Class / Patent application number | Description | Number of patent applications / Date published |
324117000 | Hall effect | 34 |
20080290857 | Electric current sensor - An electric current sensor having a housing, magnetic circuit with a magnetic core, and a magnetic field detector with a detection cell, positioned in an air gap between ends of the core. The core is made of a non-laminated magnetic material, and the magnetic circuit has a strap made of non-magnetic material welded to the core at each side of the air gap. The magnetic field detector has a support plate on which the detection cell is mounted. The plate has a recess, opposition the detection cell, which houses one end of the magnetic circuit. | 11-27-2008 |
20080303511 | Precision flexible current sensor - A flexible current sensor including a sensing cable with a sensing coil wound on a cylindrical flexible core and electrical shielding located over said sensing coil and an outer isolation coat. The electrical shielding includes a plurality of individually isolated shielding wires arranged into groups wound in mutually opposite directions and/or the sensing coil includes a plurality of individually isolated sensing wires arranged into groups wound in mutually opposite directions. | 12-11-2008 |
20090001962 | CURRENT SENSOR WITH RESET CIRCUIT - A current sensor includes a coils located within the integrated circuit die and inductively coupled to a conductor located in the integrated circuit package holding the die. The inductors sense the current in the conductor and supply the sensed signal to an integrator that supplies a voltage indicative of the current in the conductor. | 01-01-2009 |
20090033314 | MICRO-ELECTROMECHANICAL SYSTEM (MEMS) BASED CURRENT AND MAGNETIC FIELD SENSOR - A micro-electromechanical system (MEMS) current and magnetic field sensor for sensing a magnetic field produced by a conductor includes a magneto-MEMS component for sensing the magnetic field and an interference-MEMS component for sensing an interference, wherein the magneto-MEMS component and the interference MEMS component are used to provide an indication of the current in the conductor. | 02-05-2009 |
20090108833 | ISOLATED CURRENT TO VOLTAGE, VOLTAGE TO VOLTAGE CONVERTER - A current sensor is provided that employs a primary winding that carries the current to be measured, and a secondary winding that controls the flux inside the magnetic core, provides a sample of the primary current, and also helps to control the flux at small primary currents and to saturate the transformer. An auxiliary winding is optionally used to control the flux in order to simplify control of the sensor. By periodically applying a certain voltage at the secondary winding, the transformer core is forced out of saturation, and a sample of the primary current is taken by a sensing circuit that may include a sample-and-hold circuit and an analog-to-digital converter. A control circuit is employed to control the currents flowing in the secondary winding and optional auxiliary winding and to manage the sensing circuit. | 04-30-2009 |
20090115399 | Shielded Current Sensor - A planar magnetic current sensor is described, incorporating a number of features designed to improve the efficiency and reliability of the basic sensor. The improvements comprise providing inner and outer conductive shields, an increased number of sensor elements for a given circuit board area, and distributing the resistance of the sensor circuitry. | 05-07-2009 |
20090121704 | Current Measuring Apparatus - The present invention provides a current measuring apparatus having an improved structure to inhibit the possible adverse effect of a current in a different phase and the possible generation of an induced electromotive force caused by a measurement target current, enabling the measurement target current to be accurately detected even with the small size of the apparatus. The current measuring apparatus includes a printed circuit board | 05-14-2009 |
20090128130 | Integrated Sensor - An electronic circuit includes a substrate having a surface and a device supported by the surface of the substrate. The electronic circuit also includes a magnetic field transducer disposed over the surface of the substrate and an insulating layer disposed between the substrate and the magnetic field transducer. The electronic circuit also includes a conductor disposed over the magnetic field transducer. The conductor is configured to carry an electrical current to generate a first magnetic field. The electronic circuit is responsive to the first magnetic field. | 05-21-2009 |
20090230948 | Rogowski Coil Assembly and Methods - A Rogowski coil assembly includes a first Rogowski coil that surrounds a conductor and generates a first voltage output signal. A second Rogowski coil also surrounds the conductor. The second Rogowski coil generates a second voltage output signal. A relay device communicates with the first and second Rogowski coils and processes the first and second voltage output signals. For example, the relay device can process the voltage output signals to calculate an amount of noise in the first and second output voltage signals and/or to minimize the amount of noise in the first and second output voltage signals. | 09-17-2009 |
20090243590 | SYSTEM AND METHOD FOR MONITORING CURRENT IN A CONDUCTOR - The present disclosure describes a system for measuring current amplitude in a conductor, comprising at least one Rogowski coil, an integration circuit directly connected to the at least one Rogowski coil, a microprocessor circuit in communication with the integration circuit and configured to receive output from the integration circuit and to calculate energy data comprising current amplitude in the conductor. A method for measuring current in a conductor is also presented. | 10-01-2009 |
20090251131 | Inverted magnetic isolator - A current determiner comprising a first input conductor and a first current sensor, formed of a plurality of magnetoresistive, anisotropic, ferromagnetic thin-film layers at least two of which are separated from one another by a nonmagnetic layer positioned therebetween, and both supported on a substrate adjacent to but electrically isolated from one another with the first current sensor positioned in those magnetic fields arising from any input currents. A first shield/concentrator of a material exhibiting a substantial magnetic permeability is positioned between the substrate and the first input conductor. The substrate can include a monolithic integrated circuit structure containing electronic circuit components of which at least one is electrically connected to the first input conductor. A similar second current sensor can be individually formed, but can also be in the current determiner structure that is supported on the substrate along with a second input conductor supported on the substrate suited for conducting input currents therethrough. This second input conductor is positioned at that side of the second current sensor opposite to that side thereof facing the substrate so as to be adjacent to but electrically isolated from one another on the substrate although having the second current sensor positioned in those magnetic fields arising from the input currents in the second input conductor. In addition, a second shield/concentrator layer of material exhibiting a substantial magnetic permeability to serve as a magnetic field concentrator is positioned at that side of the second input conductor opposite to that side thereof facing the substrate. In the first instance, the second shield/concentrator layer is electrically connected to the second input conductor, and can be so connected in the second instance. Magnetically permeable material can be provided in supporting structures. | 10-08-2009 |
20090261813 | CURRENT SENSOR - A core is divided by alternately arranging plural magnetic material portions and plural non-magnetic material portions in a circumferential direction of the core through which a primary conductor penetrates. A conductor is wound around the core under conditions in which each core cross section of the core intersects the magnetic material portion and the non-magnetic material portion, each core cross section including a cut end surface of each conductor of a secondary winding wound around the core, and a ratio of a magnetic material portion cross-sectional area of the magnetic material portion to a non-magnetic material portion cross-sectional area of the non-magnetic material portion at the core cross section is kept constant at each core cross section. | 10-22-2009 |
