Class / Patent application number | Description | Number of patent applications / Date published |
324097000 | Light beam type (e.g., mirror galvanometer, parallax-free scale) | 22 |
20090039866 | Fiber-Optic Current Sensor With Polarimetric Detection Scheme - The current in a conductor is measured by exploiting the Faraday effect in a sensing fiber. The light returning from the sensing fiber is split into at least two parts, at least one of which is analyzed by a first circular analyzer for generating a first signal. A second part may e.g. be analyzed by a second circular analyzer, and a third part may be analyzed by a linear analyzer. By combining the signals obtained in this way, the current induced phase delay in the returning light can be measured efficiently and accurately. | 02-12-2009 |
20090102454 | ACCURACY ENHANCING MECHANISM AND METHOD FOR CURRENT MEASURING APPARATUS - An optical interferometer used to measure the current in a conductor, where the gap between the mirror and the quarter wave plate is minimized, and the gap is shielded magnetically. Additionally, at least the modulator is shielded, and preferably the case containing many of the components, such as the integral number of turns of optical fiber in a coil, is magnetically shielded. By shielding the components, and reducing the gap between the quarter wave plate and the mirror, the error in the current measurement is substantially reduced. | 04-23-2009 |
20100052654 | OPTOELECTRONIC MEMORY DEVICE AND METHOD FOR MANUFACTURING AND MEASURING THE SAME - The present invention provides an optoelectronic memory device, the method for manufacturing and evaluating the same. The optoelectronic memory device according to the present invention includes a substrate, an insulation layer, an active layer, source electrode and drain electrode. The substrate includes a gate, and the insulation layer is formed on the substrate. The active layer is formed on the insulation layer, and more particularly, the active layer is formed of a composite material comprising conjugated conductive polymers and quantum dots. Moreover, both of the source and the drain are formed on the insulation layer, and electrically connected to the active layer. | 03-04-2010 |
20100264904 | APPARATUS AND SYSTEM FOR A QUASI LONGITUDINAL MODE ELECTRO OPTIC SENSOR FOR HIGH POWER MICROWAVE TESTING - An apparatus, for measuring an applied electrical field and for reducing perturbation to the electrical field being measured, includes a laser integrated into an electro optic crystal sensor head prior to the output fiber. A probe beam is passed along the crystal direction of low birefringence of nearly circular optical indicatrix, rather than one of high EO modulation. The EO crystal is placed between two crossed polarizers and oriented such that a small tilt angle is subtended between its optic axis and the path of the probe beam. Improved optical coupling is achieved by using a large core multimode fiber at the output, to reduce optical insertion losses. A collimating lens emits the intensity modulated laser beam back to a photodetector, where the intensity modulated laser beam is converted to an electrical signal representing both field strength and phase of the electrical field applied to the sensor head. | 10-21-2010 |
20100277159 | SYSTEMS AND METHOD FOR LASER VOLTAGE IMAGING STATE MAPPING - An apparatus and method for laser probing of a DUT is disclosed. The system enables laser voltage imaging state mapping of devices within the DUT. A selected area of the DUT is illuminating a while the DUT is receiving test signals causing certain of the active devices to modulate. Light reflected from the DUT is collected and is converted into an electrical signal. Phase information is extracting from the electrical signal and a two-dimensional image is generated from the phase information, wherein the two-dimensional image spatially correlates to the selected area. | 11-04-2010 |
20110095749 | OPTICAL SENSOR ASSEMBLY FOR INSTALLATION ON A CURRENT CARRYING CABLE - An optical sensor assembly has a base unit, an optical current sensor, and a magnetic concentrator. The optical current sensor is mounted on the base unit and includes a polarized light input, a reflective prism, and a light output. The magnetic concentrator defines an airgap and is mounted on a concentrator housing such that the magnetic concentrator fits around the current carrying cable when the base unit is hung from the current carrying cable by hooks and when the concentrator housing is moved to a closed position. The reflective prism of the base unit is operably positioned in the airgap of the magnetic concentrator when the concentrator housing is in the closed position. The assembly further includes a voltage sensor operably positioned in the base unit for measuring the voltage of the current carrying cable. | 04-28-2011 |
20110095750 | METHOD FOR MEASURING CURRENT IN AN ELECTRIC POWER DISTRIBUTION SYSTEM - A method of measuring a current of a current carrying cable teaches the first step of providing an optical sensor assembly comprising a base unit, and an optical current sensor mounted on the base unit for transmitting a beam of polarized electromagnetic radiation to an optical fiber. A light detector is also provided having a first channel that operably connecting the light detector to an analog to digital converter through a programmable gain amplifier, a second channel that operably connects the light detector directly to the analog to digital converter, and a processor operably connected to the analog to digital converter. The optical sensor assembly is mounted adjacent the current carrying cable, and the fiber optic is operably connected to a light detector. A plurality of factors are then evaluated from rotation information from the light detector, by using the first and second channels for analog to digital conversion operably connected with the processor. | 04-28-2011 |
