Class / Patent application number | Description | Number of patent applications / Date published |
324207170 | Separate pick-up | 88 |
20080238413 | Electromagnetic tracking method and system - Provided is an electromagnetic tracking system, comprising a coil arrangement comprising a first coil configured to generate a first magnetic field and a second coil configured to generate a second magnetic field and a drive unit configured to provide a first drive current to the first coil and to provide a second drive current to the second coil, wherein the first drive current and the second drive current are at about the same frequency, wherein the frequency is below 60 Hz, and wherein the first electromagnetic field and the second magnetic field are generated out of phase. Also provided is a method of electromagnetic tracking comprising generating a first electromagnetic field at a frequency, generating a second electromagnetic field at about the frequency, wherein the frequency is below 60 Hz and wherein the first electromagnetic field and the second magnetic field are generated out of phase, sensing the first electromagnetic field and the second electromagnetic field and processing a waveform indicative of a combination of the sensed first electromagnetic field and the sensed second electromagnetic field. | 10-02-2008 |
20080278149 | AIR-CORE TRANSFORMER POSITION SENSOR - An air-core transformer position sensor includes an excitation coil, an output coil, and a sensor coil. The excitation coil is adapted to be electrically excited with an excitation signal. The output coil is inductively coupled to the excitation coil upon electrical excitation of the excitation coil. The sensor coil is electrically shorted, is movable relative to the excitation coil and the output coil and, upon electrical excitation of the excitation coil, is inductively coupled to at least one of the excitation coil or the output coil. | 11-13-2008 |
20090039874 | INDUCTIVE POSITION SENSOR - A system to measure the displacement of relatively moveable bodies along an axis comprising: a resonant electrical intermediate device further comprising an inductor, whose width varies along the displacement axis, and a capacitor in electrical series which cooperates with an antenna comprising transmit and receive windings whose mutual inductance varies according to the position of the electrical intermediate device relative to the antenna. | 02-12-2009 |
20090096443 | COIL ARRANGEMENT FOR AN ELECTROMAGNETIC TRACKING SYSTEM - An electromagnetic tracking system comprising at least one electromagnetic transmitter assembly or at least one electromagnetic receiver assembly with two coils attachable to a trackable object to be tracked. The two coils including a first large coil and a second small coil, with the second small coil positioned asymmetrically with respect to the first large coil. The electromagnetic tracking system enables a medical professional to continually track the position and orientation of the object during a medical procedure. | 04-16-2009 |
20090108836 | Position Sensor - A position sensor comprises: a cosine coil and a sine coil as excitation coils which generate excitation signals; a detection coil which detects the excitation signal generated from the cosine coil and the sine coil; and a phase-difference detector serving as a converter that calculates a position of the detection coil based on the excitation signal detected by the detection coil. The cosine coil and the sine coil are plate-shaped conductors each including: a plurality of vertically bent segments which function as a coil; and connecting wire portions provided on both sides of the segments to connect the segments. | 04-30-2009 |
20090115406 | SYSTEM AND METHOD FOR MINIMIZING MUTUAL INDUCTANCE COUPLING BETWEEN COILS IN AN ELECTROMAGNETIC TRACKING SYSTEM - A system and method of minimizing the mutual inductance coupling between two or more coils of a coil array of an electromagnetic tracking system. The system involves a geometric arrangement of two or more coils, which significantly reduces any mutual inductance coupling between the two or more coils. The method involves characterization of two or more coils and compensating for mutual inductance coupling between the characterized two or more coils. | 05-07-2009 |
20090140729 | INDUCTIVE NON-CONTACT MEASUREMENT OF A RELATIVE MOVEMENT OR RELATIVE POSITIONING OF A FIRST OBJECT RELATIVE TO A SECOND OBJECT - A non-contact measurement method for a relative displacement or relative positioning of a first object relative to a second object, in which: at least one transmitting coil, placed on the first object, is excited by an alternating excitation signal, at least one alternating electronic output signal, generated by mutual inductance in at least one receiving coil, is detected; the at least one receiving coil being placed on the second object and in a magnetic field created by the at least one transmitting coil, and the relative displacement of the first object is determined relative to the second object using the at least one alternating electric output signal generated on the at least one receiving coil. | 06-04-2009 |
20090184707 | Electromagnetic barrier for use in association with inductive position sensors - An inductive position sensing system including an inductive position sensor and an electromagnetic barrier positioned adjacent the sensor to shield the sensor from induced electromagnetic field interference. The electromagnetic barrier is formed of a soft magnetic composite material comprising a soft magnetic filler material dispersed within a non-magnetic matrix or binder material. In one embodiment, the non-magnetic matrix material comprises a non-metallic material, and more specifically comprises a polymeric material. In another embodiment, the soft magnetic filler material comprises an iron-based material, and more specifically comprises powder particles formed of iron or an iron alloy dispersed within the non-magnetic matrix material. | 07-23-2009 |
20090195241 | Electromagnetic induction type encoder - The invention provides a highly accurate and inexpensive electromagnetic induction type encoder capable of acquiring strong signal intensity with the offset reduced by a short scale coil, and is durable against fluctuations in the yaw direction, which includes a number of scale coils | 08-06-2009 |
20100301841 | ELECTROMAGNETIC TRACKING METHOD AND SYSTEM - Provided is an electromagnetic coil arrangement comprising a set of electromagnetic sensors at fixed locations with respect to each other, each of the electromagnetic sensors comprising a planar coil coupled to a conductive layer, the planar coil comprising non-concentric rings. Further, provided is an electromagnetic tracking system, comprising an electromagnetic coil arrangement, at least one complementary electromagnetic sensor and a processor configured to process a signal comprising data indicative of a mutual inductance between the at least one complementary electromagnetic sensor and each of the set of the electromagnetic sensors of the electromagnetic coil arrangement. Also, provided are a method of tracking and a method of manufacturing an electromagnetic coil arrangement. | 12-02-2010 |
20110101968 | INDUCTIVE POSITION SENSOR - In an inductive position sensor for determining the position, particularly the rotation angle, of a movable element, at least two subsystems are provided, which each have second transmitting units with an actuating unit, an oscillating circuit on the movable element, and a receiving unit with an evaluating unit. According to the invention, it is provided that the operation of the individual subsystems is carried out alternately. Thus, if one subsystem is operating, all other subsystems are deactivated. In this way, all subsystems are individually operated in a consecutive manner. The synchronization required to do so is provided by a non-galvanic coupling of the subsystems, and in particular by an inductive coupling by way of preferably existing inductances of the subsystems. | 05-05-2011 |