20090315536 | CURRENT SENSOR ARRANGEMENT FOR MEASUREMENT OF CURRENTS IN A PRIMARY CONDUCTOR - A method and current sensor arrangement for measurement of a primary current in a primary conductor which is magnetically coupled to a secondary conductor via a ferromagnetic core, with a voltage of a specific amplitude being applied to the secondary conductor, such that a secondary current flows for remagnetization of the ferromagnetic core, and the secondary current is measured during the remagnetization of the core, in order to obtain a first measured value. The voltage polarity is then reversed such that a secondary current flows for renewed remagnetization of the ferromagnetic core, and the secondary current is measured during the remagnetization of the core, in order to obtain a second measured value. The primary current is calculated as a function of the first and of the second measured value, with the polarity reversal being carried out at least once at a time which occurs before that time at which the ferromagnetic core reaches its saturation magnetization. | 12-24-2009 |
20100001716 | Direct Current Measuring Device With Wide Measuring Range, Electro-Technical Unit Comprising One Such Measuring Device and Switchgear Unit Having One Such Electro-Technical Unit - A direct current measuring device comprising at least one first magnetic sensor and at least one second magnetic sensor sensitive to a magnetic field generated by an electric current flowing in a conductor. The measuring device comprises a processing unit connected to the magnetic sensors and designed to generate an output signal dependent on the measurement signals supplied by the magnetic sensors. Said processing unit comprises selection means supplying the output signal dependent, for weak electric currents on the first measurement signals from at least one first magnetic sensor, and dependent, for strong electric currents, on the second measurement signals from at least one second magnetic sensor. | 01-07-2010 |
20100090685 | WIDE-RANGE OPEN-LOOP CURRENT SENSOR - The invention concerns an open-loop current sensor ( | 04-15-2010 |
20100109643 | Current Sensor - The present invention is a current sensor architecture using a planar coils in close proximity to a current conductor to detect the rate of change of current in the conductor (and hence, by using an integrator, to recover the AC current). The current sensor is optimised to reject uniform external magnetic fields, gradient external magnetic fields, and fields from one or more conductor assemblies in fixed locations in close proximity to the current sensor, such as might be found in a polyphase electric meter with multiple current sensors. | 05-06-2010 |
20100194381 | Current detection apparatus - A current detection apparatus where a sensor unit that detects the magnetic field in a predetermined magnetic field detection direction is disposed in a vicinity such that the magnetic field detection direction is substantially orthogonal to an extension direction of the subject bus bar at the detection portion, one of the plurality of bus bars disposed adjacent to the subject bus bar is set as an adjacent bus bar, a plane that is orthogonal to an extension direction of each portion of the adjacent bus bar is set as an extension orthogonal plane of the portion, and the extension direction of each portion of the adjacent bus bar relative to the sensor unit is set such that none of the extension orthogonal planes of the respective portions of the adjacent bus bar pass through the sensor unit in a parallel direction to the magnetic field detection direction. | 08-05-2010 |
20100244814 | Method for determining the resonant frequency(s) of an energized power line carrier line (wave) trap - A method for testing a line trap of the type whose blocking characteristics are a function of its resonant frequencies without requiring the line trap to be de-energized along with the transmission line to which the trap is connected by injecting a signal into the transmission line over a range of frequencies including at least one of the line trap's expected resonant frequencies; measuring the magnetic field strength produced by the current through the line trap's main coil and the total current flowing through the line trap, and computing the ratio of the magnetic fields where the ratio is computed over a range of frequencies that includes the expected resonant frequency(s) of the line trap, such that the resonant frequencies are indicated where said ratio is at a local maxima or minima. | 09-30-2010 |
20100301835 | Current sensor - A current sensor includes, a current-measured wiring including parallel wiring sections in which portions of the same wiring are arranged in parallel such that electric current to be measured flows therein in opposite directions each other; a magnetism detection unit which is arranged between parallel wirings located in the parallel wiring sections and detects a magnetic field in a direction perpendicular to a plane formed by the parallel wirings; a current detection unit which detects electric current flowing in the current-measured wiring, based on the magnetic field detected by the magnetism detection unit; and a magnetic core surrounding the parallel wiring sections so as to intensify the magnetic field generated around the parallel wirings located in the parallel wiring sections when electric current flows in the wirings. The magnetic core has a pair of plates facing each other over a plane formed by the parallel wirings, the pair of plates having flat and parallel inner faces, and the magnetism detection unit is arranged between the pair of plates of the magnetic core. | 12-02-2010 |
20100301836 | DEVICE FOR MEASURING THE INTENSITY OF AN ELECTRIC CURRENT AND ELECTRIC APPLIANCE INCLUDING SUCH DEVICE - A device for measuring the intensity of an electric current which has a simple and economical design and offers a high measurement dynamic compatible with combined measurement, protection and energy metering applications. The device ( | 12-02-2010 |
20110006753 | ELECTRIC CURRENT SENSOR - An electric current sensor, including a circular magnetic material core, an excitation coil wound around the magnetic material core, a supplemental excitation coil wound around the magnetic material core, a first excitation circuit that applies an alternating excitation voltage to the excitation coil, a second excitation circuit that applies pulsed voltages synchronized with rising edges and lowering edges of the excitation voltage, the pulsed voltages causing the supplemental coil generate magnetic fields having the same directions as that of the magnetic fields generated by the excitation coil, a current-to-voltage converter that converts a current flows through the excitation coil into a voltage, and a detection unit that detects respective timings when the alternating magnetic field in the magnetic material core is saturated in a positive direction and in a negative direction. | 01-13-2011 |
20110068771 | CURRENT SENSOR - A current sensor for outputting a detection signal corresponding to a current flowing through a bus bar. The current sensor includes a magnetic core that concentrates and amplifies a magnetic field generated by the current near a detection portion of the bus bar. A magnetic detection element detects the magnetic field concentrated by the magnetic core and outputs an electrical signal corresponding to the detected magnetic field. The detection portion of the bus bar and the magnetic core are molded integrally with each other. | 03-24-2011 |
20110199073 | INVERTED MAGNETIC ISOLATOR - A current determiner comprising a first input conductor and a first current sensor, formed of a plurality of magnetoresistive, anisotropic, ferromagnetic thin-film layers at least two of which are separated from one another by a nonmagnetic layer positioned therebetween, and both supported on a substrate adjacent to but electrically isolated from one another with the first current sensor positioned in those magnetic fields arising from any input currents. A first shield/concentrator of a material exhibiting a substantial magnetic permeability is positioned between the substrate and the first input conductor. The substrate can include a monolithic integrated circuit structure containing electronic circuit components of which at least one is electrically connected to the first input conductor. A similar second current sensor can be individually formed, but can also be in the current determiner structure that is supported on the substrate along with a second input conductor supported on the substrate suited for conducting input currents therethrough. This second input conductor is positioned at that side of the second current sensor opposite to that side thereof facing the substrate so as to be adjacent to but electrically isolated from one another on the substrate although having the second current sensor positioned in those magnetic fields arising from the input currents in the second input conductor. In addition, a second shield/concentrator layer of material exhibiting a substantial magnetic permeability to serve as a magnetic field concentrator is positioned at that side of the second input conductor opposite to that side thereof facing the substrate. In the first instance, the second shield/concentrator layer is electrically connected to the second input conductor, and can be so connected in the second instance. Magnetically permeable material can be provided in supporting structures. | 08-18-2011 |
