Class / Patent application number | Description | Number of patent applications / Date published |
324123000 | Feedback amplifiers | 6 |
20080197834 | SIGNAL DETECTING CIRCUIT - The signal detecting circuit has a first amplifier which amplifies the supplied signals and outputs the amplified signals from first and second output terminals; a switch unit which supplies the signals to the first amplifier such that the polarity thereof is reversed between the first and second periods; a first capacitor, one end of which is connected to the first output terminal; a second capacitor, one end of which is connected to the second output terminal; a first switch, one end of which is connected to the other end of the second capacitor; a second amplifier having an inverting input terminal connected to the other end of the first capacitor, a non-inverting input terminal connected to the other end of the first switch, and an output terminal; a second switch which is connected to between the output terminal and the inverting input terminal, a third switch, one end of which is connected to the other end of the second capacitor; a fourth switch, one end of which is connected to the other end of the non-inverting input terminal; a threshold voltage source which is connected to between the other end of the third switch and the other end of the fourth switch; and a reference voltage source which is connected to either one of the other end of the third switch and the other end of the fourth switch. In the first period, the first switch is off, and the second to fourth switches are on; in the second period, the first switch is on, and the second to fourth switches are off. | 08-21-2008 |
20080211483 | Electronic Device with an Amplifier Output Stage and an Over-Current Detection Means - An electronic device with an amplifier output stage (OS) and an over-current detection means (OCDM) for detecting an output over-current (IHS, ILS) of the output stage (OS) is provided. The over-current detection means (OCDM) comprises a level detection means (LDM) for detecting a level of the output current ( | 09-04-2008 |
20080284411 | Method and Circuit Provided for Measuring Very Low Intensity of Electric Current - The measurement of a very low intensity of an electric current is carried out by integrating the electric current over integration cycles having a time period ti and measuring a peak value of a sawtooth voltage at an integrated circuit output each time at the end of the integration cycle, whereat noise voltage components of a frequency above a cut-off frequency, which has a value of the order of magnitude (0.1×2π×ti) | 11-20-2008 |
20080309321 | Distributed Rf/Microwave Power Detector - A distributed RF/microwave power detector for detecting the power of a signal is provided. The distributed RF/microwave power detector includes a power detector on or at least partially embedded in a single substrate. The distributed RF/microwave power detector includes a detection unit that has a distributed amplifier for amplifying the signal and outputting an amplified signal, and a detector for detecting the power of the amplified signal. The distributed RF/microwave power detector further includes at least one additional detection unit cascaded with the first. The additional detection unit includes an additional distributed amplifier for amplifying the amplified signal and outputting a further amplified signal, as well as an additional detector for detecting a power of the further amplified signal. The distributed RF/microwave power detector also includes a multiplexer for multiplexing outputs of the detector and at least one additional detector, each having a dynamic range different from the other. | 12-18-2008 |
20090027040 | OPEN CIRCUIT DELAY DEVICES, SYSTEMS, AND METHODS FOR ANALYTE MEASUREMENT - System, circuits, and methods to reduce or eliminate uncompensated voltage drop between an electrode of an electrochemical cell usable for analyte measurement. In one example, a system is provided that includes a test strip, a reference voltage circuit, an operational amplifier connected to the reference voltage circuit to provide a predetermined fraction of a reference voltage substantially equal to the test voltage applied to the first line, the operational amplifier having an output configured for one of a connected or disconnected state to the first line, and a processing circuit connected to the output of the operational amplifier and the first line such that, during a disconnected state between the output and the first line, the processing circuit remains in connection with the first line. In another example, a method of measuring an electrochemical reaction of an electrochemical cell is provided that includes applying a test voltage to the first electrode and connecting the second electrode to ground; uncoupling the first electrode from the output of the circuit while allowing electrical communication from the first electrode to the processor; and coupling the first electrode to the output to measure a test current generated in the electrochemical cell without an uncompensated voltage drop. | 01-29-2009 |
20090027041 | BUFFER CIRCUIT, AMPLIFIER CIRCUIT, AND TEST APPARATUS - There is provided a buffer circuit that outputs a signal according to an input signal. The buffer circuit includes a first receiving transistor that receives the input signal through its base terminal, a first clamp transistor having polarity same as that of the first receiving transistor, of which an emitter terminal and a collector terminal are connected to corresponding terminals of the first receiving transistor and which receives a first clamp voltage restricting a signal level output from the buffer circuit through its base terminal, and a first current defining section that is commonly provided for the first receiving transistor and the first clamp transistor and defines a total amount of emitter currents flowing into the first receiving transistor and the first clamp transistor. The buffer circuit outputs an output signal according to an emitter voltage of the first receiving transistor. | 01-29-2009 |
20090027042 | Method and apparatus for amplifying a signal and test device using same - An amplifier circuit is used in a multimeter to amplify signals applied between a pair of test terminals. A voltage applied to one of the test terminals is amplified by a first operational amplifier configured as a voltage follower. An output of the first operational amplifier is applied to an inverting input of a second operational amplifier configured as an integrator. An output of the second operational amplifier is connected to the other of the test terminals. A voltage generated at the output of the second operational amplifier provides an indication of the magnitude and polarity of the voltage applied to the first and second test terminals. | 01-29-2009 |
20090039869 | Cascode Current Sensor For Discrete Power Semiconductor Devices - A cascode current sensor includes a main MOSFET and a sense MOSFET. The drain terminal of the main MOSFET is connected to a power device whose current is to be monitored, and the source and gate terminals of the main MOSFET are connected to the source and gate terminals, respectively, of the sense MOSFET. The drain voltages of the main and sense MOSFETs are equalized, in one embodiment by using a variable current source and negative feedback. The gate width of the main MOSFET is typically larger than the gate width of the sense MOSFET. Using the size ratio of the gate widths, the current in the main MOSFET is measured by sensing the magnitude of the current in the sense MOSFET. Inserting the relatively large MOSFET in the power circuit minimizes power loss. | 02-12-2009 |
20090128132 | Current measurement - A method is provided that comprises determining an amount of a first current from an amount of a charge stored in a first capacitor. Also, an apparatus is provided that comprises a reference timer circuit configured to generate a first signal indicating an expiration of a time period, and a sense circuit comprising a first capacitor and configured to sense, responsive to the first signal, a charge stored in the first capacitor, and to generate a second signal representing the sensed charge. | 05-21-2009 |
