Class / Patent application number | Description | Number of patent applications / Date published |
327594000 | With particular coupling or decoupling | 16 |
20080204130 | Oscillator bias injector - A oscillator bias injector system for use in maritime applications in connection with a VSAT communication system including a satellite modem connected to a commercially available high power block upconverter and low noise block downconverter which are both connected to an outdoor antenna mounted on a stabilized platform, which antenna sends and receives signals from a Ku-band satellite in geosynchronous orbit. The oscillator bias injector is installed between the block upconverter and the satellite modem such that the RF signal generated by satellite modem is combined with an internally generated stabilized 10 MHz reference signal from oscillator, which summed signal is then combined with DC bias generated by an AC rectifier to thereby provide a means of interfacing a custom designed modem to the block upconverter to improve the uplink speed of the VSAT system. The improved speed allows the user to use the telecommunications system for applications that require a higher transfer rate, such as video teleconferencing and voice over Internet phones. | 08-28-2008 |
20080238538 | RECEIVING DEVICE AND RELATED METHOD FOR CALIBRATING DC OFFSET - A receiving device includes a mixer, an AC coupling circuit, a post-stage circuit, and a DC offset calibration circuit. The mixer is utilized for mixing an input signal with a local oscillating (LO) signal from an oscillator to generate a converted signal. The AC coupling circuit is coupled to the mixer and utilized for reducing at least one portion of DC offset of the converted signal to generate a filtered signal. The post-stage circuit is coupled to the AC coupling circuit and utilized for processing the filtered signal to generate an output signal. The DC offset calibration circuit is coupled to the post-stage circuit and utilized for providing at least a compensation current for the post-stage circuit to reduce DC offset of the output signal. | 10-02-2008 |
20090002067 | Method and System for Signal Coupling and Direct Current Blocking - A method and class of circuit configurations for coupling low-frequency signals from one stage of an electronic apparatus to another stage, from the outside world to such a stage, or from such a stage to the outside world, through the use of a plurality of symmetrical double-layer capacitors combined with other electronic components are disclosed. The capacitors are used for signal transmission while blocking direct current, rather than for energy storage. Use of double-layer capacitors in place of more conventional capacitors permits the transmission of a much wider range of signals with far less distortion. The technology is particularly well-adapted to use in medical devices, including bioelectronic stimulators, where redundant devices are required for safety in case of single component failure while unacceptable levels of distortion may occur when conventional components are used. | 01-01-2009 |
20090102548 | Coil enhancement circuit - An enhancement circuit for enhancing the value of a coil having a first winding. The enhancement circuit comprises a second winding forming a transformer with the first winding and having a first terminal coupled to the ground and a second terminal coupled to an input of a feedback circuit. The feedback circuit senses the voltage over the coil and comprises a transconductance amplifier that amplifies and converts the sensed voltage into a current injected back in the second winding. In a preferred embodiment, the coil has a pair of windings and is used in a double-ended low-pass filter, as an xDSL splitter for telecommunication applications. The pair of windings is then coupled between telecommunication input terminals and output terminals of the low-pass filter. The improved enhancement circuit comprises a third and a fourth winding both coupled to the first and second windings. The third winding has a first terminal coupled to the ground and a second terminal coupled to the input of the feedback circuit, whilst the fourth winding has a first terminal also coupled to the ground and a second terminal coupled to the output of the feedback circuit. This feedback circuit senses the voltage over the coil and comprises a transconductance amplifier that amplifies and converts the sensed voltage into a current injected in the fourth winding via the second terminal thereof. | 04-23-2009 |
20090115506 | INTERFACE DEVICE AND INFORMATION PROCESSING SYSTEM - A first converter circuit converts a state signal, whose level is constant or slowly varies during a predetermine period of time, into a pulse signal to allow the signal to propagate across an electrically insulating area. A second converter circuit converts the pulse signal, which has propagated through an insulating circuit, into the original state signal or a signal having the same characteristics as the original state signal. | 05-07-2009 |
20090184760 | Driver IC with HV-isolation, especially hybrid electric vehicle motor drive concept - An automotive drive system for a high voltage electric motor comprises a microcontroller and ECU powered by a low voltage (12 volt) bus net which controls the drives of a high voltage inverter powered by a 100 volt or higher source, which, in turn, drives the motor. To provide good electrical insulation between the low voltage and high voltage systems, the low voltage control signals are produced by a low voltage signal transmitter chip which has a small integral antenna which wirelessly communicates with the antenna of a high voltage driver IC which drives the power devices of the high voltage inverter. The two IC chips are separated by a suitable isolation distance and may be bare chips, individually packaged chips or co-packed chips. Plural control IC chips and driver IC chips can communicate with one another for adverse control functions, including “smart” functions. | 07-23-2009 |