20110156695 | Magneto Optical Current Transducer with Improved Outage Performance - A MOCT metering system includes a cutoff module that ensures zero output when values from an optical module fall below a threshold value. The cutoff module includes an RMS to DC converter that drives a comparator. The comparator drives a switch that causes the cutoff module to pass through the measured signal unmodified if above a threshold value and to output a zero voltage signal if below a threshold value. | 06-30-2011 |
20110169478 | Laser Optical Path Detection - A method is provided for detecting laser optical paths in integrated circuit (IC) packages. The method provides an IC die encapsulated as a package in a compound of glass spheres and epoxy. Power is supplied to the IC. The IC is scanned with a laser. Typically, a laser wavelength is used that is minimally absorbed by the glass spheres in the epoxy compound of the IC package, and changes in current to the IC are detected. A detected current change is cross-referenced against a scanned IC package surface region. This process identifies an optical pathway underlying the scanned IC package surface region. In some aspects, this process leads to the identification of a glass sphere-collecting package structure underlying the optical pathway. Examples of a glass sphere-collecting structure might include an inner lead wire, lead frame edge, or die edge. | 07-14-2011 |
20110204875 | ADAPTIVE FILTERS FOR FIBER OPTIC SENSORS - Systems and methods according to these exemplary embodiments provide for methods and systems related to optical current and voltage sensors and, more particularly, to filters for use in such sensors. | 08-25-2011 |
20120007585 | SENSOR FOR DETECTING HIGH FREQUENCY SIGNALS - A sensor that senses incident RF signals is provided. The sensor is capable of sensing signals in the Gigahertz (GHz) and Terahertz (THz) range. The sensor may utilize one or more cantilevers, an interferometer, or may be formed in a box-type configuration. | 01-12-2012 |
20130099774 | METHOD FOR CHARACTERIZING THE SENSITIVITY OF ELECTRONIC COMPONENTS TO DESTRUCTIVE MECHANISMS - A method for characterizing the sensitivity of an electronic component with respect to a natural radiating environment. The safe operating area (SOA) voltage range beyond which destructive events occur is determined for the electronic component for given characteristics of a particle or incident beam. The electronic component is turned on and energized with the particle or incident beam having the given characteristics under the operating conditions that are close to the highest voltage value of the determined SOA voltage range. An efficient section of amplified transient events, which corresponds to an estimation of the destructive occurrences for the electronic component is determined. The characteristics of the particle or beam is modified and the method is repeated with the modified characteristics. | 04-25-2013 |
20130207639 | WIRELESS VOLTAGE SENSING DEVICE - A voltage sensing apparatus on a semiconductor substrate, including one or more inputs comprising metal contacts, an output comprising a laser transmitter, circuitry electrically connecting and interfacing the inputs to the output; and a power module. A method of fabricating the apparatus is also described. | 08-15-2013 |
20140049249 | AC OR DC POWER TRANSMISSION SYSTEM AND A METHOD OF MEASURING A VOLTAGE - The present invention relates to an AC or DC power transmission system. The system comprises a first electrical conductor, a second electrical conductor and an insulating space there between. The system further comprises an electric field measurement device comprising the following components being mounted in optical continuation: a first optical fibre being connected to a light source, a first optical lens, a circular polarization filter, a crystal rod having electro-optical properties, a linear polarization filter, a second optical lens, and a second optical fibre being connected to a light detection unit. The electric field measurement device is located adjacent the first electrical conductor and defines a first minimum distance between the crystal rod and the first electrical conductor and a second minimum distance between the crystal rod and the second electrical conductor. The second minimum distance is at least 10 times larger than the first minimum distance. | 02-20-2014 |
20140084902 | MEASUREMENT APPARATUS - A measurement apparatus for surface analysis carried out in a gaseous environment such as air comprises a measurement device capable of measuring a contact potential difference between a probe and a surface, and a light source that triggers photoelectric emission from a sample. The apparatus may operate in “dual” photoemission and contact potential difference (CPD) measurement modes. | 03-27-2014 |
20140103904 | Apparatus and Method of Power Measurement for Pulsed Terahertz Quantum-Cascade Laser - The present invention provides a power measurement apparatus and method for a pulsed terahertz quantum-cascade laser (THz QCL). The apparatus includes a light source part, a light path part, and a detection part. Terahertz light emitted by a THz QCL reaches a terahertz quantum-well photodetector (THz QWP) through the measurement apparatus, and is absorbed to generate a corresponding current signal. A signal processing circuit extracts a voltage signal from the current signal, amplifies the voltage signal, and inputs the amplified voltage signal to an oscilloscope for reading and displaying. According to a responsivity of the THz QWP at a lasing frequency of the laser, the measurement of the output power of the pulsed THz QCL is acquired. The present invention avoids integration estimation when a thermal detector is used to measure output power of a THz QCL in a pulse operating mode, and can directly acquire the power value of a pulsed output from the laser according to the amplitude of the detector responding to the pulsed terahertz light. | 04-17-2014 |