20090146643 | METHODS AND APPARATUS FOR CURRENT SENSING - Methods and apparatus for current sensing according to various aspects of the present invention sense the current in a circuit, such as an inductor circuit. The current sensing systems may comprise an RC element connected such that the RC time constant matches the L/R time constant of the inductor. The current sensor may be configured to generate voltages that are proportional to the instantaneous current in the inductor with scaled gain for a wide range of inductor self resistance (DCR) values. | 06-11-2009 |
20090206824 | MEASUREMENT AMPLIFICATION DEVICE AND METHOD - Measurement amplification methods and devices for detecting a monopolar input signal (U | 08-20-2009 |
20090267589 | CIRCUIT AND APPARATUS FOR DETECTING ELECTRIC CURRENT - A circuit for detecting electric current is provided. The circuit includes a MOSFET having a gate terminal, a source terminal, and a drain terminal, the drain terminal and the source terminal are connected in series in a loop through which an electric current flows. The circuit also includes a bias circuit, configured to generate a bias voltage at a gate terminal of the MOSFET to make the MOSFET operate in the linear region, and a voltage detection circuit, connected to the drain terminal and the source terminal of the MOSFET to detect a voltage difference between the drain terminal and the source terminal of the MOSFET, the voltage difference being used as a detection signal in the circuit for detecting the electric current. | 10-29-2009 |
20090295369 | Current sensing circuit - A current sensing circuit is coupled to a current amplifier. The current sensing circuit comprises a power MOS, a switch and a switching resistor. The switching resistor has a value of ranging from approximately some kiliohms to approximately several ten kiliohms. The power MOS outputs a large current. The switch determines a sensing period. The power MOS provides a low on-resistance characteristic such that a sensing resistor is capable of being eliminated. The switching resistor senses a voltage drop while the switch is turned on. The sensed voltage is amplified by the current amplifier. The switching resistor has a relatively low accuracy resistance. | 12-03-2009 |
20090322313 | POWER MEASUREMENT APPARATUS - A power measurement apparatus includes a radio frequency input terminal, a measurement module, an interface, a memory, and a control unit. The radio frequency input terminal is connected to a radio frequency device. The measurement module is connected to the radio frequency input terminal to convert the radio frequency signal into a voltage signal. The interface is connected to the measurement module, receiving and transmitting the voltage signal from the measurement module. The memory is connected to the interface to store a voltage-power table related to the radio frequency signal. The control unit is connected to the interface to query the voltage-power table in the memory via the interface, and obtain the power of the radio frequency device according to the voltage signal output from the measurement module. | 12-31-2009 |
20100007334 | POWER SOURCING EQUIPMENT DEVICE AND METHOD OF PROVIDING A POWER SUPPLY TO A POWERED DEVICE - In a particular embodiment, a power sourcing equipment (PSE) device includes a plurality of network ports adapted to communicate data and to selectively provide power to one or more powered devices via a plurality of channels. The PSE device further includes a plurality of sense elements, where each sense element is coupled to a respective network port of the plurality of network ports. The PSE also includes a power sensing circuit having an analog-to-digital converter (ADC) adapted to be selectively coupled to a selected network port of the plurality of network ports. The power sensing circuit selectively measures at least one electrical parameter associated with the selected network port. | 01-14-2010 |
20100007335 | Measuring Apparatus - A measuring apparatus, in particular for measuring current, is provided. In at least one embodiment, the measuring apparatus includes a sensor and an evaluation device which is coupled or can be coupled thereto, in which the coupling is effected contactlessly, in particular by way of a transponder interface. As such, on the one hand current can be measured in a reaction-free manner, wherein on the other hand the resulting measuring apparatus can be used in a particularly flexible and versatile manner on account of the maneuverability of the components with respect to one another and on account of the relatively large possible distance between the two parts of the transponder interface. | 01-14-2010 |
20100013458 | Semiconductor Device For Measuring Ultra Small Electrical Currents And Small Voltages - A semiconductor device for measuring ultra low currents down to the level of single electrons or low voltages comprises a first and a second voltage supply terminal, an input terminal for receiving an electrical current or being supplied with a voltage to be measured, a bipolar transistor having a base, an emitter and a collector, wherein a first PN junction is formed between the base and the collector and a second PN junction is formed between the base and the emitter, wherein the emitter is coupled to the input terminal and the base is coupled to the second voltage supply terminal, and wherein the first PN junction is designed for reverse biased operation as an avalanche diode, and a quenching and recharging circuit having a first terminal coupled to the first voltage supply terminal and a second terminal coupled to the collector of the bipolar transistors, the quenching and recharging circuit permitting operation of the first PN junction reverse biased above the breakdown voltage of the first PN junction. | 01-21-2010 |
20100039100 | Nonlinear Degree Measuring Apparatus And Method For A Power Amplifier, Predistortion Compensation Apparatus - This invention relates to a nonlinear degree measuring apparatus and method for a power amplifier, and a predistortion compensation apparatus. The nonlinear degree measuring apparatus comprises a delayer ( | 02-18-2010 |
20100052656 | VOLTAGE SENSING DEVICE - A voltage sensing device with which high-precision voltage sensing is possible without acquiring a unique correction constant for each device. A pair of voltage input nodes NCk and NCk- | 03-04-2010 |
20100079132 | AMPLIFIER TOPOLOGY AND METHOD FOR CONNECTING TO PRINTED CIRCUIT BOARD TRACES USED AS SHUNT RESISTORS - An integrated circuit current shunt amplifier ( | 04-01-2010 |
20100109645 | NANOSTRUCTURE SENSORS - Embodiments feature a sensor including a nanostructure and methods for manufacturing the same. In some embodiments, a sensor includes a substrate, a first electrode disposed on the substrate, and a second electrode disposed on the substrate. The second electrode is spaced apart from the first electrode and surrounding the first electrode. The sensor includes at least one nanostructure contacting the first electrode and the second electrode, in which the nanostructure is configured to vary an electrical characteristic according to an object to be sensed. | 05-06-2010 |
20100109646 | METHOD AND APPARATUS FOR AMPLIFYING A SIGNAL AND TEST DEVICE USING SAME - An amplifier circuit is used in a multimeter to amplify signals applied between a pair of test terminals. A voltage applied to one of the test terminals is amplified by a first operational amplifier configured as a voltage follower. An output of the first operational amplifier is applied to an inverting input of a second operational amplifier configured as an integrator. An output of the second operational amplifier is connected to the other of the test terminals. A voltage generated at the output of the second operational amplifier provides an indication of the magnitude and polarity of the voltage applied to the first and second test terminals. | 05-06-2010 |
