective output terminal. The output terminals of the first and second transistors of each pair are connected to an output distributed active transformer connected to a differential output of the power amplifier. The input terminals of the first and second transistors of each pair are connected to an input distributed active transformer connected to an input of the power amplifier.07-01-2010
20100244962DISTRIBUTED ACTIVE TRANSFORMER BASED MILLIMETER-WAVE POWER AMPLIFIER CIRCUIT - A distributed active transformer (DAT) based millimeter-wave (MMW) power amplifier circuit is designed for power amplification of MMW frequency signals. The proposed MMW power amplifier circuit is characterized by distributing the input frequency signals into two sets of differential signals and by the use of a distributed active transformer circuit unit to process these two sets of differential signals to thereby generate an amplified frequency signal as the end result of output. The invention provides higher and greater added values and power added efficiency (PAE) and is ideal for use in millimeter-wave communications systems with an operation frequency around 60 GHz.09-30-2010
20110050344OUTPUT STAGE FOR A DIGITAL RF TRANSMITTER, METHOD FOR PROVIDING AN RF OUTPUT SIGNAL IN A DIGITAL RF TRANSMITTER, AND DIGITAL RF TRANSMITTER - An output stage (03-03-2011
20110309884SOLID-STATE RF POWER AMPLIFIER FOR RADIO TRANSMITTERS - An RF power amplifier includes a first amplifier module comprising a first push-pull amplifier including a first plurality of field effect transistors and a first output transformer. An output impedance of the first amplifier module is 25 ohms. A second amplifier module includes a second push-pull amplifier including a second plurality of field effect transistors and a second output transformer. An output impedance of the second amplifier module is 25 ohms. A combiner is connected to the first amplifier module and the second amplifier module. The combiner combines an output from the first amplifier module and an output from the second amplifier module into a combined signal. An output impedance of the combiner is 50 ohms.12-22-2011
20120001692ADAPTIVE POWER AMPLIFIER - Reconfigurable distributed active transformers are provided. The exemplary embodiments provided allow changing of the effective number and configuration of the primary and secondary windings, where the distributed active transformer structures can be reconfigured dynamically to control the output power levels, allow operation at multiple frequency bands, maintain a high performance across multiple channels, and sustain desired characteristics across process, temperature and other environmental variations. Integration of the distributed active transformer power amplifiers and a low noise amplifier on a semiconductor substrate can also be provided.01-05-2012
20120176197RF POWER AMPLIFIER - A reduction is achieved in the primary-side input impedance of a transformer (voltage transformer) as an output matching circuit without involving a reduction in Q-factor. An RF power amplifier includes transistors, and a transformer as the output matching circuit. The transformer has a primary coil and a secondary coil which are magnetically coupled to each other. To the input terminals of the transistors, respective input signals are supplied. The primary coil is coupled to each of the output terminals of the transistors. From the secondary coil, an output signal is generated. The primary coil includes a first coil and a second coil which are coupled in parallel between the respective output terminals of the transistors, and each magnetically coupled to the secondary coil. By the parallel coupling of the first and second coils of the primary coil, the input impedance of the primary coil is reduced.07-12-2012
20130069725RF POWER AMPLIFIER - A reduction is achieved in the primary-side input impedance of a transformer (voltage transformer) as an output matching circuit without involving a reduction in Q-factor. An RF power amplifier includes transistors, and a transformer as the output matching circuit. The transformer has a primary coil and a secondary coil which are magnetically coupled to each other. To the input terminals of the transistors, respective input signals are supplied. The primary coil is coupled to each of the output terminals of the transistors. From the secondary coil, an output signal is generated. The primary coil includes a first coil and a second coil which are coupled in parallel between the respective output terminals of the transistors, and each magnetically coupled to the secondary coil. By the parallel coupling of the first and second coils of the primary coil, the input impedance of the primary coil is reduced.03-21-2013
20140028398Wideband AFT Power Amplifier Systems With Frequency-Based Output Transformer Impedance Balancing - A radio frequency system includes a first power splitter, a first push-pull power amplifier and a second push-pull power amplifier. The first power splitter is configured to receive a first radio frequency signal and generate a first output signal and a second output signal. The first push-pull power amplifier is configured to amplify the first output signal. The first push-pull power amplifier comprises a first set of transistors including at least two radio frequency power transistors and a first output transformer. The second push-pull power amplifier is configured to amplify the second output signal. The second push-pull power amplifier includes a second set of transistors including at least two radio frequency power transistors and a second output transformer. An output of the first transformer is galvanically and directly connected to an output of the second output transformer.01-30-2014
20140240046SYSTEMS AND METHODS FOR OPERATING A POWER AMPLIFIER - A power amplifier configured to receive an AC input signal and output, based on the AC input signal, an output voltage via a first output voltage terminal and a second output voltage terminal. The power amplifier includes a first transistor and a second transistor connected in a push-pull configuration, a first inductor, a second inductor, and a first capacitor. The first output voltage terminal is located between the first inductor and the first transistor. The second output voltage terminal is located between the second transistor and ground. The first capacitor is configured to provide a first circuit path between the first output voltage terminal and the second output voltage terminal. The first circuit path functions as a short circuit for even harmonics of a fundamental frequency of the AC input signal but does not function as a short circuit for the fundamental frequency of the AC input signal.08-28-2014

Patent applications in all subclasses Including push-pull amplifier

Website © 2025 Advameg, Inc.