20110227560 | CURRENT SENSOR - A current sensor includes first to fourth magneto-resistive elements each having a resistance value; and a compensation current line applying a compensation magnetic field to the magneto-resistive elements. A bridge circuit is formed by the magneto-resistive elements. Resistance values of the first and third magneto-resistive elements change together in one increasing/decreasing direction. Resistance values of the second and fourth magneto-resistive elements change together in the other increasing/decreasing direction. The compensation current is generated by a potential difference between the first and second junctions in response to application of voltage between the third and fourth junctions. The compensation current line includes first to fourth line portions. Each line portion extends in the same direction as the extending direction of the magneto-resistive elements, overlaps the corresponding magneto-resistive elements, and. The current-to-be-detected is detected based on the compensation current. | 09-22-2011 |
20110267035 | CURRENT DETECTOR AND METHOD OF MANUFACTURING SAME - The invention relates to a current detector using a magnetic balance system and method of manufacturing same. A plurality of taps N, N−1, N−2, N+1, and N+2 are connected to the output side of the secondary coil, and provided on the winding side of a secondary coil in winding device including a bobbin | 11-03-2011 |
20110285384 | CURRENT SENSOR - A current sensor for detecting a first electric current flowing through a current path includes a sensor chip, a coil, a current control circuit, and an output circuit. The sensor chip includes a magnetoresistive element and is adopted to be located near the current path. The coil applies a bias magnetic field to the magnetoresistive element. The current control circuit supplies a second electric current to the coil. The second electric current periodically changes in polarity. The output circuit outputs a difference between a first voltage and a second voltage. The first voltage is generated by the magnetoresistive element, when the second electric current flowing through the coil has a positive polarity. The second voltage is generated by the magnetoresistive element, when the second electric current flowing through the coil has a negative polarity. | 11-24-2011 |
20120086433 | MEMS-BASED CURRENT SENSING APPARATUS - The invention discloses an MEMS-based current sensing apparatus including: a flexible substrate joined onto an conducting wire; a sensing unit formed of an MEMS structure and disposed on the flexible substrate, the sensing unit outputting a response to a electromagnetic field induced by a current flowing in the conducting wire; and a readout circuit disposed on the flexible substrate and coupled to the sensing unit, the readout circuit monitoring the response to the electromagnetic field and calculating the amount of the current flow. | 04-12-2012 |
20120091996 | Current Sensor Array for Measuring Currents in a Primary Conductor - Disclosed are a method and an array for measuring a primary current in a primary conductor that is magnetically coupled to a secondary conductor via a ferromagnetic core. In said method and array, the following is done; a voltage having a specific amplitude is applied to the secondary conductor such that a secondary current flows for reversing the magnetization of the ferromagnetic core; the secondary current is measured while the magnetization of the ferromagnetic core is reversed in order to obtain a first measured value; the polarity of the voltage is reversed such that a secondary current flows for once again reversing the magnetization of the ferromagnetic core; the secondary current is measured while the magnetization of the core is reversed in order to obtain a second measured value; the primary current is calculated in accordance with the first and the second measured value, the polarity of the voltage being regularly reversed at a certain sensor frequency that is continuously varied. | 04-19-2012 |
20120126789 | ROGOWSKI CURRENT SENSOR - The invention relates to a Rogowski-loop current sensor comprising a winding ( | 05-24-2012 |
20120161751 | SEMICONDUCTOR DEVICE - A semiconductor device comprises: a semiconductor element including an electrode; a leading line electrically connected to the electrode, passing above the electrode, and led to a side thereof; and a current sensor sensing current flowing through the leading line. The current sensor includes a magneto-resistance element placed above the electrode and below the leading line. A resistance value of the magneto-resistance element varies linearly according to magnetic field generated by the current. | 06-28-2012 |
20120194171 | ACTIVE CORE CURRENT SENSOR - Methods and system for sensing current include detecting current through a sensing coil resulting from a field produced by current through a primary conductor. The sensing coil has a core that may become saturated by the primary current field. If the core is not saturated, a sensing circuit may detect the current through the sensing coil by changing the state of at least one controlled switch. If the core is saturated, the sensing circuit changes the state of the at least one controlled switch to pull the core out of saturation, at which time a current measurement is made. The technique may be used with AC currents, including changing currents, as well as with DC currents, and currents that may be AC at times and become essentially DC at other times. | 08-02-2012 |
20120262152 | CURRENT SENSORS, SYSTEMS AND METHODS - Embodiments relate to magnetic current sensors. In various embodiments, a current sensor can include a simple conductor having a constant cross-sectional profile, such as round, square or rectangular, and being generally free of any notches or slots to divert current and thereby having a simpler manufacturing process, lower resistance and improved mechanical robustness. In embodiments, the conductor can be formed of a non-magnetic conductive material, such as aluminum or copper. | 10-18-2012 |
20130027021 | CURRENT SENSOR - A current sensor is provided for measuring DC current in a primary conductor also carrying AC current. The current sensor includes a ferromagnetic core through which the primary conductor may extend. The core has a narrow air gap formed therein and a magnetic flux sensor is disposed in the air gap. A secondary winding is mounted to the core and has an impedance connected therein. The impedance has a value of substantially zero at one or more frequencies of the AC current. The impedance may be a short or an impedance source that includes a capacitor and an inductor. | 01-31-2013 |
20130106400 | PROXIMITY ELECTRIC CURRENT SENSING DEVICE AND METHOD | 05-02-2013 |
20130113463 | CURRENT DETECTION DEVICE AND METHOD FOR PRODUCING SAME - A current detection device includes a bus bar for current detection. The bus bar for current detection is constituted by a conductor provided with a first portion penetrating through a hollow portion of a magnetic material core in a first direction in which a current passes and plate-shaped second portions each linked to both sides in the first direction with respect to the first portion, the bus bar for current detection formed such that a width of the second portion is greater than a maximum width of the hollow portion of the magnetic material core and a minimum width of a contour of a section in the first portion is greater than a thickness of the second portion. | 05-09-2013 |
20130119975 | CURRENT DETECTOR - A current detector includes an electronic circuit board on which a circuit for processing a detection signal of a Hall element disposed in a gap portion of a magnetic core is mounted, and a spring member such as a coil spring that is made of a conductor electrically connected to a ground pattern on the electronic circuit board, and that is supported on the electronic circuit board and is in contact with the magnetic core. The magnetic core, a busbar for current detection, and the electronic circuit board on which the Hall element is mounted are held in a fixed positional relationship by an insulating casing. | 05-16-2013 |
