Class / Patent application number | Description | Number of patent applications / Date published |
324222000 | Hysteresis or eddy current loss testing | 22 |
20080258717 | Magnetic Induction Tomography System and Method - The present invention relates to a magnetic induction tomography system and method for studying the electromagnetic properties of an object. In order to provide a high resolution MIT technique without the need of increasing the number of coils, a magnetic induction tomography system ( | 10-23-2008 |
20090039877 | EDDY CURRENT SYSTEM AND METHOD FOR ESTIMATING MATERIAL PROPERTIES OF PARTS - A method of inspecting a test part is provided. The method includes positioning an eddy current probe on a surface of the test part and scanning the test part using the eddy current probe to generate a first signal corresponding to a no lift-off condition of the test part. The method further includes positioning the eddy current probe at a pre-determined distance from the surface of the test part and scanning the test part using the eddy current probe positioned at the pre-determined distance from the test part to generate a second signal corresponding to a lift-off condition of the test part. The method also includes processing the first and second signals to estimate an electrical conductivity of the test part. | 02-12-2009 |
20090039878 | TRANSPARENT CONDUCTIVE FILM ROLL AND PRODUCTION METHOD THEREOF, TOUCH PANEL USING THE SAME, AND NON-CONTACT SURFACE RESISTANCE MEASURING DEVICE - A transparent conductive film roll which has a transparent conductive layer on at least one surface thereof and has an excellent distribution uniformity of surface resistance in longitudinal and lateral directions thereof wherein the distribution uniformity D of surface resistance defined by the following expression (1) is 0.2 or less when the surface resistance of the transparent conductive layer is measured at a total of 33 points within the film roll, and therefore, is suitable especially for a large panel, | 02-12-2009 |
20090079424 | ELECTROMAGNETIC RESONANCE FREQUENCY INSPECTION SYSTEMS AND METHODS - A method of inspecting a test part is provided. The method includes positioning a coil on a surface of the test part and exciting the coil at a resonance frequency. The method also includes determining at least one of a resonance frequency shift and a quality factor of the coil and estimating an electrical conductivity of the test part based on at least one of the resonance frequency shift and the quality factor of the coil. The method further includes obtaining depth profile of residual stress using conductivity measurements at various resonance frequencies. | 03-26-2009 |
20090251135 | Method for Evaluating Soi Wafer - The present invention relates to a method for evaluating the SOI wafer in a method for evaluating an SOI wafer in which a sheet resistance of a buried diffusion layer of an SOI wafer that has at least an SOI layer on an insulator layer and has a buried diffusion layer whose impurity concentration is higher than other region of the SOI layer in an interface area with the insulator layer of the SOI layer is evaluated, the method including the steps of measuring a sheet resistance of the whole SOI layer or the whole SOI wafer, and estimating the sheet resistance of the buried diffusion layer by assuming respective layers that compose the SOI wafer to be resistors connected in parallel and converting the measured result of the sheet resistance measurement. As a result of this, there is provided a method for evaluating the SOI wafer that can directly measure the SOI wafer itself to be the product to thereby evaluate the sheet resistance of the buried diffusion layer thereof, without fabricating a monitor wafer. | 10-08-2009 |
20100117636 | METHOD AND APPARATUS FOR ANALYZING WELD STRENGTH OF FRICTION STIR SPOT WELDS - On a friction stir spot welded workpiece having a first side including a friction stir spot weld hole and an opposing smooth second side, an eddy current probe is passed over the spot weld hole from the second side, and an eddy current signal representative of a material thickness of the workpiece is produced. The eddy current is analyzed via an eddy current analyzer, and a graphic representation of the analyzed eddy current signal is monitored as the probe passes over the spot weld hole, and a local minima of the graphic representation defined by a displayed characteristic J-shaped curve is identified, the local minima defining a remaining material thickness of the workpiece at the bottom of the spot weld hole. From the graphic representation, a value of the remaining material thickness is determined, and a weld strength of the spot weld as a function of the remaining material thickness is determined. | 05-13-2010 |
20110133729 | METHOD AND MONITORING DEVICE FOR PERFORMING AN RF-SAFE MIT SCAN - A method and a monitoring device for performing an RF-safe MIT scan is disclosed in which it is prevented that an RF exposure, especially a specific absorption rate (SAR), imposed on an examination object, especially a patient, exceeds certain limit values during a magnetic induction tomography (MIT) scan. This is achieved on the one hand by an RF simulation method for simulating intended MIT operating parameters and calculating a resulting RF exposure of the object, and on the other hand by a monitoring device for monitoring the RF power which is applied to the object. | 06-09-2011 |