20140300341 | ELECTRO-OPTIC CURRENT SENSOR WITH HIGH DYNAMIC RANGE AND ACCURACY - An optical sensor that senses current by directing polarized light across an airgap that is orthogonal to a direction of current running through a conductor. The sensor includes a prism having a high Verdet constant for high sensitivity to magnetic fields, which cause an angle of polarization of the polarized light to be rotated as an indication of the magnitude of current. A polarizing beamsplitter having a low Verdet constant is mounted to the prism so that incoming light that is traveling in a direction orthogonal to the magnetic field being sensed across the airgap is insensitive to unwanted magnetic fields produced by nearby conductors. The distance the light travels in this orthogonal direction is minimized, reducing the overall volume of the sensor, making a compact sensor highly sensitive to magnetic fields of interest, largely insensitive to unwanted magnetic fields, and having a very high dynamic range for sensing current. | 10-09-2014 |
20150102802 | OPTICAL FIBER CURRENT SENSOR - An optical fiber current sensor includes a transmitter optical subassembly (TOSA) that is formed in a package of a linear polarizer that applies light from a light source to a sensor coil that is formed with an optical fiber by linearly polarizing, a polarization beam splitter that separates light that is reflected from the sensor coil according to polarization, and a receiver optical subassembly (ROSA) that is formed in a package together with first and second photodetectors that detect separated light according to polarization. | 04-16-2015 |
20150293154 | SYSTEMS AND METHODS FOR MONITORING FIBER OPTIC CURRENT SENSING SYSTEMS - A system includes a light source configured to generate a source of light, a fiber optic current sensor (FOCS) configured to detect the source of light, and a decoding circuitry communicatively coupled to the FOCS. The system also includes a health monitoring circuitry communicatively coupled to the decoding circuitry. The health monitoring circuitry is configured to receive a first electrical characteristic component of the first signal and a corresponding second electrical characteristic component of the second signal, to generate a summation of the first electrical characteristic component of first signal and the second electrical characteristic component of the second signal, and to generate an output signal based at least in part on the summation of the first electrical characteristic component and the second electrical characteristic component. The output signal includes an indication of an operational condition of the light source. | 10-15-2015 |
20150331029 | CHARGE DECAY MEASUREMENT SYSTEMS AND METHODS - Various approaches to can be used to interrogate a surface such as a surface of a layered semiconductor structure on a semiconductor wafer. Certain approaches employ Second Harmonic Generation and in some cases may utilize pump and probe radiation. Other approaches involve determining current flow from a sample illuminated with radiation. Decay constants can be measured to provide information regarding the sample. Additionally, electric and/or magnetic field biases can be applied to the sample to provide additional information. | 11-19-2015 |
20150377953 | ELECTRIC FIELD CONCENTRATION LOCATION OBSERVATION DEVICE AND ELECTRIC FIELD CONCENTRATION LOCATION OBSERVATION METHOD - An observation apparatus includes a laser light source, a scanning optical system irradiating a semiconductor device with laser light output from the laser light source, a bias power supply applying a reverse bias voltage of a predetermined voltage between electrodes of the semiconductor device, a sensor detecting an electrical property occurring in the semiconductor device in response to the laser light, and a control system generating an electrical property image of the semiconductor device based on a detection signal from the sensor. The bias power supply gradually increases a magnitude of the predetermined voltage until the predetermined voltage reaches a voltage at which avalanche amplification occurs in the semiconductor device. When the predetermined voltage is increased, the scanning optical system irradiates with the laser light, the sensor detects the electrical property, and the control system generates the electrical property image. | 12-31-2015 |
20160069936 | OPTICAL SENSOR ASSEMBLY FOR INSTALLATION ON A CURRENT CARRYING CABLE - An optical sensor assembly, for installation on a current carrying cable, senses the current in the cable and provides an electrical output indicating the current. To sense the current, a magnetic concentrator is placed in close proximity to the cable and creates a magnetic field representing current in the cable. An optical current sensor, within the created magnetic field, exposes a beam of polarized light to the magnetic field. The beam of polarized light is rotated thereby, by Faraday effect, according to the current in the cable. The amount of rotation is analyzed and converted to electrical signals to portray the current in the cable. The electrical signals may be processed, evaluated and analyzed to provide one or more of several elements of quality of the current in the cable. | 03-10-2016 |