20130147463 | CURRENT SENSOR AND ASSEMBLED BATTERY - There are provided a deformed bus bar for electrically connecting terminals of adjacent battery cells in an assembled battery, a core having both ends opposed to each other across a clearance and continuously formed around a hollow portion through which a part of the deformed bus bar penetrates, and a Hall IC disposed in the clearance for outputting an electric signal depending on a magnetic flux. | 06-13-2013 |
20130169267 | CURRENT SENSOR - A current sensor has first and second magnetic bodies for magnetic shielding opposed to each other, and a bus bar and a Hall IC disposed between the magnetic bodies. The magnetic bodies are magnetized in directions opposite to each other when a current flows through the bus bar. The Hall IC is disposed at a position at which a magnetic field applied to the Hall IC is weakened by magnetization of the first magnetic body and by magnetization of the second magnetic body. | 07-04-2013 |
20130187633 | CURRENT SENSOR - Provided is a current sensor including at least three bus bars made of flat-plate-shaped conductors and an inverter, a plurality of cores in which a core is formed by stacking flat plates made of U-shaped magnetic bodies, and a detecting element arranged on the side of an opening portion of each of the cores for detecting the intensity of a magnetic field, that the interval between the core and another bus bar that is adjacent to the bus bar inserted into the U groove of the core becomes 1/2 of the length of the opening portion in the spacing direction, and the tolerance of the gap is set to a value obtained by subtracting the value of 3/2 of the length of the opening portion in the spacing direction from the value of the interval between the bus bars that are adjacent to each other, with the gap as a median value. | 07-25-2013 |
20130193954 | CURRENT DETECTING DEVICE - A current detecting device is readily attached to a wire while preventing variation in current detection accuracy. A current detecting device has a core module and an element module, the core module having a core support that supports a magnetic core, the element module having an element support that supports a Hall element therein. In a position of a gap of the magnetic core in the core module, a wire insertion path is provided, to which the element support is fitted. Two end portions of the magnetic core and the Hall element are positioned by first and second contact surfaces of the core support and by a third contact surface of the element support. The two modules are connected so as to be movable relative to each other and are fixated by a lock mechanism in a state where the element support is fitted to the wire insertion path. | 08-01-2013 |
20130200881 | INTEGRATED CURRENT SENSING APPARATUS - An integrated current sensing apparatus includes a magnetic-field sensing element, a power supply circuit, an offset adjustment circuit, a gain adjustment circuit and a regulating unit. The magnetic-field sensing element is configured for sensing magnetic field, and correspondingly generating a sensing voltage. The power supply circuit is electrically coupled to the magnetic-field sensing element, for generating a constant current to the magnetic-field sensing element to control the sensing voltage. The offset adjustment circuit is electrically coupled to the magnetic-field sensing element, for adjusting an offset of the sensing voltage. The gain adjustment circuit is electrically coupled to the offset adjustment circuit, for amplifying the sensing voltage to a rated output voltage. The regulating unit is electrically coupled to the power supply circuit, the offset adjustment circuit and the gain adjustment circuit, for controlling the constant current, the offset and a gain value. | 08-08-2013 |
20140062459 | FLEXIBLE CURRENT AND VOLTAGE SENSOR - A flexible current and voltage sensor provides ease of installation of a current sensor, and optionally a voltage sensor in application such as AC branch circuit wire measurements, which may require installation in dense wiring conditions and/or in live panels where insulating gloves must be worn. The sensor includes at least one flexible ferromagnetic strip that is affixed to a current sensing device at a first end. The second end is secured to the other side of the current sensing device or to another flexible ferromagnetic strip extending from the other side of the current sensing device to form a loop providing a closed pathway for magnetic flux. A voltage sensor may be provided by metal foil affixed to the inside of the flexible ferromagnetic strip. A clamp body, which can be a spring loaded handle operated clamp or a locking fastener, can secure the ferromagnetic strip around the wire. | 03-06-2014 |
20140097826 | CURRENT SENSOR - A current sensor includes first and second current paths each including a first conductive portion and second and third conductive portions extending in the X direction from both ends of the first conductive portion, and being neighboring and apart in the Y direction; and first and second magnetoelectric conversion elements arranged with the first conductive portion of the first current path interposed therebetween, and having sensitive axes along the Y direction. The second and third conductive portions of each of the first and second current paths are apart in the Z direction. The second conductive portion of the second current path is arranged in the Y direction with respect to the first and second magnetoelectric conversion elements. Perpendicular lines from the center line of the second conductive portion of the second current path to the first and second magnetoelectric conversion elements have the same direction and equivalent lengths. | 04-10-2014 |
20140132248 | CURRENT SENSOR - A current sensor includes a casing including a pair of arms and coupling part, multiple magneto-electric transducers arranged on the circumference of a virtual ellipse whose major axis or minor axis extends between the arms, a support disposed obliquely relative to the major axis or the minor axis of the virtual ellipse within an angle formed by the major axis and the minor axis so as to be close to one of the arms when viewed from the center of a wire disposed and fastened between the arms, and a band wound around a circumferential surface of the wire fastened between the arms, part of the band being caught by the support, the wire being fastened by the band such that the central axis or center of the wire is held close to the support. | 05-15-2014 |
20140139203 | CURRENT DETECTOR - A current detector that detects, based on output signals of N coreless current sensors, where N is a natural number of 3 or more, currents flowing in N conductors in a circuit connected so that the sum of the currents flowing in the N conductors becomes zero. The current detector has a signal-current correlation acquiring section that acquires a signal-current correlation representing a correlation between the output signals of the N coreless current sensors and the currents flowing in the N conductors. Furthermore, a current calculating section that calculates the currents flowing in the N conductors based on the output signals of all the N coreless current sensors by using the signal-current correlation. | 05-22-2014 |
20140159704 | Method and Device for Measuring Electric Currents by Means of a Current Transformer - A method and a device for measuring electrical differential currents, which in addition to the alternating current component also contain a direct current component, by means of an inductive differential current transformer. | 06-12-2014 |
20140167736 | Current Sensor Substrate and Current Sensor - It is intended to reduce manufacturing cost in a current sensor including a primary conductor having a U-shaped current path. A current sensor includes a primary conductor having a U-shaped current path, a support portion for supporting a magneto-electric conversion element, and a lead terminal connected to the support portion, and wherein the current path is not overlapped with the support portion in a plan view, while being formed so as to have a height different from that of the support portion in a side view. | 06-19-2014 |
20140218012 | DETECTOR OF MAGNETIC BIAS, MAGNETIC SATURATION, OR AMOUNT OF MAGNETIC FLUX - A detector includes a detection winding, a detection winding measurement section, and a detection section. A magnetic core has a hole penetrating the magnetic core along a non-uniform cross section. The detection winding includes a wire inserted into the hole and surrounding a periphery of a detection region that is a part of the non-uniform cross section and has a magnetic flux density different from an average magnetic flux density of the non-uniform cross section. The detection winding measurement section performs a measurement relating to an electromotive force induced by the detection winding. The detection section detects a magnetic bias, a magnetic saturation, or an amount of magnetic flux in the magnetic core based on a measurement result of the detection winding measurement section. | 08-07-2014 |