20120025813 | DETECTING INDUCTIVE OBJECTS USING INPUTS OF INTEGRATED CIRCUIT DEVICE - An system for detecting inductive objects includes an inductive sensor circuit for detecting changes in an electromagnetic field (“EMF”) environment and an integrated circuit (“IC”) device. The inductive sensor circuit generates an oscillating analog waveform with an envelope that indicates changes in the EMF environment. The oscillating waveform is coupled to the digital input pin of the IC. A digital interface circuit in the IC is coupled to the digital input pin and is configured for detecting if the oscillating waveform exceeds high and low threshold voltage levels. The detecting results in a digital pulse which represents changes in the EMF environment. In another implementation, a timer input capture pin can be used to detect the waveform envelope decay by storing the time when the waveform crosses a threshold value during a time period. A reduced capture time after the time period expires indicates a change in the EMF environment. | 02-02-2012 |
20130009632 | EDDY CURRENT MEASURING SENSOR AND INSPECTION METHOD USING THIS EDDY CURRENT MEASURING SENSOR - An eddy current measuring probe sensor has an exciting portion and a detecting portion. The exciting portion includes a primary exciting portion that includes a main core formed of a cylindrical magnetic body and a main coil that is a solenoid coil wound in a circumferential direction around the main core, and a plurality of secondary exciting portions that include sub-cores formed of cylindrical magnetic bodies that are arranged around the primary exciting portion in a manner such that an axial direction of each of the sub-cores is the same as an axial direction of the main core. The plurality of secondary exciting portions are configured to be able to change the position of each sub-core independently in the axial direction relative to the primary exciting portion | 01-10-2013 |
20130049744 | High Frequency Loss Measurement Apparatus and Methods for Inductors and Transformers - Core loss in an inductor is measured with reduced sensitivity to phase measurement error by connecting a reactive component to resonate with the inductor and thus cancel a portion of the reactive voltage on the inductor; reducing the phase difference between the inductor voltage and current and making the observed power more resistive. The reactive component may be a capacitor for sinusoidal excitation or an inductance such as an air core transformer for arbitrary excitation. | 02-28-2013 |
20130169271 | LOW HYSTERESIS HIGH SENSITIVITY MAGNETIC FIELD SENSOR - An MTJ sensor having low hysteresis and high sensitivity is disclosed. The MTJ sensor includes, in one embodiment, a bridge with first and second active MTJ elements and first and second passive MTJ elements connected in a Wheatstone bridge configuration. First and second magnetic shield elements are located over the first and second passive MTJ elements and form a gap therebetween that concentrates magnetic flux toward the first and second active MTJ elements. A three-dimensional coil is wound around the first and second magnetic shield elements with over-windings located over the first and second magnetic shield elements and under-windings located under the first and second magnetic shield elements, connected together by a plurality of vias adjacent the first and second magnetic shield elements. | 07-04-2013 |
20130214768 | Use of Eddy Currents to Analyze Polycrystalline Diamond - A method, system, and apparatus for non-destructively characterizing one or more regions within an ultra-hard polycrystalline structure using eddy current measurements. The apparatus includes an eddy current measuring device having at least one terminal, a leached component comprising a polycrystalline structure, a first wire, and a probe. The leached component includes a cutting surface and an opposing second surface. A portion of the polycrystalline structure extending inwardly from the cutting surface has at least a portion of a catalyst material removed from therein. The first wire electrically couples the terminal to the probe, which is placed in contact with the cutting surface. The eddy current is measured one or more times and compared to a calibration curve to determine an estimated leaching depth within the polycrystalline structure. A data scattering range is ascertained to determine a relative porosity of the polycrystalline structure or the leaching quality within the polycrystalline structure. | 08-22-2013 |
20130214769 | Use of Capacitance And Eddy Currents to Analyze Polycrystalline Diamond - A method for non-destructively characterizing one or more regions within a polycrystalline structure using capacitance and eddy current measurements. The eddy current measurements include at least one of an impedance amplitude and a phase shift angle. The capacitance is measured one or more times and compared to a first calibration curve to determine an estimated leaching depth within the polycrystalline structure. A first data scattering range is ascertained from the capacitance measurements to determine a relative porosity or the leaching quality within the polycrystalline structure. The eddy current is measured one or more times and compared to a second calibration curve to determine an estimated leaching depth within the polycrystalline structure. A second data scattering range is ascertained from the eddy current measurements to determine a relative porosity or the leaching quality within the polycrystalline structure. Results from both measurements are used to ascertain a quality of the polycrystalline structure. | 08-22-2013 |