20100109647 | PHYSICAL QUANTITY SENSING APPARATUS HAVING AN INTERNAL CIRCUIT, A FILTER CIRCUIT HAVING RESISTORS, POWER SUPPLY, GROUNDING, AND OUTPUT PADS, WITH THE LENGTH AND WIDTH OF WIRING BETWEEN THE OUTPUT OR POWER SUPPLY PAD AND THE INTERNAL CIRCUIT SET SO THAT THE RESISTANCE OF RESISTORS AND THE PARASITIC RESISTANCE COMPONENT OF THE WIRING SATISFY A CERTAIN RELATIONAL EXPRESSION - In a semiconductor device, in particular a physical quantity sensing apparatus, the length and the width of the wiring connecting a sensor internal circuit and an output or power supply pad are adjusted so that the total parasitic resistance components R | 05-06-2010 |
20100148754 | Apparatus For Driving an Amperometric Electrochemical Sensor - Apparatus ( | 06-17-2010 |
20100148755 | MOVEMENT DETECTION CIRCUIT OF SOLENOID SHEAR SEAL VALVE ON SUBSEA PRESSURE CONTROL SYSTEM AND METHOD OF DETECTING MOVEMENT OF SOLENOID ACTUATOR - A solenoid current monitoring circuit of a solenoid actuator includes a solenoid drive board configured to receive a control signal, a sensing resistor configured to detect a current signal of a solenoid coil of the actuator resulting from the control signal, and a differentiator configured to differentiate the current signal. The solenoid current monitoring circuit detects the movement of the solenoid actuator based on a change in the differentiated current signal caused by a change in inductance of the solenoid coil. | 06-17-2010 |
20100188073 | METHODS AND APPARATUS FOR MEASURING ANALYTES USING LARGE SCALE FET ARRAYS - Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis. | 07-29-2010 |
20100271005 | Apparatus for Sensing an Output Current in a Communications Device - Power over Ethernet (PoE) communication systems provide power and data communications over the same communications link, where a power source device (PSE) provides DC power (for example, 48 volts DC) to a powered device (PD). The DC power is transmitted simultaneously over the same communications medium with the high speed data from one node to the other node. The PSE typically includes a controller that controls the DC power provided to the PD at the second node of the communications link. The PSE controller measures the voltage, current, and temperature of the outgoing and incoming DC supply lines to characterize the power requirements of the PD. The PSE controller includes a resistorless switch to measure the current. The resistorless switch includes a sense transistor and a current mirror to allowing the PSE controller to calculate the current based upon a replica current. | 10-28-2010 |
20100308796 | SIGNAL READOUT CIRCUIT OF AMPEROMETRIC SENSOR - A signal readout circuit comprises a first amplifier, a second amplifier and first to fourth transistors. The signal readout circuit has a first electrode, a second electrode, and a third electrode. The signal readout circuit applied in a wide current-sensing range of amperometric chemical sensing. The readout circuit may be applied in electrochemical sensing such as glucose, so as to read out a current signal of an amperometric sensor. Through a design of low input impedance, sensing signals in a wide current range can be sensed in the readout circuit. Also, a current mirror structure is used to copy the input current to an output current, such that an output signal range of the output signals of the current circuit is not limited by a supplied voltage. | 12-09-2010 |
20100321002 | INTEGRATED SENSOR WITH CAPACITIVE COUPLING REJECTION TO THE MECHANICAL GROUND - An integrated sensor includes: i) a voltage regulator coupled with a mechanical ground and delivering a regulated voltage based on a primary power supply voltage referencing an electrical ground; ii) a high-impedance sensitive element powered by the primary power supply, electrically coupled to the mechanical ground and delivering an electrical quantity representative of a physical quantity; iii) an amplification module powered by the regulated voltage and including a first input receiving an analog reference dependent on the regulated voltage and a second input receiving the electrical quantity, and designed to deliver a first output voltage representing the amplified measurement voltage; and iv) a differential amplifier powered by the primary power supply voltage, referencing the electrical ground and including first and a second inputs receiving the analog reference and the first output voltage, respectively, and delivering a second output voltage representing the first amplified output voltage referenced to the electrical ground. | 12-23-2010 |
20110012588 | Wide-Dynamic Range Electrometer with a Fast Response - A method and apparatus for measuring current includes sensing a first voltage at the output of an amplifier and computing a current based on the first voltage and the resistance of a first resistive element, which is electrically coupled between an inverting input of the amplifier and the output of the amplifier, if the first voltage is below a predetermined level. The method also includes sensing a second voltage at the output of a buffer and computing a current based on the first and second voltages and the resistances of the first resistive element and a second resistive element, which is electrically coupled between the inverting input of the amplifier and an input of the buffer and is also electrically coupled to the output of the amplifier through a at least one diode, if the voltage output from the amplifier is above the predetermined level. | 01-20-2011 |
20110101959 | CURRENT-CONTROLLED SEMICONDUCTOR DEVICE AND CONTROL UNIT USING THE SAME - The present invention aims to provide a current-controlled semiconductor device which corrects fluctuations of both gain and offset of a current detection circuit to thereby enable high-accuracy current detection within a single-chip IC, and a control unit using the same. | 05-05-2011 |
20110109302 | Presettable transducer for electrical quantities - A presettable voltage sensor includes an electrode faced by an electric field probe and connected to a voltage source; a screening conductive shell wrapping the probe and connected to a reference potential; a dielectric material housed within the shell and interposed between the probe and the electrode; a conditioning circuit connected to an exit of the sensor and having a resistor of resistance R | 05-12-2011 |
20110115471 | Current Sensing and Measuring Method and Apparatus - A method can include obtaining a voltage across a first transistor as an obtained voltage. The method can also include multiplying the obtained voltage by a predetermined multiple M to yield a multiplied voltage. The method can further include applying the multiplied voltage to a second transistor, wherein the second transistor is N times smaller than the first transistor. The method can additionally include providing an output current of the second transistor as an M/N scaled estimate of an output current of the first transistor. | 05-19-2011 |
20110115472 | CONTROL CIRCUIT FOR CURRENT DETECTION - A control circuit for current detection is disclosed. The control circuit outputting an output current to a power device comprises at least one first Field Effect Transistor (FET) coupled to the positive input terminal of an operational amplifier. The first FET is coupled to the power device through two voltage terminals, wherein the output current is passed through the first FET. The control circuit further comprises at least one second FET coupled to the first FET and the negative input terminal of the first operational amplifier, utilizing the virtual-short characteristic of the first operational amplifier to form a current mirror with the first FET, and copying the output current to generate a copy current by a scale whereby the output current is detected by the copy current. The invention detects the output current without consuming additional power so as to measure the power consumption for the power device. | 05-19-2011 |
20110175596 | CURRENT MEASURING APPARATUS FOR POWER SUPPLY - A current measuring apparatus includes a shunt circuit, a current detecting circuit, and a signal amplifying circuit. The current measuring apparatus applies the shunt circuit to receive a current to be measured. The current measuring apparatus applies the current detecting circuit to measure the voltage between two terminals of the shunt circuit. The current measuring apparatus applies the signal amplifying circuit to amplify the measured voltage. The measured current can be calculated according an expression determined by the current detecting circuit and the signal amplifying circuit. | 07-21-2011 |