20150015241 | CURRENT SENSOR - A current sensor according to the present invention includes a bus bar, a magnetic sensor element disposed so as to face the bus bar, a wiring board on which the magnetic sensor element is provided, and a signal line electrically connected to the magnetic sensor element. The wiring board includes a base portion facing the bus bar and an extending portion extending from the base portion, and the signal line is connected to the extending portion and provided in a direction intersecting the wiring board. | 01-15-2015 |
20150028852 | ARRANGEMENT FOR MEASURING A CURRENT WITH A CURRENT TRANSDUCER OF THE ROGOWSKI TYPE - An arrangement for measuring a current with a Rogowski type current transducer and transducer electronics. The current transducer has a primary conductor winding for carrying the rated current to be measured, and a secondary conductor winding. The secondary conductor winding adapted to induce a voltage signal V | 01-29-2015 |
20150028853 | ARRANGEMENT FOR MEASURING A CURRENT WITH A CURRENT TRANSDUCER OF THE ROGOWSKI TYPE - An arrangement for measuring a current with a Rogowski type current transducer and transducer electronics. The current transducer has a primary conductor winding for carrying the rated current to be measured, and a secondary conductor winding. The secondary conductor winding adapted to induce a voltage signal V | 01-29-2015 |
20150293153 | FLUXGATE CURRENT SENSOR - A current sensor arrangement for measuring an effective primary current in a primary conductor is described. The current sensor arrangement comprises a magnetic core for the magnetic connection of the primary conductor to a secondary conductor, as well as a controlled voltage source that is connected to the secondary conductor and configured to apply a voltage with adjustable polarity to the secondary conductor. As a result of this, a secondary current flows through the secondary conductor. A measurement and control unit connected to the secondary conductor is configured to generate a measurement signal representing a secondary current and to continuously detect the achievement of a magnetic saturation in the core. In the case of detection of a magnetic saturation of the core, the polarity of the voltage is reversed in order to reversely magnetize the core. Moreover, the measurement and control unit is configured to sample the measurement signal after a delay time following the detection of a magnetic saturation of the core. This delay time is adjusted adaptively depending on a previously determined time period between two successive times when magnetic saturation of the core has been detected. | 10-15-2015 |
20150309082 | ELECTRICAL CURRENT TRANSDUCER WITH GROUNDING DEVICE - An electrical current transducer including a housing ( | 10-29-2015 |
20150331015 | FLUX-GATE TYPE NON-CONTACT CURRENT MEASURING DEVICE - The present invention relates to a flux-gate type non-contact current measuring device for measuring a current to be measured by detecting an electromagnetic field around a conducting wire into which the current to be measured flows, wherein the present invention can detect a direct current component through a change of an oscillating signal by applying the oscillating signal for magnetizing two cores in mutually opposite polarities, wherein: an LC oscillation circuit is formed by using the inductance of a coil wound on one core, and the direct current component is detected by applying an LC-oscillating signal to a coil wound on the other core; an alternating current component is detected by using another core; compensated currents corresponding to the detected direct current and alternating current components are converged under a condition of offsetting a magnetic flux by the current to be measured so that the current to be measured can be measured by measuring the compensated currents in the converged state thereof; and the present invention can normally measure a current by automatically demagnetizing an LC oscillating core even in a circumstance that the LC oscillating core is saturated by the current to be measured. | 11-19-2015 |
20150338444 | APPARATUS FOR IN SITU CURRENT MEASUREMENT IN A CONDUCTOR - Improved current sensing methods and apparatus and conductor apparatus are presented for sensing current in a bus bar or other conductor using one or more circular magnetic sensors or multiple magnetic sensors disposed on a substrate in a pattern surrounding a longitudinal path within the outer periphery of the conductor to avoid or mitigate sensed magnetic field crosstalk and to facilitate use of high sensitivity magnetic sensors at locations inside the conductor periphery in which the magnetic field is relatively small. | 11-26-2015 |
20150355241 | CURRENT SENSOR AND ELECTRONIC DEVICE INCORPORATING THE SAME - A busbar module including a busbar through which current of a measurement subject flows and a hold portion that holds the busbar and has a recess portion), the busbar and the hold portion being integrally formed; and a magnetic sensor module including a magnetic sensor that detects an intensity of a magnetic field generated by the current flowing through the busbar, and being able to be selectively assembled with the busbar module by housing the magnetic sensor module to the recess portion of the hold portion are included. | 12-10-2015 |
20150377929 | CURRENT SENSING SYSTEM - A detecting unit is presented. The detecting unit includes a flexible circuit having a first side and a second side opposite the first side. The flexible circuit includes a plurality of cells defined therein, each of the plurality of cells having a first side and a second side respectively corresponding to the first side and the second side of the flexible circuit. Moreover, the flexible circuit includes a plurality of conductive windings disposed on at least one of the first and second sides of the plurality of cells. Further, the flexible circuit includes a stress reduction feature between each of the plurality of cells. Also, the detecting unit includes a sealing element configured to secure the flexible circuit in a stacked configuration. A sensing system and a method of making a detecting unit are also presented. | 12-31-2015 |
20160033555 | FLUX-GATE CURRENT SENSOR WITH ADDITIONAL FREQUENCY MEASURING - A current sensor arrangement for measuring an effective primary current in a primary conductor having a magnetic core for magnetic coupling of the primary conductor to a secondary conductor and a controlled voltage source connected to the secondary conductor and configured to apply a voltage with adjustable polarity to the secondary conductor so that a secondary current passes through the secondary conductor. A measurement and control unit is coupled to the secondary conductor and configured to generate a measuring signal that represents the secondary current, to continuously detect the occurrence of magnetic saturation in the core, and to reverse the polarity of the voltage upon the detection thereof in order to reverse magnetization of the core. Furthermore, the measurement and control unit is configured to evaluate a spectrum of the measuring signal and determine a frequency of a current passing through the primary conductor based on the spectrum. | 02-04-2016 |
20160091534 | CURRENT SENSOR - A current sensor is provided. The current sensor includes a signal transmission unit through which a power signal is transmitted, a current measurement probe spaced apart from a side of the signal transmission unit and having a loop structure so as to partition an area which links together with a magnetic field induced according to the power signal transferred through the signal transmission unit, and a signal processing unit measuring an induced current induced at the current measurement probe by a magnetic field, which is generated according to the power signal transferred through the signal transmission unit, and calculating a current value of the power signal transferred into the signal transmission unit from a value of the measured induced current. | 03-31-2016 |
20160146858 | CURRENT SENSOR - A current sensor includes: a U-shaped core as a magnetic body; a conductor inserted into a slit of the core; and a detection element arranged in the slit of the core and detecting a magnetic field, wherein the core includes recessed portions on both side surfaces facing the detection element and the recessed portions have wall portions intersecting with at least an insertion direction of the conductor. | 05-26-2016 |