20110175599 | Input device with dual induction coils and rotation motion output method thereof - An input device with dual induction coils and a rotation motion output method thereof are described, in which the input device moves on a trace capture device, such that the trace capture device outputs a trace signal to an electronic device. When the input device is rotated on the trace capture device, two coils within the input device respectively send an induction signal to the trace capture device. Then, the trace capture device respectively converts the two induction signals to two position signals, so as to determine displacement amounts and rotation directions of the two position signals, such that the trace capture device outputs a rotation signal to the electronic device, and the electronic device correspondingly executes a motion instruction according to the rotation signal. | 07-21-2011 |
20110285386 | ANGLE DETECTION SYSTEM AND METHOD OF MANUFACTURING THE SAME - An angle detection system of the present invention includes: a stator | 11-24-2011 |
20120068693 | MAGNETOELECTRONIC ANGLE SENSOR, IN PARTICULAR A RELUCTANCE RESOLVER - The present invention relates to a reluctance resolver ( | 03-22-2012 |
20120176123 | POSITION SENSOR - A position sensor is configured such that a rotor pattern formed on a rotor in a position facing a stator includes non-magnetic conductive parts cyclically formed, a stator coil includes an excitation coil and a detection coil, which are wound in the same direction, and the width of each coil is equal to one cycle of the rotor pattern. | 07-12-2012 |
20120262158 | ANGLE DETECTING DEVICE - An angle detecting device has a combined structure of plural resolvers, but is simple and is easily produced, and has redundancy reducing the risk of failure. The angle detecting device has two resolvers which are combined in the axial direction and has a stator core | 10-18-2012 |
20120274316 | VARIABLE RELUCTANCE RESOLVER AND ANGLE DETECTING SYSTEM THEREWITH - A VR resolver with a shaft angle multiplier of 3× has a rotor core | 11-01-2012 |
20120293166 | ROTARY POSITION SENSOR - A rotary position sensor having a transmitter coil excited by a high frequency signal source. A first and second receiver coil, each having at least two oppositely wound loops, are rotatably positioned electrically 90 degrees relative to each other. The receiver coils are positioned so as to be inductively coupled with the transmitter coil while a coupler constructed of an electrically conductive material is rotatably positioned over and inductively coupled with the first and second receiver coils. The outputs from the first and second receiver coils are coupled through a high pass filter and a low pass filter, respectively, thus creating a 90° phase shift in the resultant signals. These signals are summed together and coupled as an input signal to a PWM circuit together with a signal from the transmitter coil. | 11-22-2012 |
20120313629 | Method, Device and System for Monitoring the Determination of a Rotor Angle of a Rotating Shaft by Means of a Resolver - In a method for monitoring the determination of a rotor angle of a rotating shaft by use of a resolver monitoring the determination of the rotor angle is carried out by: a first test AC voltage at a test frequency which is not the same as an exciter frequency of the resolver is applied to a first stator winding of the resolver, and a second test AC voltage at the test frequency is applied to at least one second stator winding of the resolver, wherein the first and the second test AC voltages are produced such that an AC voltage is induced all the time in at least one rotor winding of the resolver as a result of the first and the second test AC voltages. | 12-13-2012 |
20130021024 | ELECTROMAGNETIC INDUCTION TYPE ABSOLUTE POSITION MEASURING ENCODER - In an electromagnetic induction type absolute position measuring encoder having two or more tracks which includes: two or more rows of scale coils, each row including scale coils numerously arranged on a scale along a measuring direction so as to have a scale pitch different from that of another row; and transmitter coils and receiver coils provided on a movable grid relative to the scale in the measuring direction so as to face the scale coils, and which can measure an absolute position of the grid with respect to the scale on the basis of a flux change detected at the receiver coil via the scale coil when the transmitter coil is excited, coil lines are added to at least one side of the scale coils in the measuring direction at least in one of the tracks. | 01-24-2013 |
20130033257 | ELECTROMAGNETIC INDUCTION TYPE ABSOLUTE POSITION MEASURING ENCODER - An electromagnetic induction type absolute position measuring encoder having two or more rows of scale coils, each of the rows having a scale pitch different from that of another row; a transmitter coil and a receiver coil arranged on a grid that is movable relative to the scale in the measuring direction so as to face the scale coils; and the track is constituted by the scale coils, the transmitter coil and the receiver coil. The encoder is capable of measuring an absolute position of the grid with respect to the scale from a flux change detected at the receiver coil via the scale coils when the transmitter coil is excited, in which at least one loop-shaped additional scale coil is added between the scale coils in at least one of the tracks. | 02-07-2013 |
20130057262 | Accelerator position sensor - An accelerator position sensor (APS) includes a transmitting coil generating a magnetic field, a coupler controlling the magnetic field generated from the transmitting coil, a receiving coil receiving the magnetic field generated from the transmitting coil to generate a predetermined frequency, and a signal processor calculating rotation information of the coupler using the frequency received from the receiving coil and outputting displacement values of an accelerator pedal. With the APS, a guarantee signal can be generated only through the receiving coil and precise measuring values can be achieved. | 03-07-2013 |
20130069636 | SENSING APPARATUS FOR MEASURING POSITION OF TOUCH OBJECT BY ELECTROMAGNETIC INDUCTION AND METHOD FOR CONTROLLING THE SAME - An electromagnetic sensing apparatus for measuring the position of a touch object by electromagnetic induction and a method for controlling the same are provided. The apparatus includes a loop unit including first and second sub-loop units for alternately receiving current and sensing an electromagnetic change; and a controller for controlling the first sub-loop unit to alternate between receiving the current and sensing the electromagnetic change in every one of a predetermined time period and controlling the second sub-loop unit to alternate between receiving the current and sensing the electromagnetic change in every predetermined time period, alternately with the first sub-loop unit | 03-21-2013 |
20130069637 | INDUCTIVE DETECTION ENCODER AND DIGITAL MICROMETER - An inductive detection encoder according to the present invention includes: first and second members which are oppositely disposed so as to relatively move in a measurement direction; a transmitting coil formed in the first member; a magnetic flux coupled body which is formed in the second member and coupled with a magnetic field generated by the transmitting coil; and a receiving coil formed in the first member and having receiving loops. At least one of the transmitting coil and the receiving coil has a specific pattern that impairs the uniformity and periodicity of a pattern; and a dummy pattern formed in a position corresponding to a specific phase relationship of a cycle generated by the track with respect to the specific pattern. | 03-21-2013 |
