Class / Patent application number | Description | Number of patent applications / Date published |
324647000 | Using a comparison or difference circuit | 22 |
20080204044 | Method for detecting islanding operation of a distributed generator - An exemplary method comprises the steps of introducing a reactive current reference square wave, detecting load voltage changes at every change in the reactive current reverence wave, and determining whether the detected load voltage changes exceed a predefined islanding detection threshold value, indicating a loss of mains and an islanding operation of the power generator. With the exemplary loss-of-mains detection, islanding can be detected within a shortest period of time, even if the local islands active and reactive load matches exactly the distributed generators active and reactive power generation. So even without a sudden voltage change, unintentional islanding can immediately be detected and control electronics can safely turn of the distributed power generator. | 08-28-2008 |
20080211518 | Method and Apparatus for Measuring Electrical Conductivity - An apparatus ( | 09-04-2008 |
20110074442 | METHOD AND DEVICE USING SHORTENED SQUARE WAVE WAVEFORMS IN SYNCHRONOUS SIGNAL PROCESSING - A method for impedance measurements, using synchronous detecting and modified rectangular signals. The method comprises introducing a first modified rectangular signal into a bioobject, receiving a response signal from said bioobject, introducing said response signal and a second modified rectangular signal into a synchronous detector, whereas either one or both rectangular signals are modified to remove particular higher harmonics from the signal. In one embodiment, either one or both the first and the second modified rectangular signals are generated by summing at least two modified rectangular signals, wherein at least one of such rectangular signals have a zero amplitude segment introduced between rectangular half periods. | 03-31-2011 |
20120025849 | INTRUSION DETECTION AND TRACKING SYSTEM - In one aspect, a method to detect an object in an area includes forming a wireless network among a plurality of nodes, each of the nodes being configured to generate an electromagnetic field (EMF) in the area and determining changes in the EMF between two nodes based on: a first difference in received signal strength values between a previously determined received signal strength value and a currently determined received signal strength value, a second difference in received signal strength values between the currently determined received signal strength value and an average received signal strength value and a third difference in link quality values between a previously determined link quality value and a currently determined link quality value. The method further comprises detecting the object based on the changes in the EMF. | 02-02-2012 |
20120062242 | INDUCTIVE PROXIMITY SWITCH - An inductive proximity switch for detecting the presence of an object in a monitored area includes a coil ( | 03-15-2012 |
20120112768 | Methods and Systems for Production Testing of DCO Capacitors - Systems provide for a test system for capacitors in a digitally controllable oscillator (DCO). The system includes: capacitor toggling logic configured to switch on and off a selected one of the capacitors at a modulation frequency; a tone generator configured to generate a tone; a mixer configured to receive the tone and an output carrier signal from the DCO while the capacitor toggling logic is switching the selected one of the capacitors on and off and to output an intermediate frequency signal having FM sidebands based on the modulation frequency and relative capacitor size; and an evaluation circuit configured to evaluate a frequency deviation associated with the selected one of the capacitors based on at least one of the FM sidebands. | 05-10-2012 |
20120313648 | PROXIMITY SWITCH HAVING SENSITIVITY CONTROL AND METHOD THEREFOR - A vehicle proximity switch and method are provided having sensitivity control based on a user selected sensitivity input. The switch includes a proximity sensor such, as a capacitive sensor, installed in a vehicle and providing a sense activation field. The proximity switch also includes control circuitry for processing the sense activation field to sense user activation of the switch by comparing the sense activation field to a threshold. The proximity switch further includes a user sensitivity input for receiving a user selected sensitivity input. The control circuitry controls sensitivity of the comparison based on the user selected sensitivity input. | 12-13-2012 |