20110193549 | METHOD AND APPARATUS FOR AMPLIFYING A SIGNAL AND TEST DEVICE USING SAME - An amplifier circuit is used in a multimeter to amplify signals applied between a pair of test terminals. A voltage applied to one of the test terminals is amplified by a first operational amplifier configured as a voltage follower. An output of the first operational amplifier is applied to an inverting input of a second operational amplifier configured as an integrator. An output of the second operational amplifier is connected to the other of the test terminals. A voltage generated at the output of the second operational amplifier provides an indication of the magnitude and polarity of the voltage applied to the first and second test terminals. | 08-11-2011 |
20110204877 | OUTPUT CIRCUIT OF CHARGE MODE SENSOR - An output circuit of a charge mode sensor includes a second resistor and an operational amplifier. The second resistor connects an output portion of the charge mode sensor and a ground. The operational amplifier is configured to output a detection signal that varies in accordance with an amount of charge kept in the charge mode sensor. The operational amplifier includes an inverting input portion, a non-inverting input portion, and an output portion. The inverting input portion is connected to the output portion of the charge mode sensor via a sensor cable. The non-inverting input portion is connected to a reference voltage. The output portion is connected to the inverting input portion via a first resistor. | 08-25-2011 |
20110234204 | RADIO-FREQUENCY POWER AMPLIFIER - A power amplifier includes: an input matching circuit including an inductor, the input matching circuit receiving an input signal and matching input impedances with each other; an amplifier amplifying the input signal that is passed through the input matching circuit; and a test circuit, wherein the test circuit includes: a capacitor connected to the inductor in the input matching circuit through first test switch; a negative resistance transistor provided between the inductor and first voltage source terminal with second test switch being interposed between the inductor and the negative resistance transistor; and a current source transistor provided between second voltage source terminal and the inductor, wherein, in testing, first and second test switches and the current source transistor are turned on to cause the inductor and the test circuit to form a oscillator and, in normal operation, first and second test switches and the current source transistor are turned off. | 09-29-2011 |
20110234205 | CIRCUIT FOR MEASURING THE EFFECTIVE CURRENT OF A SIGNAL TO BE MONITORED - The present invention relates to a circuit ( | 09-29-2011 |
20110248703 | Power Detector and Method for Detecting Power - A circuit and method are provided for detecting a power of a signal amplified in a power amplifier. A diode and a voltage bias source are used to shift a voltage of the signal taken at a base of an amplifying transistor of the power amplifier, to generate a positive signal. The positive signal is provided to a base input of an emitter follower exhibiting high input impedance to generate a power detector output which follows the positive signal. | 10-13-2011 |
20110260710 | INTELLIGENT ELECTRONIC DEVICE HAVING CIRCUITRY FOR HIGHLY ACCURATE VOLTAGE SENSING - An intelligent electronic device (IED), e.g., an electrical power meter having circuitry for an input voltage structure with an adjusting voltage divider, resulting in a highly accurate power measurement, is provided. The IED includes a first voltage input for receiving a sensed voltage from a first phase of an electrical distribution system, the first voltage input being coupled to a first voltage divider; a second voltage input for receiving a sensed voltage from a neutral phase of the electrical distribution system, the second voltage input being coupled to a second voltage divider; and an inverting operational amplifier (op amp) coupled to the first and second voltage inputs for providing an output proportional to the voltage of the first phase referenced to the neutral phase, wherein the first voltage divider is adjustable to match a ratio of the first voltage divider to a ratio of the second voltage divider. | 10-27-2011 |
20110273162 | Power Detector - A power detector circuit for measuring output power of an amplifier circuit includes a mirror amplification stage having mirror circuit components substantially similar and corresponding to original circuit components of an amplification stage of the amplifier circuit, and a power sensor circuit coupled to an output node of the mirror amplification stage. | 11-10-2011 |
20110309822 | SENSITIVITY SENSOR SYSTEM - A sensor system for receiving an input signal and applying a digital control signal to adjust an output sensitivity of a triggering signal within the sensor system. The input signal includes a bias DC and a fluctuation bias voltage. The sensor system includes a first voltage contact, a normalized voltage contact, a normalized circuit and a comparison circuit. The first voltage contact provides a first comparison voltage based on the digital control signal, wherein the first comparison voltage defines a standby voltage region. The normalized voltage contact provides a reference voltage based on the digital control signal, wherein the reference voltage is located within the standby voltage region. When the fluctuation bias voltage is located outside of the standby voltage region, the sensor system outputs a triggering signal so as to adjust the digital control signal. | 12-22-2011 |
20120074928 | System and Method for Improving Accuracy of High Voltage Phasing Voltmeters - A high voltage phasing voltmeter comprises first and second probes. Each probe comprises an insulated handheld shield supporting an electrode for contacting a high voltage electrical conductor. The electrode is connected in series with a resistor and a capacitor. A meter comprises a housing enclosing an electrical circuit for measuring phasing voltage. The electrical circuit comprises an input circuit for connection to the first and second probes and an amplifier connected between the input circuit and a display. The amplifier measures voltage across the electrodes to provide an indication on the display. | 03-29-2012 |
20120086434 | WIDE-DYNAMIC RANGE ELECTROMETER WITH A FAST RESPONSE - A method and apparatus for measuring current includes sensing a first voltage at the output of an amplifier and computing a current based on the first voltage and the resistance of a first resistive element, which is electrically coupled between an inverting input of the amplifier and the output of the amplifier, if the first voltage is below a predetermined level. The method also includes sensing a second voltage at the output of a buffer and computing a current based on the first and second voltages and the resistances of the first resistive element and a second resistive element, which is electrically coupled between the inverting input of the amplifier and an input of the buffer and is also electrically coupled to the output of the amplifier through a at least one diode, if the voltage output from the amplifier is above the predetermined level. | 04-12-2012 |
20120091997 | DETECTING CIRCUIT FOR PIXEL ELECTRODE VOLTAGE OF FLAT PANEL DISPLAY DEVICE - A detecting circuit for pixel electrode voltage of a flat panel display device, the flat panel display device having a plurality of scanning lines and a plurality of data lines crossing with the plurality of scanning lines, the plurality of scanning lines and data lines define a plurality of pixel units, and each of the pixel units including a pixel switching element and a pixel electrode. The detecting circuit for pixel electrode voltage includes at least one detecting sub-circuit for pixel electrode voltage. The detecting sub-circuit for pixel electrode voltage includes: a signal amplifying unit connected with the pixel electrode in the pixel unit, for amplifying a voltage signal of the pixel electrode; and a signal detecting unit connected with the signal amplifying unit, for detecting the voltage signal of the pixel electrode that has been amplified by the signal amplifying unit, and outputting a variation in the voltage signal of the pixel electrode with time. Compared with the prior art, the present invention has advantages of simple detecting circuit structure and accurate detection result. | 04-19-2012 |