20130088217 | Contact Displacement Sensor And Method For Contactless Distance Measurement - A noncontact distance measuring sensor and a method for noncontact distance measurement is provided. The distance measuring sensor has a coil arrangement including at least two measuring coils oriented along a common axis. An electrically and/or magnetically conducting measurement object is in electromagnetic interaction with the coil arrangement. The distance measuring sensor further has an evaluation circuit for evaluating and ascertaining a position of the measurement object. In addition to the measuring coils, the noncontact distance measuring sensor includes an additional coil which is arranged along the common axis, is coupled to the evaluation circuit, and at least partly overlaps at least one of the two measuring coils. | 04-11-2013 |
20130099778 | DIFFERENTIAL TRANSFORMER TYPE MAGNETIC SENSOR - A differential transformer type magnetic sensor is disclosed. The drive coil includes a planar coil arranged on a substrate. The first differential coil includes a planar coil arranged on the substrate. The second differential coil includes a planar coil arranged on the substrate and connected to the first differential coil. The first selector unit is used for a zero adjustment of a differential transformer. The first differential coil includes a plurality of first branch lines formed by branching a wire material forming the outermost turn of the first differential coil. The plurality of first branch lines are so arranged that the amount of magnetic fluxes passing along the plurality of respective first branch lines differ when the drive coil is driven. The first selector unit is capable of selecting any one of the plurality of first branch lines and arranged on the substrate. | 04-25-2013 |
20130141085 | POSITION DETECTOR AND POSITION DETECTION METHOD - In a position detector having two sensors, a first sensor detects a position indicated by a first indicator by electromagnetic induction and a second sensor detects a position indicated by a second indicator by a detection method other than electromagnetic induction. The position detector reduces adverse effects of the transmission signal supplied to the second sensor on the electromagnetic induction position detection circuit. The position indication state of the first and second indicators is determined based on a signal output from the first sensor according to the position indication by the first indicator on the first sensor and a signal output from the second sensor according to the position indication by the second indicator on the second sensor. According to the determination results of the position indication state, the level of the transmission signal provided to the second sensor to detect the position indication by the second indicator is controlled. | 06-06-2013 |
20130176019 | SYSTEM, AIRCRAFT OR SPACECRAFT, AND METHOD FOR MEASURING A CURRENT POSITION OF A SECOND VEHICLE PART RELATIVE TO A FIRST VEHICLE PART - An arrangement for transmitting data and/or power between a chassis and a seat that is movably disposed on said chassis by means of a guide rail. Several primary iron half-cores that support at least one primary winding are arranged in a fixed manner within the guide rail while at least one secondary iron half-core comprising at least one secondary winding is placed on the seat. The primary half-cores are disposed within the guide rail in such a way that at least one primary and one secondary iron half-core are positioned relative to each other so as to transmit data and/or power. | 07-11-2013 |
20130181700 | PATH MEASURING APPARATUS - The invention relates to a path measuring apparatus comprising at least a first measuring path and a second measuring path, these measuring paths each having an extension in a longitudinal direction and being oriented parallel to one another in at least a measuring range, at least one position indicator which couples to the measuring paths in a non-contact manner, and a measuring path holder which extends in the measuring range and has recesses, each recess having a measuring path arranged therein. | 07-18-2013 |
20130187639 | INDUCTIVE DETECTION TYPE ROTARY ENCODER - A first reception wiring and a first magnetic flux coupler form a first track having a shape periodically changing in a rotation direction of the rotor at a first pitch. A second reception wiring and a second magnetic flux coupler form a second track having a shape periodically changing in a rotation direction of the rotor at a second pitch. The first reception wiring and the second reception wiring are stacked via a first insulative layer in a direction in which a rotation shaft extends. The first magnetic flux coupler and the second magnetic flux coupler are stacked via a second insulative layer in a direction in which the rotation shaft extends. | 07-25-2013 |
20130342192 | ANGLE SENSOR - An angle sensor includes a sensor rotor formed with a planar coil and a sensor stator placed to face the sensor rotor with a gap therefrom and formed with a planar coil. The planar coil of the sensor stator includes an SIN phase coil and a COS phase coil each having an annular ring shape, and a rotary transformer coil placed radially inside of a region where both the coils are provided. The rotary transformer coil includes two connecting wires to connect to an external circuit, the two connecting wires being arranged to extend across the coils. The two connecting wires are arranged one above the other in their portions that extend across the coils while an insulating film is interposed between the connecting wires. | 12-26-2013 |
20140035565 | METHOD FOR POSITIONING A MOTOR VEHICLE, SYSTEM WITH SUCH A MOTOR VEHICLE, AND MOTOR VEHICLE - A method for positioning a motor vehicle in relation to a primary element of a charging device disposed on a side of a roadway of the motor vehicle for contactless charging of an electric storage device of the motor vehicle, includes moving a secondary element of the charging device arranged on the motor vehicle and interacting with the primary element relative to the primary element by moving the motor vehicle on the roadway into a predetermined charging position, and determining with at least one sensor and at least one positioning element having at least two mutually different markers, when the secondary element has reached the predetermined charging position, by detecting the markers with the sensor. | 02-06-2014 |
20140055129 | RESOLVER INTERFACE - A resolver interface includes an excitation coil, a first secondary coil, a second secondary coil, a sampling circuit, and a controller. The excitation coil receives an excitation signal that generates first and second signals in the first secondary coil and the second secondary coil, respectively. The sampling circuit includes a multiplexer that samples at least one period of the excitation signal, the first signal, and the second signal, individually. The controller is configured to calculate a sign of the first signal and the second signal relative to the excitation signal, wherein based on the calculated sign of the first signal and the second signal the controller determines a quadrant of the excitation coil and based on the determined quadrant and magnitudes of the sampled first signal and second signal calculates a position of the excitation coil. | 02-27-2014 |
20140062465 | ROTATION DETECTING DEVICE - A rotation detecting device includes rotation detecting device includes a first supporting member and a second supporting member disposed around an axial line. The rotation detecting device further includes a pair of magnetic field generating portions for generating a magnetic field in a region between the first supporting member and the second supporting member. The rotation detecting device further includes at least one magnetic field detecting portion attached to the second supporting member for detecting the magnetic field. The rotation detecting device further includes a first magnetic member for covering one end portion of the magnetic field detecting portion and a second magnetic member for covering the other end portion of the magnetic field detecting portion. | 03-06-2014 |
