Class / Patent application number | Description | Number of patent applications / Date published |
327093000 | With reference source | 6 |
20100117686 | CURRENT MODE CONTROLLED DC-TO-DC CONVERTER - An apparatus having an input voltage and an output voltage is provided. The apparatus comprises a switch that receives the input voltage and that is adapted to be coupled to a load, a modulator having a timing signal, a compensator that is coupled to the modulator and that includes an amplifier, an overcurrent circuit, and a sampler. The modulator is coupled to the switch and the modulator actuates the switch at a first frequency. The amplifier amplifies the difference between at least a portion of the output voltage with a predetermined reference voltage and outputs an amplified voltage. The overcurrent circuit receives the amplified voltage and outputs an overcurrent signal to the modulator. The sampler is interposed between the amplifier and the overcurrent circuit and is coupled to the modulator, where the sampler samples the amplified voltage prior to each actuation of the switch based on the timing signal and where the sampler outputs the compared voltage that was sampled to the overcurrent circuit through the duration of each actuation of the switch. | 05-13-2010 |
20130271185 | ELECTRONIC DEVICE AND METHOD FOR LOW LEAKAGE SWITCHING - The invention relates to a low leakage switch having an input node for receiving an input voltage and an output node for providing an output voltage. The low leakage switch comprises a main sampling transistor the backgate voltage of which is biased through other transistors, and wherein the control gate of the main sampling transistor is controlled through a second control signal and the control gates of the other transistors are controlled through a first control signal, wherein the electronic device is further configured to activate the other transistor for adjusting the backgate voltage of the main sampling transistor through the first control signal before activating the main sampling transistor for sampling the input voltage on a main sampling capacitor through the second control signal. | 10-17-2013 |
20130314128 | CMOS TRANSISTOR LINEARIZATION METHOD - A circuit for sampling an analog input signal may include a transistor disposed on a substrate and a sampling capacitor coupled to one of the source and the drain of the transistor. The transistor may be disposed on a substrate that is coupled to ground. A source and a drain of the transistor may be disposed in a back gate of the transistor. The analog input may be supplied to one of the source and the drain of the transistor, and the back gate may receive a back gate voltage having a value that is lower than ground. | 11-28-2013 |
20150091618 | SAMPLE AND HOLD CIRCUIT AND SOURCE DRIVER INCLUDING THE SAME - A sample and hold circuit may include: a main sample and hold circuit configured to sample and hold pixel information of an organic light emitting diode (OLED) cell, and output a first output signal; and a dummy sample and hold circuit configured to sample and hold a reference voltage in synchronization with the main sample and hold circuit, and output a second output signal for offsetting a switching noise signal contained in the first output signal. | 04-02-2015 |
20150116004 | Positive/Negative Sampling and Holding Circuit - A positive/negative sampling and holding (S/H) circuit is disclosed herein. The positive/negative S/H circuit includes an operational amplifier, a first capacitor, a second capacitor being parallel with the first capacitor and forming an integration circuit with the operational amplifier, and several discharge switches correspondingly connecting discharge paths of the first and the second capacitors to control the first and the second capacitors to output a first sampling signal and a second sampling signal respectively, and herein, the first and the second sampling signals has the same magnitude but opposite voltage polarities. | 04-30-2015 |
20150137854 | HIGH SPEED SAMPLING FRONT-END CIRCUIT - A high-speed sampling front-end circuit is presented that includes a MDAC sampling network, a reference voltage generator circuit, a comparator array, an operational amplifier, an output short-circuit switch, an adjustable clock duty cycle stabilizer, a status control module and a feedback control module. The circuit features low power, high sampling rate and high input bandwidth of sampling network. The time constant of the MDAC sampling network and the comparator array is precisely matched one another to improve input bandwidth of the sampling network. Sampling capacitors are designed as feedback capacitors and DAC calculation capacitors, thereby the operational amplifier doubles feedback coefficient and features 50% bandwidth and 50% power. The cycle stabilizer is adopted to shorten sampling time and extend amplification phase to greatly improve sampling rate. One input reference voltage tends to simplify the design of the reference voltage generator circuit. The circuit has wide applications in pipelined A/D converters. | 05-21-2015 |