20160146859 | CURRENT DETECTOR - A current detector includes a half-bridge configuration including first and second magnetic detection elements that are connected in series and disposed such that a magnetization direction of a magnetic pinned layer thereof is opposite to each other, and a bias magnetic field generating means for applying a bias magnetic field to the first and second magnetic detection elements. The bias magnetic field has a substantially same intensity and is formed in a direction substantially orthogonal to the magnetization direction and opposite to each other. | 05-26-2016 |
20160154034 | ELECTROSURGICAL GENERATORS AND SENSORS | 06-02-2016 |
20160169941 | CURRENT SENSOR | 06-16-2016 |
20160187385 | AMPLIFICATION CIRCUIT AND CURRENT SENSOR HAVING THE SAME - In a case in which an input offset voltage of a main amplification circuit deviates from a predetermined range, a retaining operation of retaining an output voltage of a low pass filter in a sample and hold circuit stops, and an output voltage of the low pass filter is directly output to a correction signal supply circuit. As a result, for example, negative feedback control is not temporarily performed due to influence or the like of an excessive input voltage on the main amplification circuit, and in a case in which the input offset voltage of the main amplification circuit deviates from the predetermined range, a response delay due to the retaining operation of the sample and hold circuit does not occur, and the response speed of an offset correction circuit increases. | 06-30-2016 |
20160190929 | OUTPUT CIRCUIT AND CURRENT SENSOR HAVING THE SAME - If an output voltage increases higher than a first limit voltage, a first output transistor is controlled such that the output voltage approaches the first limit voltage, and if the output voltage decreases lower than a second limit voltage, a second output transistor is controlled such that the output voltage approaches the second limit voltage. As a result, it is possible to limit the range of the output voltage and to reduce power consumption, without an increase in an output current at the time of limiter operation, differently from a voltage limiter circuit of the related art. | 06-30-2016 |
20190146009 | CURRENT MEASURING APPARATUS AND METHODS | 05-16-2019 |
20190146010 | Current Detection Apparatus | 05-16-2019 |
20080297138 | CURRENT SENSOR - An integrated circuit current sensor includes a lead frame having at least two leads coupled to provide a current conductor portion, and a substrate having a first surface in which is disposed one or more magnetic field sensing elements, with the first surface being proximate to the current conductor portion and a second surface distal from the current conductor position. In one particular embodiment, the substrate is disposed having the first surface of the substrate above the current conductor portion and the second surface of the substrate above the first surface. In this particular embodiment, the substrate is oriented upside-down in the integrated circuit in a flip-chap arrangement. The current sensor can also include an electromagnetic shield disposed between the current conductor portion and the magnetic field sensing elements. | 12-04-2008 |
20090039868 | CURRENT SENSOR - There is provided a current sensor for monitoring electrical disturbances on an electrical circuit having an electrical conductor. The current sensor comprises a magnetic flux sensor for sensing a magnetic flux generated by a current flowing in the electrical conductor and for providing a signal representative of the current; and a processor for acquiring the signal from the magnetic flux sensor, for detecting an electrical disturbance on the current and for providing electrical disturbance data. The current sensor may also comprise a ring-shaped magnetic structure for receiving the electrical conductor and an opening within the ring-shaped magnetic structure for receiving the magnetic flux sensor. The magnetic flux sensor being for sensing a magnetic flux generated in the magnetic structure by the current in the electrical conductor. | 02-12-2009 |
20090128129 | Current sensor having magnetic gap - In a current sensor having a magnetic gap, a main body is divided into a first case segment having a terminal and a second case segment. An opening is formed in the main body. A magnetic sensor element is mounted on an element mounting portion arranged on a surface of the first case segment, the surface attaching to the second case segment. The sensor element is electrically coupled with the terminal. A core holding portion is formed in the main body that surrounds the opening and the element mounting portion. A core having the magnetic gap is inserted in the core holding portion. The sensor element is arranged in the magnetic gap of the core on the element mounting portion. The sensor element can thereby be disposed accurately in the magnetic gap of the core, and detection accuracy of the current sensor can be increased. | 05-21-2009 |
20090278526 | CURRENT DETECTING DEVICE - A current detecting device is provided having a plurality of Hall elements, a board on which the Hall elements are surface-mounted, and a core which surrounds a pass-through section through which a bus bar, through which a current to be detected flows, is passed and which has, at a part of the core, an opening in which the Hall element is placed, wherein the plurality of Hall elements are placed in series along a direction of a magnetic field line formed in the opening when a current flows through the bus bar. With such a structure, a core size of the current detecting device which uses the Hall element is reduced. | 11-12-2009 |
20090295368 | ARRANGEMENTS FOR A CURRENT SENSING CIRCUIT AND INTEGRATED CURRENT SENSOR - An electronic circuit for sensing a current includes a circuit board having first and second major opposing surfaces and a current conductor for carrying the current. The current conductor includes a circuit trace disposed upon the circuit board. The electronic circuit also includes an integrated circuit disposed upon and electrically coupled to the circuit board at a position so as to straddle the current conductor. | 12-03-2009 |
20100001715 | FOLDING CURRENT SENSOR - The invention provides a current sensor that may be folded over a conductor without the need to sever the conductor or thread the conductor through the current sensor. In one embodiment, the current sensor includes an outer body having a first folding portion and a second folding portion coupled to the first folding portion. The current sensor also includes a soft ferromagnetic body disposed within the outer body comprising a first core element and a second core element. The first and second core elements form a lumen when the first and second folding portions are folded. The lumen is configured to receive a conductor. The current sensor also includes a magnetic field detector to sense a current in the conductor. The magnetic field detector is disposed at least partially between the first and second core elements when the first and second folding portions are folded. | 01-07-2010 |
20100090683 | CURRENT MEASURING DEVICE - A current sensor is provided for non-invasively measuring electrical current in an electrical conductor. The current sensor includes a housing having a Hall effect sensor and circuitry for transmitting a signal indicative of the current flowing through the electrical conductor. The current sensor further includes a clamp that allows an operator to easily and repeatedly install and remove the current sensor from electrical conductors. The current sensor may also include a mu-metal device for shielding the Hall effect sensor for stray magnetic fields generated by adjacent electrical conductors. | 04-15-2010 |
20100090684 | METHOD AND APPARATUS FOR CURRENT MEASUREMENT USING HALL SENSORS WITHOUT IRON CORES - A method and apparatus for current measurement using Hall sensors without iron cores, used to estimate a flowing current in an electric conducting cable are provided by the exemplary examples of the present invention. The method for current measurement using Hall sensors without iron cores includes the following step: (a) providing Hall sensors to be attached to or located near the electric conducting cable; (b) using each of the Hall sensors to measure the flux density of the magnetic field generated by the flowing current, so as to generate an output voltage according to the flux density of the magnetic field; (c) performing a statistical operation on the output voltages of the Hall sensors, so as to generate a statistical voltage; (d) estimating the flowing current in the electric conducting cable according to the statistical voltage. | 04-15-2010 |