20140117980 | POSITION SENSING TRANSDUCER - A number of position sensors are disclosed. The position sensors are arranged to inductively sense the position of a target relative to a number of sensor coils. The target is arranged to magnetically couple with first and second coils so that signals are generated that depend on the relative position of the target and the first and second coils. The target extends along the measurement path and is inclined relative to the measurement path so that substantially all of the target overlaps with loops of the first coil and so that when a first end of the target is adjacent a first loop of the first coil, a second end of the target is adjacent a second loop of the first coil that has an opposite winding direction to that of the first loop. The second coil is arranged relative to the target such that the magnetic coupling between the second coil and the first end of the target is opposite to the magnetic coupling between the second coil and the second end of the target. | 05-01-2014 |
20140125327 | Inductive Position Sensor With Field Shaping Elements - An inductive position sensor determines a position of an object. The sensor incudes a circuit board, a wire source coil constructed and arranged to provide a certain operating frequency, a first wire sensing coil, and a second wire sensing coil. The source coil, and first and second sensing coils are embedded in the circuit board, and each of the first and second sensing coils are constructed and arranged to provide an output as the object passes by source coil and the first and second sensing coils. Eddy current generating material is associated with any of the coils so as to provide an eddy current that interferes with wire to wire communication between the sensing coils and the source coil, so as to alter the output of the sensing coils to improve accuracy of the sensor to shape the output. | 05-08-2014 |
20140132252 | WIRING STRUCTURE OF DISPLACEMENT SENSOR - Coil patterns and connecting wirings of a slider part or the like are prepared using a printed board (slider board). Connecting wiring patterns prepared using the printed board are arranged at multiple layers. The coil patterns and the connecting wiring patterns are connected via through-holes. | 05-15-2014 |
20140132253 | INDUCTIVE SENSOR - In one embodiment, an electronic device includes an excitation control; a first excitation element coupled to the excitation control; a second excitation element coupled to the excitation control; a target positioned near the first and second excitation elements and within the electromagnetic fields generated by the first and second excitation elements; a receiving element positioned near the target and within the electromagnetic fields generated by the first and second excitation elements; and a signal processor coupled to the receiving element and coupled to the excitation control. | 05-15-2014 |
20140167746 | Inductive Position-Measuring Device - An inductive position-measuring device includes a scanning element and a graduation element that are movable relative to each other in a first direction. The scanning element includes exciter conductors and three receiver tracks. The first and the second receiver track are disposed at a distance relative to each other, and the third receiver track is located between the first and the second receiver track. The graduation element includes two graduation tracks which are disposed at a distance relative to each other, and which have different graduation periods. Furthermore, electromagnetic fields generated by the exciter conductors are able to be modulated by the graduation tracks, so that a relative position in the first direction is detectable by the first and the second receiver track, while a relative position in a second direction, which is oriented orthogonally with respect to the first direction, is detectable by the third receiver track. | 06-19-2014 |
20140203801 | AMPLITUDE EVALUATION BY MEANS OF A GOERTZEL ALGORITHM IN A DIFFERENTIAL TRANSFORMER DISPLACEMENT SENSOR - Displacement sensor arrangement including at least one primary coil, at least a first and a second secondary coil and at least one magnetically soft coupling element, which magnetically couples the primary coil and the two secondary coils, the displacement sensor being designed so that a position and/or deflection depending on the magnetic coupling between the primary coil and at least the first and second secondary coil is detected, the displacement sensor arrangement having a signal processing unit, which is designed to perform digital signal processing of at least one electrical variable of the two secondary coils and determine the position and/or deflection, the signal processing unit having at least one Goertzel filter. | 07-24-2014 |
20140239943 | MAGNETIC TRACKING SYSTEM - Apparatus for determining a location of a target, the apparatus comprising: first and second magnetic dipole beacons positioned at substantially a same spatial location having respectively first and second time dependent magnetic moments oriented in different directions that generate first and second magnetic fields having different time dependencies; at least one magnetic field sensor coil located at the location of the target that generates signals responsive to the first and second magnetic fields; and circuitry that receives the signals generated by the at least one sensor coil and processes the signals responsive to the different time dependencies of the magnetic fields to determine a location of the at least one sensor coil and thereby the target. | 08-28-2014 |
20140253107 | Inductive Sensor with Demodulator - A transconductor converts voltage on an inductive sensor to a proportional current using two “coupling” capacitors. Responsive to movement of an electrically conductive target from the null position a resonant current is formed between the two sensor coils. A single differential transistor pair switched by periodic drive signals commutes the net alternating current at the single input to direct current. | 09-11-2014 |
20140266166 | Two-Dimensional Inductive Position Sensing System - A two-dimensional inductive position sensing system uses four drive inductors arranged at the vertices of a parallelogram and a sensing inductor positioned within the parallelogram. The sensing inductor is movable within the parallelogram and relative to the drive inductors. A first oscillating current at a first frequency is supplied to a first pair of the drive inductors located at ends of a first diagonal of the parallelogram. A second oscillating current at a second frequency is supplied to a second pair of the drive inductors located at ends of a second diagonal of the parallelogram. As a result, the sensing inductor generates a first output voltage at the first frequency and a second output voltage at the second frequency. A processor determines a position of the sensing inductor relative to the drive inductors using the first output voltage and the second output voltage. | 09-18-2014 |
20140285186 | DEVICE FOR DECTING POSITION OF ROTATING WORKING MEANS IN ACTIVE MAGNETIC BEARING - A device for detecting position of a rotating working means in an active magnetic bearing which comprises sensors (A, B) of the position of a rotating working means, detectors (D) of an output signal of the sensors (A, B) and evaluation circuits connected to control system of the active magnetic bearing. The sensors (A, B) of the position are composed of high frequency transformers, each of which is directly connected to the detector (D) of its output signal and the detectors (D) are composed of an electrical quadrupole with a non-linear transfer characteristic. | 09-25-2014 |