20120105051 | Accessory Presence Detection - Disclosed is an electronic circuit with a first terminal for connecting an accessory thereto, and with a functionality for detecting the presence of an accessory connected to the first terminal. | 05-03-2012 |
20120126791 | SEMICONDUCTOR DEVICE - An output of a current sensing cell is connected to an inverting input terminal of an operational amplifier, and a non-inverting input terminal of the operational amplifier is connected to the source, of the main cell, to which a source-bias voltage is applied; a current/voltage conversion circuit configured with the operational amplifier and a sensing resistor converts an output current of the current sensing cell into a sensing voltage; there are provided a first error detection circuit that compares the sensing voltage with a first reference voltage and outputs an error signal and a second error detection circuit that compares a voltage at the inverting input terminal of the operational amplifier with a second reference voltage set to be higher than the source-bias voltage and outputs an error signal. | 05-24-2012 |
20120212212 | VOLTAGE DETECTING CIRCUIT - In a voltage detecting circuit, a transistor is configured as a P-type MOSFET, and includes a source connected with an input terminal, a gate connected with a ground voltage terminal and a drain connected with an output terminal. A transistor is configured as a P-type MOSFET, and includes a gate and a source connected with the output terminal and a drain connected with the ground terminal. Gate width and gate length of the transistor and gate width and gate length of the transistor are adjusted so that source-drain current flowing between the source and the drain of the transistor becomes equal to source-drain current flowing between the source and the drain of the transistor when the voltage applied to the input terminal is set to be preset trigger voltage. This configuration accomplishes detecting that the input voltage exceeds the trigger voltage with simple configuration. | 08-23-2012 |
20120217954 | CURRENT METER WITH VOLTAGE AWARENESS - The flexibility of a branch circuit monitor is improved by a signal conditioning unit that outputs a voltage in response to an input voltage and which is configurable to output the same range of output voltages in response to input voltages varying over different ranges. | 08-30-2012 |
20120299582 | INPUT POWER MEASURING DEVICE - An input power measuring device includes a board with an edge connector, a first dual inline memory modules (DIMM) socket, a resistor, a differential amplifier circuit, a voltage dividing circuit, a display screen, and a controller. When the edge connector is inserted into a second DIMM socket of a motherboard and the motherboard is powered on, the resistor samples first current, and converts the first current into a first voltage. The differential amplifier circuit amplifiers the first current to a second current. The voltage dividing circuit divides the first voltage, and outputs a second voltage. The controller converts the second current into a third current, converts the second voltage into a third voltage, and calculates a power according to the third current and the third voltage. | 11-29-2012 |
20120306477 | RAIL TO RAIL COMPARATOR WITH WIDE HYSTERESIS AND MEMORY - An apparatus comprises an input to receive a voltage, a threshold voltage circuit, a comparison circuit, and an output. The threshold voltage circuit provides an adjustable first threshold voltage at a first output and an adjustable second threshold voltage at a second output. The comparison circuit determines when the input voltage is greater than the first voltage threshold, including when the first voltage threshold is adjusted substantially up to a high supply voltage rail, and determines when the input voltage is less than the second voltage threshold, including when the second voltage threshold is adjusted substantially down to a low supply voltage rail. The output provides a first indication when the input voltage is greater than the first voltage threshold and to provide a second indication when the input voltage is less than the second voltage threshold. | 12-06-2012 |
20130009628 | Integral Value Measuring Circuit - An integral value measuring circuit includes an operational amplifier and a capacitor connected between input and output sides thereof, an electric potential of an output terminal where a predetermined resistance element connected to an output side of the operational amplifier is being zero, positive and negative DC voltage generating circuits which comprise positive and negative power sources, respectively, at the output side of the operational amplifier, the positive and negative DC voltage generating circuits and being connected to positive and negative power terminals, respectively, of the operational amplifier through switches, and a connection line between the negative power terminal and one switch and a connection line between the positive power terminal and another switch being connected to the positive and negative power terminals, respectively, of the operational amplifier through cross resistance elements having resistance values negligible compared to a leakage resistance value of the switches. | 01-10-2013 |
20130015840 | Method for Obtaining Field Strength Information - A method includes generating an input voltage for an operational amplifier from a received electromagnetic signal in a receiver unit by an input resistance and generating an output voltage by the operational amplifier by a fixed amplification factor. The input voltage is changed until the output voltage lies within a predefined interval that includes the value of the reference voltage. The input voltage is tapped at a divider node of a voltage divider. The gate voltage of the MOS transistor, operating within a nonlinear range and connected to the divider node, is changed to adjust the output voltage to the reference voltage such that a forward resistance of the transistor is changed nonlinearly. A field strength value received by the receiver unit is determined from a comparison of the value of the present gate voltage with quantities assigned to stored gate voltage values. | 01-17-2013 |
20130021018 | Ambient Noise Cancellation in Pulsed Input System - Embodiments of the invention provide a pulseoximetry system with ambient offset cancellation that subtracts an estimated ambient offset to thereby allow a large front end gain while operating the front end on a low supply voltage. This large gain reduces input referred noise of an analog to digital converter in the front end while providing high dynamic range for signals with a large ambient offset. | 01-24-2013 |
20130027022 | SYSTEM FOR MEASURING CURRENT AND METHOD OF MAKING SAME - A system for measuring current includes a current monitoring system comprises a current sensor configured to sense a first current passing through a conductor and a voltage conversion device coupled to the current sensor and configured to receive a second current from the current sensor and convert the second current into a first voltage. A first scaling circuit is coupled to the voltage conversion device and configured to convert the first voltage to a second voltage proportional to the first current based on a first scaling factor, and a second scaling is circuit coupled to the voltage conversion device and configured to convert the first voltage to a third voltage proportional to the first current based on a second scaling factor, wherein the second scaling factor is different from the first scaling factor. | 01-31-2013 |
20130027023 | POWER DETECTOR AND METHOD FOR DETECTING POWER - A circuit and method are provided for detecting a power of a signal amplified in a power amplifier. A diode and a voltage bias source are used to shift a voltage of the signal taken at a base of an amplifying transistor of the power amplifier, to generate a positive signal. The positive signal is provided to a base input of an emitter follower exhibiting high input impedance to generate a power detector output which follows the positive signal. | 01-31-2013 |