20100097049 | High Bandwidth Open-Loop Current Sensor - Open-loop electrical current sensor ( | 04-22-2010 |
20100134093 | Arrangement for Measuring the Current Flowing in an Electric Conductor - The invention relates to an arrangement for measurement of a current flowing in an electrical conductor having a magnetic circuit, for coupling to the electrical conductor, wherein the magnetic circuit has an air gap. A magnetic-field-sensitive component is located in the air gap in the magnetic circuit and is used to measure the magnetic field produced by the electrical conductor. Two control cores are arranged in the air gap in the magnetic circuit, wherein the control cores each have a control winding for magnetic saturation of the respective control core. The magnetic-field-sensitive component is arranged between the control cores and one or more additional elements are located in the vicinity of the magnetic-field-sensitive component, and are suitable for guidance of disturbing magnetic fields in the vicinity of the magnetic-field-sensitive component, independent of the control cores. | 06-03-2010 |
20100176793 | Current Sensing Mechanism - A current sensing mechanism for use in an integrated circuit is described. In one embodiment, the integrated circuit comprises a voltage supply rail and a current sensor coupled to that voltage supply rail such that the current sensor determines the current passing through the voltage supply rail. Leads attached to the current sensor can be monitored to obtain measurements that permit determination of the current. | 07-15-2010 |
20100181991 | Arrangement and Method for Measuring a Current Flowing in an Electrical Conductor - An arrangement and a method are used for measuring current flowing in an electrical conductor with a magnetic circuit that has an air gap for coupling to the electrical conductor. The air gap of the magnetic circuit contains a magnetic-field-sensitive component that is used to measure the magnetic field generated by the electrical conductor, wherein, the air gap of the magnetic circuit contains a control core, wherein the control core has a control winding for the magnetic saturation of the control core. In the vicinity of the magnetic-field-sensitive component there are several additional elements that are suitable for conducting interfering magnetic fields in the surroundings of the magnetic-field-sensitive component independent of the control cores. | 07-22-2010 |
20100188072 | Arrangement and Method for Measuring a Current Flowing in an Electrical Conductor - An arrangement for measuring a current flowing in an electrical conductor includes a magnetic circuit, for coupling to the electrical conductor, the magnetic circuit has an air gap. A magnetic field-sensitive component that serves for measuring the magnetic field generated by the electrical conductor is situated between the arms of the magnetic circuit. Two control cores are arranged in the air gap of the magnetic circuit. The control cores each include a control winding for magnetically saturating the respective control core and are arranged on both sides of the electrical conductor. | 07-29-2010 |
20100231198 | CURRENT MEASURING DEVICE - A current sensor is provided for non-invasively measuring electrical current in an electrical conductor. The current sensor includes a housing having a Hall effect device and circuitry for transmitting a signal indicative of the current flowing through the electrical conductor. The current sensor includes a base having a surface for supporting an electrical conductor. A magnetic shielding member is coupled to the surface to shield the Hall effect device from stray or external magnetic fields. A compliant member is coupled to the magnetic shielding member opposite the surface. The compliant member compresses to allow the current sensor to accommodate a large variety of electrical conductor sizes. The compliant member further acts to bias the electrical conductor against the Hall effect device. | 09-16-2010 |
20100237853 | CURRENT MEASURING DEVICE - A current sensor is provided for non-invasively measuring electrical current in an electrical conductor. The current sensor includes a housing having a Hall effect device and circuitry for transmitting a signal indicative of the current flowing through the electrical conductor. The current sensor includes a base having a surface for supporting an electrical conductor. A magnetic shielding member is coupled to the surface to shield the Hall effect device from stray or external magnetic fields. A compliant member is coupled to the magnetic shielding member opposite the surface. The compliant member compresses to allow the current sensor to accommodate a large variety of electrical conductor sizes. The compliant member further acts to bias the electrical conductor against the Hall effect device. | 09-23-2010 |
20110101958 | CURRENT SENSOR - A current sensor | 05-05-2011 |
20110187348 | POWER STRIP AND ELECTRIC POWER MEASUREMENT SYSTEM - The following disclosure provides a power strip including: a busbar electrically connected to a power source; multiple electrical outlets allowing multiple power plugs to be inserted thereinto, respectively; distribution bars which are branched out from the busbar and respectively supply the electrical outlets with electric currents of the power source; and a plurality of electric current measurement units each configured to measure the electric current flowing through a corresponding one of the distribution bars. | 08-04-2011 |
20110267034 | RELAY, IN PARTICULAR FOR THE HIGH-CURRENT RANGE - A relay, in particular for high-current operation, having at least one coil and a movable armature which by the magnetic flux generated in the at least one coil permits or interrupts a current flow via two main contact terminals and having a current-measuring instrument for measuring at least one current flowing via the main contact terminals by at least one Hall sensor has a device around the main contacts for aligning the magnetic flux with the Hall sensor or sensors. | 11-03-2011 |
20120091994 | INTEGRATED APPARATUS FOR SENSING CURRENT - There is provided an integrated apparatus for sensing current including: a voltage regulator; a Hall effect device receiving current by the voltage regulator and outputting hall voltage in proportional to strength of a magnetic field; and a coil having one end connected to a first connecting terminal and the other end connected to a second connecting terminal, wound to have a plurality of turns along a circumference of the Hall effect device on the same plane spaced apart by a predetermined distance from the Hall effect device in a direction of the magnetic field, and forming the magnetic field according to current flowing through the first connecting terminal and the second connecting terminal, wherein the Hall effect device and the coil are integrated within one chip. A manufacturing cost of a product may be reduced, simultaneously with sensing the current without loss of the magnetic field according to a distance through the above-mentioned configuration. | 04-19-2012 |
20120091995 | CURRENT DETECTION DEVICE - In a wiring pattern formed on a printed circuit board, a current detection pattern having a predetermined area is formed in the wiring pattern for detecting a current, which flows to a subject body for current measurement, based on magnetic flux density generated by the current. The current detection pattern is formed of a same material as the wiring pattern. An excitation current is supplied to the current detection pattern for detecting the magnetic flux density. An output voltage outputted from the current detection pattern in correspondence to the excitation current and the magnetic flux density is measured. The current flowing to the subject body is calculated based on the magnetic flux density calculated from the excitation current and the output voltage. | 04-19-2012 |
20120235668 | ADJUSTABLE HALL EFFECT SENSOR SYSTEM - A adjustable Hall effect sensor system having a sensor positioning component is described. In one embodiment, the Hall effect sensor system is an independently adjustable sensor system, having a plurality of Hall effect sensor, wherein one Hall effect sensor may be displaced and adjusted without effecting the location of another Hall effect sensor. A sensor positioning component comprising a paddle coupled to a main body portion by a more narrow neck is described. A cam may be configured on a paddle and provide for fine tuning the position of a Hall effect sensor. In one embodiment the main body and extensions are comprised essentially of a circuit board. | 09-20-2012 |