20140292310 | INDUCTIVE SENSOR DEVICE WITH AT LEAST ONE COIL - An inductive sensor device for a motor vehicle includes a coil, wherein the coil is arranged on a carrier element and the coil is connected electrically to an electronics unit and wherein an induced voltage can be registered by the coil ( | 10-02-2014 |
20140292311 | POSITION DETECTOR - A position detector detecting a position of a movable member relative to a fixed member, including: a signal detector detecting periodic signals each indicating a predetermined value for the position of the movable member; a signal processor generating displacement signals based on the detected periodic signals and switching the generated displacement signals in a predetermined cycle to sequentially output the displacement signals; a position calculator calculating the position of the movable member based on a first signal group of the displacement signals; and a movement amount calculator calculating a movement amount of the movable member within the predetermined cycle by using a second signal group contained in the first signal group formed by obtaining the same displacement signal at different times. The position calculator calculates the position of the movable member based on the first signal group and the movement amount. | 10-02-2014 |
20140306693 | CONTACTLESS POSITION SENSOR AND CONTACTLESS POSITION SENSOR SYSTEM - The invention relates to an improved contactless position sensor and a system incorporating same. Such a contactless position sensor comprises at least two sensor coils each comprising a magnetic permeable core and windings defining a coil axis. The at least two sensor coils are arranged with the coil axes essentially in parallel to each other. An electrical circuit of the sensor drives a predetermined alternating current within each of the at least two sensor coils and determines a high frequency voltage component of a voltage across each of the at least two sensor coils. The predetermined alternating current includes a low frequency current component, and a high frequency current component. The electrical circuit detects the position of a ferromagnetic target by subtracting from each other amplitude levels of the high frequency voltage components of two of the determined voltages and by comparing the subtraction result to a pre-determined reference pattern. | 10-16-2014 |
20150008906 | POSITION SENSING DEVICE - A device for measuring relative distance between two physical objects includes an elongated inductor coil and a movable core. The movable core includes a slug of magnetically interactive material and is configured to move within the elongated inductor coil and to couple and interact magnetically with the elongated inductor coil. Electric current flowing through the elongated inductor coil generates a magnetic flux within the elongated inductor coil, and the magnetic flux is subsequently modified by moving the movable core within the elongated inductor coil and the modified magnetic flux is used to produce an electric output as a function of the position of the slug within the elongated inductor coil. | 01-08-2015 |
20150048817 | POSITION DETECTION DEVICE AND A DRIVE DEVICE - A position detection device for detecting a position of a movable element in a drive device comprises a carrier having two detecting modules for detecting a position of the movable element, the detecting modules being arranged side-by-side at a predetermined distance and without overlapping. Each detecting module comprises an energizing coil and a receiving coil assigned to the energizing coil and comprising a geometry having one period. The detecting modules are configured to output a position signal when detecting the movable element, so that during a shift of the movable element along the two detecting modules over the predefined distance this distance may be measured as a reference distance on the basis of the position signals. | 02-19-2015 |
20150061652 | RESOLVER - A resolver has a stator includes a circular yoke, multiple salient poles radially projecting inward from the yoke, and winding wires wound around the salient poles via an insulator; a rotor disposed inside the stator; a wire outgoing portion arranged with plural terminal pins, the terminal pins being connected to end portions of the winding wires; and a terminal pin cover attached to the wire outgoing portion and covering the terminal pins. The terminal pin cover includes multiple spaces that individually contain one of the terminal pins. A filler is filled in each space, whereby the end portion of the winding wire electrically connected to the terminal pin is sealed in the filler. | 03-05-2015 |
20150077094 | INDUCTIVE POSITION SENSING WITH SINGLE CHANNEL INTERFACE TO MULTIPLE RESONANT SENSORS - An inductive sensing system includes multiple resonant sensors interfaced to an inductance-to-digital conversion (IDC) unit through a single channel interface. IDC establishes an IDC control loop that incorporates resonant sensors as loop filters. The IDC control loop drives resonant sensors to a system resonance state in which each resonant sensor is driven to a resonant frequency state. Each resonant sensor is configured for a nominal resonant frequency state that differentiates it from the other resonant sensors. IDC senses changes in system resonance state representative of target-sensing conditions, and responds by driving a target-sensing system resonance state. IDC converts IDC loop (resonance) control signals resulting from a target-sensing condition into sensor data as representing the corresponding target-sensing resonant frequency state as an indication of target position (proximity or range) relative to a target-sensing resonant sensor. The sensor data can be provided to a data processor for proximity/range processing. | 03-19-2015 |
20150102805 | INTELLIGENT TRAIN WHEEL SENSOR - This disclosure relates to an intelligent train wheel sensor including a permanent magnetic coil and a low-pass filter circuit, an amplifying and shaping circuit, an analog/digital conversion circuit, and an output interface and interface conversion circuit, which are connected to each other in turn. The analog/digital conversion circuit and the output interface and interface conversion circuit being connected to a micro-processing control unit. The permanent magnetic coil is further connected in turn to a rectifier and filter circuit, a power storage circuit, a charging control circuit and rechargeable batteries. The rechargeable batteries supply power to the low-pass filter circuit, the amplifying and shaping circuit, the analog/digital conversion circuit, the micro-processing control unit and the output interface and interface conversion circuit. Such intelligent sensor has high reliability, requires no external power supply, can be installed and maintained conveniently. Furthermore, such intelligent sensor can identify a wheel signal of a low-speed train. | 04-16-2015 |
20150102806 | ELECTRONIC INDUCTION TYPE SENSOR PANEL AND METHOD FOR REDUCING INDICATION ERROR - To reduce an indication error at a peripheral part of an electromagnetic induction type coordinate detection device, sensor coils having a coil width of 21 pitches are arranged at a central part at intervals of 4 pitches. At a peripheral part, the coil width is shortened from sensor coil #5 to coil #1 sequentially so that the coil width of a sensor coil is shorter than a coil width of an inwardly adjacent sensor coil by 2 pitches. This enables the coil side pitch that is 1 all over the coil group | 04-16-2015 |