20100019839 | Semiconductor integrated circuit having latch circuit applied changeable capacitance and method thereof - A semiconductor integrated circuit includes a flip-flop circuit, a capacitive element, and a switch circuit. The switch circuit includes a first switch circuit which couples the capacitive element to two nodes of the flip-flop circuit at a first timing, and a second switch circuit which short-circuits ends of the capacitive element connected to the two nodes at a second timing different from the first timing. | 01-28-2010 |
20100176878 | CAPACITIVELY AND CONDUCTIVELY COUPLED MULTIPLEXER - A capacitively and conductively coupled multiplexer (C | 07-15-2010 |
20110102077 | SEMICONDUCTOR DEVICE WITH FEEDBACK CONTROL - An electronic element ( | 05-05-2011 |
20110128074 | PRIMITIVE CELL AND SEMICONDUCTOR DEVICE - A primitive cell according to the present invention includes: an internal circuit; a power supply wire that applies a power supply voltage to the internal circuit; and a ground wire that applies a ground voltage to the internal circuit, in which the power supply wire and the ground wire are arranged so as to be localized in one side of outer peripheral sides of the cell. | 06-02-2011 |
20110260786 | ELECTRONIC CIRCUIT - To provide an electronic circuit that has an interposer (rewiring layer) inserted therein and an asynchronous receiver capable of properly receiving a signal. An electronic circuit includes: a first substrate having a first coil that is formed by a wire and transmits a signal and a first transmission circuit that is connected to the first coil and asynchronously outputs the signal to the first coil; a second substrate having a second coil that is formed by a wire at a position corresponding to the first coil and forms a communication channel with the first coil to receive the signal and a third coil that is connected to the second coil by a wire on the substrate and transmits the signal; and a third substrate having a fourth coil that is formed by a wire at a position corresponding to the third coil and forms a communication channel with the third coil to receive the signal and a first reception circuit that is connected to the fourth coil and asynchronously receives the signal, the first substrate, the second substrate and the third substrate being stacked on one another, and the first transmission circuit changes a current that is to be made to flow to the first coil each time a logical value of transmission data changes. | 10-27-2011 |
20110267140 | IMPEDANCE CALIBRATION CIRCUIT AND SEMICONDUCTOR APPARATUS USING THE SAME - An impedance calibration circuit includes: a first calibration unit configured to compare a first converted voltage obtained by converting a first calibration signal with a reference voltage and vary the first calibration signal; a voltage detection unit configured to activate a voltage detection signal according to a level of a power supply voltage; a multiplexing unit configured to select and output the reference voltage or the first converted voltage in response to the detection signal; and a second calibration unit configured to compare a second converted voltage obtained by converting a second calibration signal with the level of the output signal of the multiplexing unit and vary the second calibration signal. | 11-03-2011 |
20110273229 | CONTINUOUS-TIME CIRCUIT AND METHOD FOR CAPACITANCE EQUALIZATION BASED ON ELECTRICALLY TUNABLE VOLTAGE PRE-DISTORTION OF A C-V CHARACTERISTIC - A capacitance compensation circuit includes a plurality of switches having a first node coupled to an input terminal, a plurality of capacitors each coupled to a respective second node of the plurality of switches, and an adjustment circuit for providing a plurality of adjustable bias levels to a plurality of switch control nodes to precisely compensate for linear and parabolic voltage dependent components of an input or other capacitor. Two such circuits can be used with a single input terminal to compensate for both increasing and decreasing voltage dependent characteristics of a target capacitor. | 11-10-2011 |
20120249231 | FIELD DEVICE - To provide reliable notification of a fault state when a power supply to a calculation processing portion is in the OFF state when a power supply to a communication processing portion is in the ON state. An isolating circuit, an inverting circuit inverting a signal branch-outputted through an output tine of the isolating circuit, and a selecting circuit that uses the signal outputted from the output line of the isolating circuit as a first input and the inverted signal from the inverting circuit as a second input, to select either the first input or the second input, depending on a selection setting status thereof, to output the selected signal to the communication processing portion are provided. A +5 V voltage is applied through a resistor to the output line of the isolating circuit. This +5 V voltage is produced through the power supply supplied from the second double-wire transmission path. | 10-04-2012 |
20130049853 | SUPPRESSION OF OVERVOLTAGE CAUSED BY AN INDIRECT LIGHTNING STRIKE - A coupling circuit for a bus subscriber on a bus line of a field bus with DC-voltage-free and differential EIA-485/EIA-422-compliant signal transmission according to a TTP protocol, in which the two inputs/outputs of a transmission/reception component of the bus subscriber are connected to a first winding of a signal transformer, and the two poles of the bus line are connected to a second winding of the signal transformer, and the first winding has a center tap, wherein the center tap is connected to the local reference-earth potential of the bus subscriber via a capacitor, the capacitance of which is at least 100 times the parasitic capacitance of the transformer. | 02-28-2013 |
20140028388 | Systems with components operable in low power modes - A system comprises a first component operable in a plurality of modes coupled to a second component via an isolation circuit. The isolation circuit comprises a first diode coupled between a power supply of the first component and an output of the isolation circuit. The output of the isolation circuit is coupled to the second component. | 01-30-2014 |