20130120004 | Locating Appliance - A locating appliance configured to sense an article includes a push-pull measurement bridge and a comparator. The push-pull measurement bridge is configured to actuate a first electromagnetic device and a second electromagnetic device, in each case in a variable ratio. The first electromagnetic device takes the actuation as a basis for producing an electromagnetic alternating field in a region of the article. The comparator is configured to sense the article if the variable ratio differs from a predetermined ratio by more than a predetermined amount. | 05-16-2013 |
20130271157 | PROXIMITY SWITCH ASSEMBLY AND ACTIVATION METHOD WITH EXPLORATION MODE - A proximity switch assembly and method for detecting activation of a proximity switch assembly is provided. The assembly includes a plurality of proximity switches each having a proximity sensor providing a sense activation field and control circuitry processing the activation field of each proximity switch to sense activation. The control circuitry monitors the signal responsive to the activation field and determines a differential change in generated signal, and further generates an activation output when the differential signal exceeds a threshold. The control circuitry further distinguishes an activation from an exploration of the plurality of switches and may determine activation upon detection of a stable signal. | 10-17-2013 |
20130307564 | IN-PROCESS MATERIAL CHARACTERIZATION - Various embodiments include solutions for in-process material characterization. Various particular embodiments include a computer-implemented method including: providing instructions for transmitting oscillating electromagnetic field signals to a material under test (MUT); obtaining a return signal associated with the transmitted oscillating electromagnetic field signals; comparing the return signal with the oscillating electromagnetic field signals to determine a difference in an aspect of the return signal and the aspect of the oscillating electromagnetic field signals; comparing the difference in the aspect to a predetermined threshold; and determining a characteristic of the MUT based upon the compared difference. | 11-21-2013 |
20140002108 | CAPACITIVE PROXIMITY SENSOR WITH ENABLED TOUCH DETECTION | 01-02-2014 |
20140009171 | Proximity Detection - For proximity detection, capacitance of a sensing element to ground is measured as one or more objects move into or out of proximity to the sensing element. | 01-09-2014 |
20140015547 | HIGH DYNAMIC RANGE RF POWER MONITOR - A device with at least one channel for measuring high dynamic range, radio frequency (RF) power levels over broad-ranging duty cycles includes a power sensor circuit comprising at least one logarithmic amplifier; at least one directional RF coupler electrically connected to the at least one power sensor; at least one RF attenuator electrically connected to the at least one RF coupler; and at least one sampling circuit electrically connected to the at least one RF attenuator and the at least one RF coupler. The at least one sampling circuit performs analog-to-digital conversion of electrical signals received to provide digitals signals for measuring the RF power level in the at least one channel. | 01-16-2014 |
20140091814 | FET RF POWER DETECTOR - An FET RF signal detector circuit comprising two unbalanced differential transistor pair circuits is disclosed. A current mirror output circuit is included for generating an output current derived from currents flowing in the differential transistor pair circuits. The first unbalanced differential transistor pair circuit comprises two branches, each with a respective tail, and a first variable resistor between the branch tails. The first unbalanced differential transistor pair circuit connects to a first current source tail arrangement. The second unbalanced differential transistor pair circuit comprises two branches, each with a respective tail, and a second variable resistor between the branch tails. The second unbalanced differential transistor pair circuit connects to a second current source tail arrangement. | 04-03-2014 |
20140176158 | Volumetric Induction Phase Shift Detection System for Determining Tissue Water Content Properties - A method and apparatus of determining the condition of a bulk tissue sample, by: positioning a bulk tissue sample between a pair of induction coils (or antennae); passing a spectrum of alternating current (or voltage) through a first of the induction coils (or antennae); measuring spectrum of alternating current (or voltage) produced in the second of the induction coils (or antennae); and comparing the phase shift between the spectrum of alternating currents (or voltages) in the first and second induction coils (or antennae), thereby determining the condition of the bulk tissue sample. | 06-26-2014 |