20130015839 | INTEGRATED CURRENT SENSORAANM FRANKE; JoergAACI FreiburgAACO DEAAGP FRANKE; Joerg Freiburg DE - An integrated current sensor is provided, having a semiconductor body arranged on a metal substrate, having a first surface with a passivation layer embodied on the first surface and a magnetic field concentrator embodied in a flat manner under the semiconductor body, a first Hall-effect sensor embodied under the passivation layer in the semiconductor body, a second Hall-effect sensor embodied under the passivation layer in the semiconductor body, wherein a first conductor is provided embodied on the first surface between the first Hall-effect sensor and the second Hall-effect sensor, and the magnetic field concentrator is embodied under the first Hall-effect sensor and under the second Hall-effect sensor and under the first conductor. | 01-17-2013 |
20130076341 | HIGH CURRENT SENSORS - Embodiments relate to high current sensors having generally flat conductors. In an embodiment, the conductor is formed of a non-magnetic material such as copper or aluminum and has a coarse slot, one that reduces the cross-sectional area for current flow by a factor of about two. The slot also functions as an aperture in which the sensor package can mounted, thereby protected from environmental influences. | 03-28-2013 |
20130207640 | HALL EFFECT CURRENT SENSOR FOR MEDIUM-VOLTAGE APPLICATIONS - A current sensor for measuring medium-voltage currents. The current sensor includes an input terminal configured to receive a current, an output terminal configured to transmit the current, a closed core made from a magnetic material and comprising a gap, at least one conductor operably connected to the input terminal and the output terminal and passing through the closed core, the at least one conductor sized to carry the current, and a molded case of solid dielectric material configured to encapsulate the closed core and the at least one conductor, wherein the gap and the terminals are not encapsulated by the molded case. The molded case is dimensioned such that internal and external spacings defined by the molded case are suitable for continuous operation with a medium voltage current as applied to the terminals and the at least one conductor while the core is at ground potential. | 08-15-2013 |
20130241533 | CIRCUIT BOARD, CURRENT-MEASURING DEVICE, AND METHOD OF MEASURING A CURRENT OF A CIRCUIT BOARD - A circuit board includes a substrate and a conductive trace. An electronic element is electrically coupled with the conductive trace. A pair of holes pass through the substrate and are disposed respectively at two opposite sides of the conductive trace and adjacent to the conductive trace. A current-measuring device may be adapted for passing through the holes and surrounding the conductive trace. | 09-19-2013 |
20130241534 | CLOSED-LOOP CURRENT TRANSDUCER WITH SWITCHED MODE AMPLIFIER - A closed-loop current transducer for measuring a current (Ip) flowing in a primary conductor ( | 09-19-2013 |
20140028286 | AMPLIFIER CIRCUITS AND METHODS - A chopper amplifier circuit for sensing Hall voltage with reduced offsets includes a Hall sampling circuit with a first switching circuit for selectively coupling each of four nodes of a Hall plate to either a power source or a ground terminal. The circuit also includes a differential amplifier and a second switching circuit configured for selectively coupling each of the four nodes to inputs of the differential amplifier. A Hall voltage signal retaining circuit includes two groups of four storage devices and a second group of four storage devices. A third switching circuit is configured for outputs of the differential amplifier to selected ones of the storage devices. A fourth switching circuit is configured for selectively coupling the storage devices outputs of the chopper amplifier circuit. | 01-30-2014 |
20140176118 | Differential Current Sensor - A differential current sensor is disclosed. The differential current sensor includes a holder having a plurality of primary wire conduits, a secondary wire located in magnetic proximity to the primary wire conduits, and a magnetic core having a first end receiving a plurality of windings of the secondary wire, and a second, opposing end having a gap. | 06-26-2014 |
20160018444 | CURRENT TRANSFORMER AND METHOD FOR CONVERTING A CONDUCTOR CURRENT FLOWING IN AN ELECTRICAL CONDUCTOR TO AN OUTPUT SIGNAL - A current transformer arrangement, and method, include a current sensor for producing a sensor output voltage that is proportional to the input current flowing in a conductor; a first processing branch including a voltage calculating device for calculating the effective voltage value of the sensor output voltage; a second processing branch including a polarity detecting device having an input terminal connected with the current sensor output terminal to produce a polarity signal having one polarity when the conductor input current is either an alternating current, a hybrid current, or a direct current flowing in one direction, and the opposite polarity when the conductor input current is a direct current flowing in the opposite direction; and a multiplier device for modifying the effective voltage value to produce a signed effective voltage having a polarity corresponding with the polarity of the polarity signal. A modifying circuit modifies the signed effective voltage. | 01-21-2016 |
20160069935 | DETECTION OF GEOMAGNETICALLY-INDUCED CURRENTS WITH POWER LINE-MOUNTED DEVICES - A device for use in a power transmission system to sense GICs. The device may be a part of a reactance-injecting device on a power line, it may be a standalone device, or it may be a part of another type of device. The device may include a sensor to sense magnetic fields (e.g., a Hall effect sensor). The sensor may be positioned in the air gap of a magnetic core formed concentrically around the power line. The signal from the sensor may be converted to a digital signal and separately processed to determine the magnitude of the AC current and the magnitude of the DC (or quasi-DC) current. If the output signal of another A/C current sensor is available, that output signal may be used to adjust/calibrate the determined magnitude of the DC current. The sensor may communicate with other devices in a network to provide GIC information. | 03-10-2016 |
20160103155 | Current Sensor - An example circuit may include an inductor; a low-frequency sensor connected to the inductor; a high-frequency sensor connected to the inductor; and an integrator connected to the low-frequency sensor and the high frequency sensor, comprising one or more resistive devices and one or more capacitive devices, wherein the integrator is characterized by a time constant that varies as a function of the inductance of the inductor. The inductor may, for example, be part of a switched-mode power supply or an amplifier. | 04-14-2016 |
20160116507 | ELECTRICITY METER HAVING MULTIPLE HALL DEVICES - Disclosed is a metrology assembly that utilizes a multi-Hall effect device configuration which eliminates the necessity of a magnetic concentrator. In some embodiments, the metrology assembly includes a substrate or support platform configured to support at least two Hall effect devices per phase of an electricity meter. The metrology assembly may further include one or more electrical conductors coupled to the substrate and configured to conduct electric current. The at least two Hall effect devices may be coupled to the substrate at opposing sides of an associated electrical conductor, each Hall effect device being configured to detect a magnetic field created by the electric current of the associated electrical conductor, and to generate an output. | 04-28-2016 |
20160195575 | POWER STRIP AND ELECTRIC POWER MEASUREMENT SYSTEM | 07-07-2016 |
20220137099 | Non-Invasive Current Sensing Device - A current sensing device includes a housing with a head adapted for releasably holding a wire of an electrical circuit without breaking the electrical circuit. The head has one or more current sensors configured to sense direct current in the wire without breaking the electrical circuit. The housing includes an alarm to indicate if the current sensing device senses a current in the electrical wire above a predefined threshold current. The head has a clip base and clip member that form an internal channel to closely receive the electrical wire and to releasably hold the electrical wire for testing. In some embodiments, the head has an internal channel that intersects the outer surface of the head and forms a longitudinal opening to allow insertion of the wire into the internal channel. The current sensing device has a processor programed to calibrate the current sensing device to compensate for electrical noise. | 05-05-2022 |