20130082689 | METHODS FOR SENSING CURRENT IN A SWITCHING REGULATOR - In one embodiment, a current sensing circuit includes a differential current sensing amplifier adapted for sensing a voltage drop across a main transistor, the differential current sensing amplifier being adapted for providing a switched current output to a timing circuit which is adapted for providing a timing signal to one or more switching current sample-and-hold circuits based on a current waveform of the switched current output, and the one or more switching current sample-and-hold circuits, each of which are adapted for producing a substantially continuous output current. In another embodiment, a method for detecting a current includes driving a main transistor with a first current, driving one or more sensing transistors with a second current, measuring a sensing inductor current of the one or more sensing transistors, and determining the first current based on the sensing inductor current, wherein the sensing inductor current is related to the first current. | 04-04-2013 |
20130134963 | Motor Control Circuitry - A motor current measurement circuit ( | 05-30-2013 |
20130207642 | LOAD CONNECTION STATE DETECTION CIRCUIT - This load connection state detection circuit includes a PNP type transistor whose emitter is connected to a power source terminal, a NPN type transistor where the emitter thereof is connected to the power source terminal, the collector thereof is connected to the base of the PNP type transistor, and the base thereof is connected to the collector of the PNP type transistor, and a diode inserted between the collector of the PNP type transistor and an external antenna load, wherein the diode is configured to perform temperature compensation for the base voltage of the NPN type transistor and prevent currents from flowing from the external antenna load to the PNP type transistor and the NPN type transistor. | 08-15-2013 |
20130221947 | Battery Wake-Up - Circuits and methods for fast detection of a low voltage in the range of few μVolts have been achieved. In a preferred embodiment the low voltage represents a current via a shunt resistor and the circuit is used to generate a digital wake-up signal. In regard of the wake-up application the circuit invented is activated periodically and in case of a certain level of the voltage drop, e.g. 50 μV, at the shunt resistor. The time required for a measurement of the voltage drop is inclusive calibration and integration time far below 1 ms. It is obvious that the circuit invented can be used for any measurements of very small voltages. | 08-29-2013 |
20130265035 | SYSTEM AND METHOD FOR CURRENT MEASUREMENT IN THE PRESENCE OF HIGH COMMON MODE VOLTAGES - A system and method for making accurate current measurements by determining the differential voltage drop across a resistor in series with the load in the presence of large common mode voltages. A compensating voltage equal in magnitude but 180 degrees out of phase with a common mode voltage is generated and applied to a network of resistors connected to a measurement amplifier, thereby significantly reducing the magnitude of the common mode voltage at the measurement amplifier's inputs. An error correction voltage is generated and applied to the output of the measurement amplifier to compensate for errors in the values of the resistor network. | 10-10-2013 |
20140070793 | ADJUSTABLE POWER SENSOR - A power sensor applies respective first and second currents having substantially equal magnitudes to a reference detector and a measurement detector that are thermally coupled to each other. The power sensor senses an input signal with the measurement detector, and it adjusts the respective magnitudes of the first and second currents by substantially equal amounts to correspondingly adjust a measurement characteristic of the measurement detector. | 03-13-2014 |
20140111188 | ACTIVE SHUNT AMMETER APPARATUS AND METHOD - An active shunt ammeter for measuring current flowing through a device under test (DUT) and method are disclosed. The active shunt ammeter includes an input configured to receive an input signal having a frequency within a frequency band and representing the current flowing through the DUT. An output is configured to generate an output voltage representing the current flowing through the DUT. The active shunt ammeter also includes a gain circuit having an amplifier with a gain characteristic that varies respect to frequency within the frequency band and a feedback element having an impedance coupled from an output of the gain circuit to a negative input of the gain circuit, the feedback element impedance being configured to change with frequency to correlate with the amplifier gain characteristic such that the feedback element impedance divided by the amplifier gain over the frequency band has minimal frequency dependency. | 04-24-2014 |
20140111189 | METHOD FOR THE CONTACTLESS DETERMINATION OF AN ELECTRICAL POTENTIAL OF AN OBJECT USING TWO DIFFERENT VALUES FOR THE ELECTRIC FLUX, AND DEVICE - A method for the contactless determination of an electrical potential of an object, involves providing an electrode which is spatially at a distance from the object, connecting the electrode to a reference potential, determining a first temporal change in an electrical state of charge of the electrode at a first value for the electric flux between the electrode and the object, determining a second temporal change in the electrical state of charge of the electrode at a second value for the electric flux between the electrode and the object, and determining the electrical potential of the object at least from the first temporal change in the electrical state of charge and the second temporal change in the electrical state of charge and from a difference between the first value and the second value for the electric flux. | 04-24-2014 |
20140117974 | RSSI CIRCUIT WITH LOW VOLTAGE AND WIDE DETECTABLE POWER RANGE - An RSSI circuit with low voltage and wide detectable power range is provided, including a plurality of amplifiers connected in a cascade manner; a plurality of rectifiers, each of the plurality of rectifier having an input connected to an output of each of the plurality of amplifiers in turn; and a selector, connected to an output of each of the plurality of rectifiers for selecting an output among the outputs from the plurality of rectifiers. By using selector to select an output among outputs of the rectifiers, the RSSI circuit of the present invention can detect a wider power range with same voltage range because each stage can utilize the full voltage range. | 05-01-2014 |
20140139204 | COUPLED HETEROGENEOUS DEVICES FOR PH SENSING - Provided herein are methods and devices for measuring pH and for amplifying a pH signal to obtain ultrasensitive detection of changes in pH. This is achieved by providing a sensor and a transducer, wherein the sensor transconductance is sensitive to changes in pH and the transducer transconductance is not affected by pH change. The transducer instead compensates for changes in the sensor transconductance arising from pH change. The unique configuration of the sensor and transducer with respect to each other provides substantial increases in a pH amplification factor, thereby providing pH sensing devices with a giant Nernst response and, therefore, effectively increased pH sensitivity. | 05-22-2014 |
20140139205 | DIFFERENTIAL PROBE WITH COMMON-MODE OFFSET - A differential probe provides a probe input which comprises two inputs for recording a first and second input signal. The differential probe further provides a first amplifier which is connected to the two inputs. The differential probe additionally provides a compensation device, which generates and superposes on the first and second input signal a differential offset signal. The compensation device also generates a common-mode offset signal which is independent of the differential offset signal. | 05-22-2014 |