20140266169 | Synthetic rope, fiber optic cable and method for non-destructive testing thereof - A non-destructive test method for evaluating a synthetic rope made of strength member elements includes: treating at least one strength member element to be detectable by a magnetic NDT device, incorporating the at least one treated strength member element into the rope, scanning the synthetic rope with the magnetic NDT device, and obtaining magnetic flux leakage or eddy current output data from the magnetic NDT device, wherein the output data relates to a condition of the synthetic rope. A synthetic rope or cable is thereby made to be capable of being inspected by a magnetic flux leakage or eddy current non-destructive test (NDT) method. | 09-18-2014 |
20140292316 | APPARATUS AND METHOD FOR DETECTING DEFECTS IN A METALLIC SURFACE - An apparatus and method for detecting defects in a metal surface is disclosed. The apparatus is configured to move an eddy coil relative to an underlying metallic surface along a plurality of generally parallel and adjacent scan paths, and to receive from the eddy coil an oscillating signal induced at said coil as it is moved along each path. A representation of the received oscillating signal in relation to each one of a plurality of adjacent scan areas within each path is recorded, and a two-dimensional grid-like map showing the signal representations relative to each scan area is displayed. Defect location is facilitated by a further function of the apparatus and method, by which user input to an interface causes a light source to illuminate a selected part of the metallic surface. | 10-02-2014 |
20150077099 | STRUCTURE OF MEASURING IRON LOSS OF MOTOR STATOR CORE - A structure for measuring iron loss of a motor stator core is provided. The structure includes an auxiliary core whose both end surfaces in a longitudinal direction come in contact with inner end surfaces of two adjacent stator teeth among a plurality of stator teeth in a radial direction in order to measure iron loss of a stator core in which a plurality of slots and the plurality of stator teeth are alternately formed on an inner circumferential surface of a stator yoke in a circumferential direction. A pair of excitation windings is provided at portions of the auxiliary core in the longitudinal direction spaced-apart from each other. A B-coil that is a sensor coil is provided at the auxiliary core so as to be positioned inside any one excitation winding of the pair of excitation windings. Fixing protrusions protrude from the both end surfaces of the auxiliary core to extend in the longitudinal direction, and inserted into the slot between the two adjacent stator teeth to be fitted and fixed in the circumferential direction. Accordingly, it is possible to quantitatively and accurately measure iron loss of the motor stator core for each manufacturing process. | 03-19-2015 |
20150346156 | METHOD FOR EVALUATING THE CLOGGING OF A HEAT EXCHANGER - The invention relates to a method for evaluating the clogging of the passages of a tube support plate of a tube heat exchanger, in which an eddy current probe is passed through a tube of said exchanger and a measurement signal is measured with said probe, and, to evaluate the clogging at the downstream edge of a tube support plate:
| 12-03-2015 |
20150369883 | MAGNETIC SENSOR AND METHOD FOR QUANTITATIVELY IDENTIFYING MAGNETIC HYSTERESIS LOOP CHARACTERISTICS OF MAGNETIC CODE - A magnetic sensor is provided with a magnet and a magnetic sensitive element, the magnetic sensitive element responses to a magnetic field generated by a magnetic code in a banknote which is magnetized by the magnet, the whole or part of a hysteretic loop process is completed when the magnetic code is magnetized by the magnet while passing by the surface of the magnetic sensor. A method for quantitatively identifying magnetic hysteresis loop characteristics of magnetic code, the whole or part of the hysteretic loop process is completed when the magnetic code is magnetized by the magnet while passing by the surface of the magnetic sensor, the magnetic sensor reads the signal of the corresponding magnetizing process, and then soft magnetism and hard magnetism properties of the magnetic code on the magnetic hysteresis loop characteristics of the magnetic code are identified. | 12-24-2015 |
20160025682 | FLEXIBLE EDDY CURRENT PROBE - A flexible eddy current probe and a method of use are provided. A flexible eddy current probe ( | 01-28-2016 |
20160187519 | SYSTEMS, METHODS, AND APPARATUS FOR DETECTING FERROMAGNETIC FOREIGN OBJECTS IN A PREDETERMINED SPACE - An apparatus for detecting a presence of an object is provided. The apparatus includes an inductive sensing coil that is configurable to generate a first magnetic field. The inductive sensing coil is configured to have an electrical characteristic that is detectable when generating the first magnetic field. The electrical characteristic is configured to vary as a function of a second time-varying magnetic field simultaneously applied to the object. The apparatus comprises a controller configured to detect a change in the electrical characteristic and determine a presence of the object based on the detected change in the electrical characteristic. The electrical characteristic comprises one or more of an equivalent resistance, an equivalent inductance, an equivalent impedance, and an impulse response of the inductive sensing coil. The object comprises one or more of a ferromagnetic object, a metallic film and a metallic foil. | 06-30-2016 |
20190145931 | METHODS AND SYSTEMS FOR NONDESTRUCTIVE MATERIAL INSPECTION | 05-16-2019 |
20190145934 | METHODS AND SYSTEMS FOR NONDESTRUCTIVE MATERIAL INSPECTION | 05-16-2019 |