20150108968 | Rotary Encoder with Self-Sustained Supply of Energy - A rotary encoder has a signal encoding unit fastened at the shaft, a signal detection unit arranged in an axial direction of the shaft disposed opposite to the signal encoding unit, a signal evaluation unit, and an energy generation unit for the generation of electrical energy for the rotary encoder. The energy generation unit has a first element provided at the signal encoding unit and of a second element arranged at the circuit board of the signal evaluation unit. The first and the second element are disposed opposite to one another. The second element has a plurality of coils which are arranged in such a way that two or more coils are displaced by a pole pitch or a multiple of a pole pitch and in that the coils are switched in parallel, in series or in groups. | 04-23-2015 |
20150130445 | REMOTE SENSING SYSTEM - Remote sensors and methods of remote sensing are disclosed. A remote sensor includes a first circuit and a second circuit. The first circuit includes a first coil, a magnetic field generator for driving a current through the first coil to generate a magnetic field, and circuitry for determining loading of the magnetic field. The second circuit includes a second coil located proximate the first coil and a voltage-to-current converter for converting a voltage at an input of the second circuit to current and applying the current to the second coil. The current in the second coil registers as a loading of the magnetic field generated by the first coil. The loss, in response to the loading of the magnetic field, is measurable by the first circuit. | 05-14-2015 |
20150137802 | SPECIMEN AND CURRENT MEASURING METHOD - Composite material sheets containing conductive fibers are laminated, and release films are interposed between the sheets so as to extend from one end to the center of the sheets. The sheets are heated under pressure to shape a composite material. Discrete conductive wires through which a measurement current is passed are connected to end surfaces of the respective layers in the composite material on the side on which the release films are interposed. A common conductive wire through which the measurement current is passed is connected to a surface of one of an uppermost layer and a lowermost layer at an end of the composite material opposite to the side on which the release films are interposed. A current is passed between the common conductive wire and the discrete conductive wires. Currents in the respective layers are sequentially or simultaneously measured using an ammeter. | 05-21-2015 |
20150300800 | METHOD AND APPARATUS OF MEASURING A GAP BETWEEN A FIRST AND SECOND ROLL - A method and an apparatus are provided to measure a gap between a first and second roll. Moreover, a method and an apparatus are provided to correct the gap to a target distance with a closed loop system. Also, a method and an apparatus are implemented to detect the wear for each roll by using a non-contacting measuring device. | 10-22-2015 |
20150300989 | METHOD AND APPARATUS FOR DETERMINING THE HEALTH AND REMAINING SERVICE LIFE OF AUSTENITIC STEEL REFORMER TUBES AND THE LIKE - Testing methods and apparatus for testing the health of steel tubes used in reformers and other tubes and pipes used in other high temperature applications. The method includes the steps of transmitting two sinusoidal electromagnetic signals, each having a different frequency F | 10-22-2015 |
20150309084 | DEVICE FOR MEASURING AT LEAST ONE ELECTRIC QUANTITY OF A CURRENT INTENDED TO CIRCULATE IN AN ELECTRIC APPARATUS, AND ASSEMBLY COMPRISING SUCH A DEVICE - Device for measuring at least one electrical variable of a current intended to flow in an electric apparatus, the electric apparatus comprising at least one connection terminal, each connection terminal being designed to be electrically connected to the end of a corresponding electric conductor, the device comprising at least one current sensor, each current sensor being configured for measuring the current flowing in a corresponding electric conductor. The device further comprises at least one electrically conductive spacer, each spacer being configured for being interposed between a respective connection terminal and the end of a corresponding electric conductor, and wherein each current sensor is further positioned around a respective spacer, to measure the current flowing through said spacer, between the electric conductor and the corresponding connection terminal. | 10-29-2015 |
20150323348 | ROTATIONAL SENSING WITH INDUCTIVE SENSOR AND ROTATING AXIAL TARGET SURFACE - A rotational sensing system is adaptable to sensing motor rotation based on eddy current sensing. An axial target surface is incorporated with the motor rotor, and includes one or more conductive target segment(s). An inductive sensor is mounted adjacent the axial target surface, and includes one or more inductive sense coil(s), such that rotor rotation rotates the target segment(s) laterally under the sense coil(s). An inductance-to-digital converter (IDC) drives sensor excitation current to project a magnetic sensing field toward the rotating axial target surface. Sensor response is characterized by successive sensor phase cycles that cycle between L | 11-12-2015 |
20150332851 | METHOD FOR PRODUCING A MEASURING PICKUP - A method for producing a coil as a measurement transmitter for a sensor, including: providing electrical connections and a magnetic core for the coil, forming a coil former around the magnetic core in such a way that the magnetic core is at least partially enclosed by the coil former and the electrical connections are held by the coil former, winding at least one coil wire onto the formed coil former, and connecting the wound coil wire to the electrical connections. | 11-19-2015 |
20150338244 | STATOR USED IN RESOLVERS, AND RESOLVER INCLUDING SAME - The present invention relates to a stator used in resolvers, in which multiple slots are formed at constant intervals in the circumferential direction and have an excitation coil, a first output coil, and a second output coil are respectively wound around the multiple slots. The excitation coil is wound by a number of windings that is changed on the basis of a sinusoidal wave in accordance with the order of the multiple slots in the circumferential direction. After the first output coil is wound by a number of windings resulting from the division of the total number of windings by a constant ratio, the second output coil is wound, and then the rest of the first output coil is wound. | 11-26-2015 |
20150338245 | ROTATION NUMBER DETECTOR - A rotation number detector according to an embodiment is a rotation number detector that detects the number of rotations of a magnet attached to a rotating body by using a power generation unit. The power generation unit includes N (N is a natural number equal to or larger than 1) power generation elements, each including a magnetic wire in which magnetization reversal occurs due to a large Barkhausen effect and a pickup coil that is wound around the magnetic wire. The magnetic wire is longer than a wound portion of the pickup coil in an extension direction of the magnetic wire of the power generation elements. The magnetic wire is set above a rotation center of the magnet. | 11-26-2015 |
20150345997 | STATOR OF RESOLVER AND THE RESOLVER - A stator of a resolver has an annular core having teeth, an insulator that covers a part of the core, windings wound around the teeth with the insulator interposed therebetween, and a cover that covers the windings and connecting wires that are extensions of the windings. The insulator has winding parts, a connecting wire part, a barrier wall and a plurality of island parts, and a positioning projection part is formed on the island parts. The cover is formed by cover sections arranged along the circumference thereof, each of the cover sections has a protrusion part that is to be welded and fixed to one of the island parts. Each of the cover sections is positioned with a positioning recess of the protrusion part being fitted onto the positioning projection part and a side wall thereof being interposed between the barrier wall and the positioning projection part. | 12-03-2015 |