20140375336 | LOSS-LESS FREQUENCY DEPENDENT DICKE-SWITCHED RADIOMETER - A Dicke-switched radiometer including a signal channel comprising of an antenna for receiving an input signal and a first stage amplification circuit for amplifying an output of the antenna and generating an amplified input signal; a reference channel comprising of a resistive load, a second stage amplification circuit and a matching filter for matching a frequency and an impedance of the amplified input signal to a frequency and an impedance of the amplified reference signal; a Dicke switch coupled to first stage amplification circuit and the matching filter for inputting the amplified input signal and an output of the matching filter to generate a difference signal; a third stage amplification circuit coupled to an output of the Dicke switch for amplifying the difference signal; and a detector coupled to an output of the third stage amplification circuit to obtain the amplified difference signal and generate a detected difference signal. | 12-25-2014 |
20150054525 | METHOD AND APPARATUS FOR DISTANCE MEASURING EQUIPMENT (DME/NORMAL) USING A SMOOTHED CONCAVE POLYGONAL PULSE SHAPE - A method for measuring distance includes transmitting a first pair of RF pulses from an airborne interrogator, where the first pair of RF pulses are temporally separated from each other by a first time interval and each of the RF pulses in the first pair of RF pulses has a first pulse waveform. The method also includes receiving a second pair of RF pulses transmitted by a ground transponder. The RF pulses in the second pair of RF pulses have a second pulse waveform characterized by a smoothed concave polygonal function and/or a smoothed concave hexagonal function. The method further includes determining an elapsed time between transmitting the first pair of RF pulses and receiving the second pair of RF pulses and determining a distance between the airborne interrogator and the ground transponder based on at least the elapsed time. | 02-26-2015 |
20150054526 | METHOD AND APPARATUS FOR DISTANCE MEASURING EQUIPMENT (DME/NORMAL) USING ALTERNATIVE PULSE SHAPES - A method for measuring distance includes transmitting a first pair of RF pulses from an airborne interrogator, where the first pair of RF pulses are temporally separated from each other by a first time interval and each of the RF pulses in the first pair of RF pulses has a first pulse waveform. The method also includes receiving a second pair of RF pulses transmitted by a ground transponder. The RF pulses in the second pair of RF pulses have a second pulse waveform characterized by a filtered asymmetric Gaussian function or a smoothed trapezoidal function. The method further includes determining an elapsed time between transmitting the first pair of RF pulses and receiving the second pair of RF pulses and determining a distance between the airborne interrogator and the ground transponder based on at least the elapsed time. | 02-26-2015 |
20150137831 | Selective Characterization of Material Under Test (MUT) with Electromagnetic Impedance Tomography and Spectroscopy - A method of extracting complex impedance from selected volumes of the material under test (MUT) combined with various embodiments of electrode sensor arrays. Configurations of linear and planar electrode arrays provide measured data of complex impedance of selected volumes, or voxels, of the MUT, which then can be used to extract the impedance of selected sub-volumes or sub-voxels of the MUT through application of circuit theory. The complex impedance characteristics of the sub-voxels may be used to identify variations in the properties of the various sub-voxels of the MUT, or be correlated to physical properties of the MUT using electromagnetic impedance tomography and/or spectroscopy. | 05-21-2015 |
20160153924 | METHOD FOR IMAGING A MEDIUM THROUGH ELECTRICAL MEASUREMENTS WITH A CONTACT IMPEDANCE CORRECTION | 06-02-2016 |
20160154039 | Radio Frequency Energy Detection | 06-02-2016 |
324648000 | With a bridge circuit | 1 |
20100123468 | METHOD AND APPARATUS FOR OPTIMIZING WHEATSTONE BRIDGE ROBUST IN CHANGE IN TEMPERATURE - An apparatus for optimizing a Wheatstone bridge robust in a temperature change, the apparatus including; a voltage difference measuring unit which measures a voltage difference between a current input end and a current output end of the Wheatstone bridge, wherein the Wheatstone bridge comprises a first resistor, a second resistor, a third resistor and a fourth resistor and a tuning resistor; and a resistance tuning controller which detects a resistance ratio of a first distribution resistance and a second distribution resistance of the tuning resistor so that the voltage difference measuring unit measures a maximum voltage difference, and controls tuning of the tuning resistor according to the detected resistance ratio. | 05-20-2010 |