20140176120 | CURRENT MONITORING CIRCUITS AND METHODS AND TRANSISTOR ARRANGEMENT - Various automatic range scaling solutions for smart power switches are provided, to enable current monitoring across a wide dynamic range. Use is made of current sensing transistors which implement different current sensing ratios. | 06-26-2014 |
20140285181 | DIGITAL VOLTMETER TOPOLOGY - A system may include two input terminals, e.g., HI and LO, and a floating circuit that is physically separate from the input terminals and includes a gain amplifier. The floating circuit can be surrounded by a conductive enclosure that is electrically connected to the second input terminal. The floating circuit can further switch between input signals received from the first and second input terminals to the gain amplifier and the floating circuit ground. | 09-25-2014 |
20140292306 | TARGET POSITION, MOVEMENT AND TRACKING SYSTEM - The invention provides a target object detection system, comprising a plurality of sensing nodes ( | 10-02-2014 |
20140333290 | Method for Improving Common Mode Rejection in a Rogowski Coil-Based Circuit - A sensor includes a non-magnetic core having a first winding wrapped thereon. The first winding has a center tap dividing the first winding into a first winding portion and a second winding portion. The center tap is coupled to a reference voltage. The first winding portion and the second winding portion are configured to sense first AC signals, and have a balanced susceptibility to second AC signals. The differential integrating circuit is configured to provide common mode rejection of the second AC signals. The differential integrator circuit is operably coupled to the first winding portion and the second winding portion. | 11-13-2014 |
20140375303 | CHARGE MEASURING DEVICE - A charge measuring device detects focused ion beam attacks on an integrated semiconductor circuit with a capacitor, a field effect transistor, and a charge collecting device all manufactured in the integrated semiconductor circuit and insulated from additional circuit elements. A first pole of the capacitor is conductively connected to the charge collecting device and a gate of the field effect transistor. When a voltage is applied to the second pole of the capacitor, a drain source current flows through the field effect transistor, and a relationship between the voltage and the drain source current is ascertained. A comparison of the relationship with a previously ascertained relationship indicates a change of the charge quantity stored in the capacitor by the charge collecting device. | 12-25-2014 |
20150015242 | VOLTAGE DETECTION CIRCUIT - A voltage detection circuit includes: an amplifier which amplifies a voltage difference between first and second input signals input into non-inverting and inverting input terminals of the amplifier via first and second input portions; a first signal line which connects the first input portion to the amplifier; a second signal line which connects the second input portion to the amplifier; a first capacitor connected in parallel to the first signal line; a second capacitor connected in parallel to the second signal line; a first filter element which has an inductor component and a resistor component and is connected in series to the first signal line between the first capacitor and the amplifier; and a second filter element which has an inductor component and a resistor component and is connected in series to the second signal line between the second capacitor and the amplifier. | 01-15-2015 |
20150022183 | Accessory Presence Detection - Disclosed is an electronic circuit with a first terminal for connecting an accessory thereto, and with a functionality for detecting the presence of an accessory connected to the first terminal. | 01-22-2015 |
20150054493 | CHARGE PUMP GENERATOR WITH DIRECT VOLTAGE SENSOR - Embodiments relate to a direct voltage sensor and a charge pump system for a computer system. A charge pump that supplies switching current for a plurality of transistors includes a capacitor generating a pumped voltage. A comparator generates a pump control signal for turning on and off charging of the pump capacitor based on a difference between a comparison voltage and a reference voltage. A direct voltage sensor receives a feedback signal reflecting the pumped voltage and generates the comparison voltage in response to the feedback signal. The sensor includes a sensor resistor, a current source configured to drive a sensor current through the sensor resistor, and a differential op-amp that drives the sensor current to cause the voltage drop across the sensor resistor to remain constant as the pumped voltage experiences the voltage drop. The charge pump may include two similar direct voltage sensor controlling positive and negative pumped voltages. | 02-26-2015 |
20150054494 | POWER SUPPLY DETECTING CIRCUIT - A power supply detecting circuit includes a first voltage detecting module configured to detect an input voltage of a power supply module; a micro control unit (MCU) connected to the first voltage detecting module; a display module connected to the MCU; a second voltage detecting module configured to detect an output voltage of the power supply module; and a current detecting module configured to detect an output current of the power supply module. The MCU is capable of comparing the detected input voltage, the detected output voltage, and the detected output current of the power supply module with corresponding predetermined parameters and calculating an output power of the power supply module. The display module is capable of displaying the detected input voltage, the detected output voltage, the detected output current, and the output power of the power supply module. | 02-26-2015 |
20150061643 | CURRENT MEASURING CIRCUIT - A current measuring circuit ( | 03-05-2015 |
20150077091 | Current sensor - An apparatus and method make use of a single shunt and two or more instrumentation amplifiers, switchably measuring voltages at the shunt. This permits current measurement. At times each instrumentation amplifier has its input shorted, which permits zeroing out many sources of offset in the signal path of that amplifier. Dynamic range is several orders of magnitude better than known current measurement approaches, permitting coulometry. | 03-19-2015 |
20150293156 | VOLTAGE SENSING CIRCUIT - A voltage sensing circuit is provided. The voltage sensing circuit includes two differential amplifiers and a buffer. The first differential amplifier receives a first input voltage and a first reference voltage and provides a first current and a second current according to the difference between the first input voltage and the first reference voltage. | 10-15-2015 |
20150323569 | HIGH FREQUENCY VOLTAGE SUPPLY MONITOR - Various aspects provide a high frequency voltage supply monitor capable of monitoring high frequency variations of the voltage supply inside a microelectronic circuit substantially in real time. The voltage supply monitor can comprise a differential amplifier circuit having a substantially constant gain over a wide bandwidth, allowing the supply voltage variations to be amplified according to a known gain under a wide range of conditions. The amplified signal can then be sent to an output port for monitoring and measurement by an external display device. | 11-12-2015 |
20150346241 | BROAD-RANGE CURRENT MEASUREMENT USING VARIABLE RESISTANCE - An apparatus, method and integrated circuit for broad-range current measurement using variable resistance are disclosed. Embodiments of an apparatus for sensing current through a transistor device may include an interface configured to receive a current from the transistor device for sensing. In an embodiment, the apparatus may also include a sensor component coupled to the interface and configured to receive the current from the transistor device and to generate a responsive sensor voltage, the sensor component comprising an adjustable resistance component, a resistance value of the adjustable resistance component being selectable in response to a level of the current received at the interface. | 12-03-2015 |