20150362337 | GEAR SENSING BASED ON DIFFERENTIAL/ASYMMETRIC INDUCTIVE SENSING - An inductive gear sensing system suitable for sensing gear (gear tooth) movement, such as some combination of speed, direction and position, based on differential sensor response waveforms. Example embodiments of inductive gear sensing with differential sensor response for different gear configurations include generating differential pulsed/phased sensor response signals from dual differential sensors based on axial (proximity-type) sensing for offset differential sensors (FIG. | 12-17-2015 |
20150362340 | Position sensor, sensor arrangement and lithography apparatus comprising position sensor - A position sensor for detecting a position of a measurement object, in particular of an optical element of a lithography apparatus is suggested, which includes a transmission coil, a reception coil, which is arranged in such a way that when a transmission signal (Vt, It) is applied to the transmission coil, a reception voltage (Vz, Vx) is generated at the reception coil, and an evaluation device, which links a transmission voltage signal generated in a manner dependent on the transmission signal with a reception voltage signal generated in a manner dependent on the reception voltage and generates a sensor output signal containing information about the relative position of the measurement object with respect to the coils of the position sensor. | 12-17-2015 |
20150362614 | METAL OBJECT DETECTION DEVICE - A metal object detection device includes a plurality of detection coils, a capacitor configuring a resonant circuit in cooperation with each of at least two of the detection coils, a first series connection body, a second series connection body, a voltage applying unit, and a processing unit. The voltage applying unit applies an AC voltage to both ends of each of the first series connection body and the second series connection body. The processing unit performs a process for detecting the metal object on the basis of a potential difference between a connection point included in the first series connection body and a connection point included in the second series connection body. | 12-17-2015 |
20150369631 | POSITION SENSING BY ASYMMETRIC ELECTRIC COIL SENSOR - A printed circuit board (PCB). The PCB comprises a non-conductive substrate and a plurality of conductive coil loops formed on the substrate, wherein the coil loops are asymmetric. The conductive coil loops are formed as a continuous metal trace on the substrate, the coil loops are symmetric with reference to a longitudinal axis of the PCB, the coil loops are asymmetric with reference to an axis transverse to the longitudinal axis of the PCB, wherein the distance between adjacent coil loops crossing the longitudinal axis on a first side of a center of an innermost coil loop are substantially equal, and the distance between adjacent coil loops crossing the longitudinal axis on a side of the center of the innermost coil loop opposite to the first side of the center of the innermost coil loop increase with each coil loop progressing outwards. | 12-24-2015 |
20150369632 | SENSOR AND OPTIMISING METHOD THEREFOR - A sensor assembly for indicating the relative location of a metallic object. The sensor assembly including a primary electromagnetic coil arranged to generate a time varying magnetic field, and a secondary electromagnetic coil arranged to detect the time varying magnetic field as affected, directly or indirectly, by the object and to output, on the basis of the detected time varying magnetic field, a signal indicative of the relative location of the object. At least one of the primary and secondary electromagnetic coils is wound about a core body formed of a material having the same conductivity and/or magnetic permeability as the object. | 12-24-2015 |
20150377652 | TERMINAL BLOCK STRUCTURE AND STATOR FOR RESOLVER - The width of a terminal block is decreased by decreasing a space between an external connecting terminal at each end of the external connecting terminals and an end portion of the terminal block, whereas a space between a winding terminal at each end of the winding terminals of terminals and an end portion of the terminal block is sufficiently obtained. A terminal | 12-31-2015 |
20160003875 | ALTERNATING CURRENT DETECTOR - An alternating current detector is provided. The alternating current detector comprises a housing, a solenoid, a rectification and filtration circuit, an amplification and driving circuit. The housing has a penetration cavity in the middle thereof, and a wire loading an alternating current thereon passes through the penetration cavity. The solenoid surrounds the penetration cavity and detects a magnetic field generated by the alternating current to generate a first voltage. The rectification and filtration circuit rectifies and filters the first voltage to generate a second voltage. The amplification and driving circuit amplifies the second voltage to generate an output current between a first output terminal and a second terminal. | 01-07-2016 |
20160037584 | METHOD OF DETECTING COOKWARE ON AN INDUCTION HOB, INDUCTION HOB AND COOKING APPLIANCE - A method of detecting cookware ( | 02-04-2016 |
20160054154 | ABSOLUTE POSITION ENCODER SCALE HAVING LAYERS IN A STACKED CONFIGURATION - An absolute position encoder scale includes first and second layers in a stacked configuration. A read head moves relative to spatial modulation patterns of first (top) and second (lower) signal layers along a measuring axis, and a sensing portion produces one or more scale sensing fields to sense the signal layers. A higher frequency scale sensing field may provide a first limited sensing depth to sense position relative to the top signal layer pattern, and a lower frequency field may provide a second deeper sensing depth to sense position relative to the lower signal layer pattern. In some embodiments, an isolation layer between the first and second layers may include a spatial modulation pattern that complements the first layer pattern, to nullify its signal effects when sensing position relative to the second layer pattern using the second sensing depth. | 02-25-2016 |
20160076913 | Path Measurement Method for a Magnetic Sensor and Sensor - A method of path measurement uses eddy current principles and a sensor which interacts with a measuring object. The sensor has an electrical connector and a sensor coil. In accordance with the method, an operating voltage is applied to the sensor such that a magnetic field is built up by an oscillator in cooperation with the sensor coil. A measuring object may be moved in the vicinity of the sensor coil through an opening in the sensor coil to produce field strength changes adjacent to the coil and the oscillator. The field strength changes are detected by an evaluation circuit and transmitted to a microcontroller. The microcontroller processes the signals of the evaluation circuit and provides the evaluation circuit with said signals via an output and protection circuit. The sensor coil consists of a plurality of windings constructed in a planar manner. | 03-17-2016 |
20160083626 | SOFT MAGNETIC THERMOSETTING ADHESIVE FILM, MAGNETIC FILM LAMINATE CIRCUIT BOARD, AND POSITION DETECTION DEVICE - A soft magnetic thermosetting adhesive film includes a magnetic layer and a surface layer laminated on one side of the magnetic layer. The magnetic layer is formed from a magnetic composition containing acrylic resin, epoxy resin, phenol resin, and soft magnetic particles. The surface layer is formed from a surface layer composition containing acrylic resin, epoxy resin, and phenol resin and not substantially containing soft magnetic particles. | 03-24-2016 |
20160097656 | DECOUPLED MAGNETOQUASISTATIC NON-LINE-OF-SIGHT POSITION AND ORIENTATION SENSING FOR ARBITRARY DISTANCES - Methods and systems for non-line-of-sight positioning are disclosed for arbitrarily short to long ranges, where positioning is achieved using a single anchor not requiring tri-/multi-lateration or tri-/multi-angulation. Magnetoquasistatic fields can be used to determine position and orientation of a device in two or three dimensions. Two or three axis coils can be used in receivers and transmitters. The magnetoquasistatic equations are solved in different scenarios, taking into consideration the image signals originating from the interaction between the fields and ground/earth. | 04-07-2016 |
20160131503 | INDUCTIVE POSITION DETECTION DEVICE - A coil section includes a primary coil which is magnetically excitable by an AC signal, and secondary coils which are provided so as to generate an inductive output in response to excitation of the primary coil. A self-oscillation circuit, including an inductance element and a capacitor, has incorporated therein the primary coil as the inductance element for self-oscillation. A target section is provided in such a manner that its relative position to the coil section varies according to a position of a target of detection, and the target section includes a magnetically responsive member disposed so that inductance of the secondary coils is varied according to the relative position. Amplitude levels of the output signals of the secondary coils are extracted, and position data of the position of the target of detection is obtained on the basis of these amplitude levels. | 05-12-2016 |
20160139286 | SENSOR CORE AND SENSOR - A proximity sensor core for a proximity sensor. The core is made from a sheet of high permeability material that has a thickness that is less than a width and length of the sheet of material. The sheet of material is cut or shaped such that it has a head portion extending across a width of the sheet of material and the head has a first length. First and second leg portions extend for a second length from the same edge of the head portion. Each of the first and second leg portions extend across a portion of the width of the head portion. First and second foot portions extend for a third length from the respective first and second leg portions. The first and second foot portions have the same width as the respective leg portions In the basic design, the sheet of material comprises a first bend between each of the first and second foot portions and the respective first and second leg portions so that the first and second foot portions extend generally perpendicular to the respective first and second leg portions. | 05-19-2016 |
20160139287 | SYSTEM FOR INTERFACING AN LC SENSOR, RELATED METHOD AND COMPUTERPROGRAM PRODUCT - A system for interfacing an LC sensor includes a starter configured to selectively start an oscillation of the LC sensor. The system also includes an analog peak detector configured to determine a signal (V | 05-19-2016 |
20160146636 | ABSOLUTE ENCODER SCALE CONFIGURATION WITH UNIQUE CODED IMPEDANCE MODULATIONS - An absolute scale configuration is provided for use in a position encoder which includes a readhead and a scale. The absolute scale configuration includes a plurality of scale loops distributed along a measuring axis to provide a position dependent signal that varies depending on a relative position between the scale loops and the readhead. At least some of the scale loops are coupled to respective impedance modulating circuits connected to receive energy from current induced in the scale loop and to provide a unique coded modulation of the scale loop impedance during a code signal generating state. The unique coded modulations as sensed by the readhead are indicative of a coarse resolution absolute position, which may be utilized in combination with the position dependent signal to determine an absolute position with a high resolution. | 05-26-2016 |
20160187160 | INDUCTIVE DETECTION TYPE ROTARY ENCODER - An inductive detection type rotary encoder of the present invention includes: first and second transmission windings in a stator; first and second reception windings within first and second regions, respectively; and first and second magnetic flux coupling bodies within third and fourth regions, respectively, in a rotor. The second, first, third, and fourth regions are sequentially disposed in an axial direction. The shortest distance between the first transmission winding and the first magnetic flux coupling body is shorter than those between the second transmission winding and the first magnetic flux coupling body and between the first transmission winding and the second magnetic flux coupling body. The shortest distance between the second transmission winding and the second magnetic flux coupling body is shorter than those between the first transmission winding and the second magnetic flux coupling body and between the second transmission winding and the first magnetic flux coupling body. | 06-30-2016 |
20160195410 | DEVICE FOR LOCATING ONE OR MORE MOBILE ELEMENTS IN A PREDETERMINED ZONE, AND METHOD IMPLEMENTED IN SUCH A DEVICE | 07-07-2016 |
20160377454 | RESOLVER - A resolver includes: a stator core; and an insulator that is mounted on the annular stator core, wherein a terminal pin base that extends outward in a radial direction is integrally formed in the insulator, wherein a plurality of terminal pins are disposed on the terminal pin base, wherein each of the terminal pins has a first connecting portion at one end and a second connecting portion at the other end, wherein first and second covers are provided on the terminal pin base at each sides in an axial direction, wherein the first connecting portion and the second connecting portion of the terminal pin are sealed in a filler which fills a first space and a second space, the first space being formed between the first cover and the terminal pin base, and the second space being formed between the second cover and the terminal pin base. | 12-29-2016 |
20170234672 | SUBSEA SENSOR ASSEMBLIES | 08-17-2017 |
20170234703 | POSITION SENSOR | 08-17-2017 |
20170234704 | INDUCTIVE SENSOR WITH DEMODULATOR | 08-17-2017 |
20220136867 | ANGULAR POSITION SENSOR - An angular position sensor for sensing the angular position of a rotor rotating on an axis relative to a stator, including a ferromagnetic target, of substantially ovoid cross section, rotating together with one from among the rotor or the stator, and a sensitive element including a first set of coils that are angularly evenly distributed, rotating together with the other from among the rotor or the stator, the coils being axially arranged in line with the target in order to be able to measure a distance from the target so as to deduce therefrom an angular position of the rotor relative to the stator. | 05-05-2022 |
20220136869 | REDUNDANT ANGULAR POSITION SENSOR AND ASSOCIATED METHOD OF USE - A redundant angular position sensor comprising a first angular position sensor including a first excitation coil, a first sensing coil and a second sensing coil and a second angular position sensor. The second angular position sensor including a second excitation coil, a third sensing coil and a fourth sensing coil. Each of the first, second, third and fourth sensing coils comprising a respective clockwise winding portion and a respective counter-clockwise winding portion. The redundant angular position sensor further comprises a rotatable inductive coupling element positioned in overlying relation to the sensing coils and separated from the sensing coils by a gap, wherein the rotatable inductive coupling element comprises four, substantially evenly radially spaced, sector apertures. | 05-05-2022 |