20150355242 | Output Current Monitoring Circuit - A current monitoring circuit capable of being integrated onto an integrated circuit chip with the current source to be monitored, wherein the monitored current is digitized to be transmitted within and external to the host integrated circuit chip. The current monitoring circuit was originally conceived to monitor output current of a buck switching regulator but can be used in other applications. A replica transistor is drain connected to a replicated transistor, wherein an operational transconductor controls the replica transistor to produce the same current that flows in the replicated transistor and connects a copy of the current of the replicated transistor current to an integrating type ADC. | 12-10-2015 |
20150381113 | PHASE-DEPENDENT OPERATIONAL AMPLIFIERS EMPLOYING PHASE-BASED FREQUENCY COMPENSATION, AND RELATED SYSTEMS AND METHODS - Phase-dependent operational amplifiers (“op-amps”) employing phase-based frequency compensation, and related systems and methods are disclosed. A phase-dependent op-amp is provided configured to provide output voltage based on inputs switched by clock signal. The op-amp employs a frequency compensation system having multiple frequency compensation circuits. The frequency compensation circuit corresponding to the clock phase is selected by selection circuit and coupled to the voltage output node. The op-amp charges each frequency compensation circuit during the clock phase to store voltage approximately equal to output voltage. When transitioning to a clock phase, output voltage of op-amp does not have to charge frequency compensation circuit. Voltage of frequency compensation circuit stored during clock phase is approximately equal to output voltage of op-amp for clock phase. The op-amp need only provide a small amount of voltage to the frequency compensation circuit to slew it to its designed voltage during instances of its clock phase. | 12-31-2015 |
20160047849 | Power meter with two detector elements for a power measurement even of extremely low frequencies - The invention relates to a power meter with a two-path or multipath detector comprising at least two detector elements. Each detector element generates an output voltage. In order to detect an electrical power of an alternating electrical input signal, the sum and the difference of the output voltages of the detector elements are formed separately from one another. | 02-18-2016 |
20160070277 | DISTRIBUTED VOLTAGE NETWORK CIRCUITS EMPLOYING VOLTAGE AVERAGING, AND RELATED SYSTEMS AND METHODS - Distributed voltage network circuits employing voltage averaging, and related systems and methods are disclosed. In one aspect, because voltage in one area of a distributed load circuit may vary from voltage in a second area, a distributed voltage network circuit is configured to tap voltages from multiple areas to calculate average voltage in the distributed load circuit. The distributed voltage network circuit includes a voltage distribution source component having source nodes. Voltage is distributed from each source node to a corresponding voltage load node via resistive interconnects. Voltage tap nodes access voltage from each corresponding voltage load node. Each voltage tap node is coupled to an input node of a corresponding resistive element in voltage averaging circuit. An output node of each resistive element is coupled to a voltage output node of the voltage averaging circuit, generating the average voltage of the distributed load circuit on the voltage output node. | 03-10-2016 |
20160077132 | DEVICE FOR DIFFERENTIAL ACQUISTION OF CURRENT AND METHOD OF CONTROLLING SUCH AN ACQUISITION DEVICE - Device for the differential acquisition of current, comprising an acquisition circuit comprising a charge amplifier connected, at the input, to terminals for connection to a signal emitting component, and at the output, to an integrator, characterized in that a unit for injecting a charge signal is mounted between the terminals and the charge amplifier and is connected to a control unit connected to an output of the acquisition circuit, the control unit is so arranged as to control the injection of a charge signal, to detect a resultant signal at the output of the acquisition circuit and to compare the resultant signal with the injected signal. | 03-17-2016 |
20180024170 | SIGNAL DETECTOR, ELECTRONIC DEVICE, AND METHOD FOR CONTROLLING SIGNAL DETECTOR | 01-25-2018 |
20190146011 | VOLTAGE DETECTION DEVICE | 05-16-2019 |
20090243592 | MEASURING DEVICE WITH NEGATIVE-FEEDBACK DC VOLTAGE AMPLIFIER - A measuring device having a detector with at least one detector element and, connected downstream of the detector, a DC voltage amplifier with at least one input (and at least one output. The DC voltage amplifier provides at least one negative-feedback path, which extends from its at least one output to its at least one input, wherein at least one further detector element is disposed in the negative-feedback path. | 10-01-2009 |
20100201346 | RF POWER DETECTOR - Real power delivered to a load in an RF transmit path is measured. Measuring the real power includes supplying a first voltage from a first side of a passive network disposed between the power amplifier and the load, supplying a second voltage from a second side of the passive network; and using the first and second voltages and a phase delayed voltage to determine the real power delivered to the load. A voltage difference between the first and second voltages is determined and multiplied by the phase shifted voltage. A low pass filter is then applied to the output of the multiplier to provide an indication of the real power consumed by the load. The indication of real power consumed may then be used to control the power amplifier. | 08-12-2010 |
20110121819 | AMPLIFIER AND ARRAY FOR MEASURING SMALL CURRENT - An array of electrochemical detectors includes an array of electrodes that provide current responsive to oxidation events. Each electrode is coupled to a transistor, an amplifier coupled to an input of the transistor and having a feedback loop coupled to the electrode and providing a bias voltage to the electrode, an integrating capacitor coupled to the transistor operable to integrate charge from the electrode, and a reset switch coupled to the integrating capacitor. The amplifier may have a shared stage with other detectors. A shared buffer circuit may also provide a sampled output from multiple detectors. | 05-26-2011 |
20110181271 | PEAKING CIRCUIT, PEAKING CIRCUIT CONTROL METHOD, WAVEFORM MEASUREMENT APPARATUS, AND INFORMATION PROCESSING APPARATUS - A peaking circuit according to the present invention includes amplifiers connected in multiple stages and feedback circuits for feedback to an input from two or more output points with different gains as seen from the input. The peaking circuit is configured to be able to change an amount of feedback of the feedback circuits. | 07-28-2011 |
20130154615 | RF POWER DETECTION CIRCUIT WITH INSENSITIVITY TO PROCESS, TEMPERATURE AND LOAD IMPEDANCE VARIATION - A circuit includes a multiplier circuit including a mixer configured to multiply a first differential input signal and a second differential input signal. The mixer includes a plurality of transistors including control terminals. The control terminals of the plurality of transistors receive a bias signal and the first differential input signal. A bias circuit is configured to generate the bias signal. The bias signal generated by the bias circuit is based on a voltage threshold of one of the plurality of transistors and a product of constant reference current and a bias resistance. | 06-20-2013 |
20140176119 | Mains Voltage Zero-Crossing Detector - A mains voltage zero-crossing detector has a constant voltage forced on an external node by driving transistor devices with appropriate control signals provided by a feedback loop around a highly power efficient class B configuration comprising an operational amplifier having single ended dual outputs and a class B control circuit. Mains power zero crossings may then be detected by monitoring the drive current of devices driven by this amplifier. Wherein Class B control and current mode detection provide accurate detection of the driven signal without depending on any voltage threshold that may depend on temperature, process fabrication and/or supply voltage. | 06-26-2014 |