Class / Patent application number | Description | Number of patent applications / Date published |
320148000 | With peak detection of current or voltage (e.g., delta-V or delta-I utilized, etc.) | 29 |
20080218129 | COMPUTER AND BATTERY CHARGING METHOD THEREOF - A computer includes a system part which has at least one electronic component, a power supplying part which supplies a main electric power to the system part, a battery part which receives charging electric power from the power supplying part and supplies auxiliary electric power to the system part, and a controlling part which, if the main electric power is supplied by the power supplying part, and if charge level of the battery part according to supply of the charging electric power exceeds a reference level corresponding to a discharged state, cuts off the supply of the charging electric power and controls the battery part to discharge the auxiliary electric power. | 09-11-2008 |
20090009142 | CHARGING DEVICE - A charging device which is capable of preventing charging current from flowing even if a battery pack remains mounted thereon after charging of the battery pack is completed, thereby preventing deterioration of batteries of the battery pack. A circuit including a semiconductor switch generates a DC power for charging the battery pack. A backflow prevention diode is connected between the semiconductor switch and the battery pack. When charging of the battery pack has been completed, a secondary charge control circuit causes a DC voltage input to the backflow prevention diode to be made lower than the voltage of the battery pack. | 01-08-2009 |
20090027012 | BATTERY CHARGER - A battery charger for charging a secondary battery using a power supply circuit, includes a discrimination circuit to discriminate a constant-current charging mode and a constant-voltage charging mode, and a controller to which a discrimination signal is supplied. When judged as being the constant-current charging mode, the controller sets the current in the constant-current charging mode by using the control signal. When judged as being the constant-voltage charging mode in accordance with the discrimination signal, the controller sets intermittently the end of charging detection current, and sets an end of charging detection period for judging the constant-current charging mode and the constant-voltage charging mode. When the discrimination signal indicates the constant-voltage charging mode in the end of charging detection period, the controller controls to shift to the end of charging detection mode. | 01-29-2009 |
20090230924 | CIRCUITS FOR HARVESTING ENERGY FROM PIEZOELECTRIC DEVICES | 09-17-2009 |
20090295337 | Method of Controlling Battery Charging - The present teachings are directed toward methods of controlling the charging of a battery. The method includes the steps of receiving current and voltage output information for the battery during a charging/discharging cycle at a certain time interval, and using a model to determine both charging efficiency of the battery and the overpotential for a side reaction. These values for the charging efficiency and the overpotential of the side reaction are then compared to respective first and second given values. If either the charging efficiency or the overpotential is less than their respective given values, then the charging of the battery is suspended. The present method is particularly applicable to Li-ion batteries. | 12-03-2009 |
20100033137 | RAPID CHARGE LITHIUM ION BATTERY CHARGER - A rapid charging circuit for a lithium ion battery. The battery charger in accordance with the present invention compensates for the voltage drops across the various resistance elements in the battery circuit by setting the charging voltage to a level to compensate for the initial resistance of the series resistances in the circuit and an additional resistance selected to take into account the anticipated increase in resistance of the various circuit elements over time. The battery charger in accordance with the present invention periodically monitors the open-circuit voltage of the battery cell and reduces the charging voltage to when the battery cell voltage reaches the optimal value. Thus, during a constant current charging mode, the battery cell is driven at a relatively optimal charging current to reduce the charging time. As such, the system is able to optimize the charging current supplied to a battery cell during a constant current mode of operation while compensating for circuit elements whose resistance may vary over time due to temperature or other factors, such as corrosion, while at the same time avoiding exceeding the maximum recommended voltage for the battery cell. | 02-11-2010 |
20100052622 | MULTI-OUTPUT VOLTAGE BATTERY MODULE AND ELECTRONIC DEVICE USING THE SAME - A multi-output voltage battery module including a main body, a plurality of battery cells and a power-managing unit is provided. The battery cells are disposed within the main body and respectively provide different supply voltages for a plurality of electronic elements disposed in an electronic device. The power-managing unit is electrically connected to the battery cells for converting an external voltage into a plurality of charging voltages and further correspondingly outputting the charging voltages to charge the battery cells. The magnitude of each charging voltage is equal to that of the corresponding supply voltage. | 03-04-2010 |
20100156356 | METHOD OF QUICK CHARGING LITHIUM-BASED SECONDARY BATTERY AND ELECTRONIC DEVICE USING SAME - A charging current is maintained at a predetermined constant quick charging current (S | 06-24-2010 |
20100188051 | Secondary battery charging circuit - The present invention provides a highly safe charging circuit with which overcharge of a secondary battery will never occur even when a failure occurs in a transistor or the like that controls the charging voltage or charging current or when a protection circuit does not operate normally. In a secondary battery charging circuit | 07-29-2010 |
20100188052 | Charge Device - A charge device includes a charge circuit and a monitoring circuit. The charge circuit includes a current limiting element, a rectifier element, and a DC voltage supply unit. The rectifier element is connected with the current limiting element in series. The DC voltage supply unit is used for providing a DC voltage to the battery to charge the battery via the current limiting element and the rectifier element connected with the current limiting element in series. The monitoring circuit includes a temperature sensing unit and a first control unit. The temperature sensing unit is used for sensing a surface temperature of the battery. The first control unit is used for controlling the DC voltage supply unit to stop charging the battery when the surface temperature is higher than a predetermined temperature. | 07-29-2010 |
20100244777 | CHARGING CONTROL METHOD FOR SECONDARY BATTERY AND BATTERY CHARGER - A method and a charger for auxiliarily charging a secondary battery to a desired SOC with high accuracy. A charger for a secondary battery includes a charge termination condition storing unit which stores a relationship between open circuit voltages OCV of a plurality of secondary batteries and an amount of change of terminal voltage ΔV until a desired state of charge SOC is reached, which is previously created. A target terminal voltage Vmap at the time of the auxiliary charge is calculated by adding the amount of change of terminal voltage ΔV corresponding to the open circuit voltage OCV of a secondary battery to be auxiliarily charged to the open circuit voltage OCV which is measured. A terminal voltage Vb of the secondary battery at the time of auxiliary charge and the target terminal voltage Vmap are compared to each other by a comparison unit, and when the target terminal voltage Vmap is reached, auxiliary charge is terminated. | 09-30-2010 |
20100301809 | OVERCURRENT AND GROUND FAULT PROTECTION IN A NETWORKED CHARGING STATION FOR ELECTRIC VEHICLES - A networked charging station for electric vehicles protects against overcurrent and ground fault conditions. Upon detecting an overcurrent condition or a ground fault condition, the networked charging station for electric vehicles de-energizes a charging point connection to prevent electric current from flowing between an electric vehicle and the networked charging station and suspends the charging session. The networked charging station clears the overcurrent condition or the ground fault condition upon receipt of an authorized request which is transmitted remotely. The authorized request can be received from the vehicle operator that is associated with the charging session or from an administrator of the charging station through a radio-frequency identifier (RFID) tag enabled device or through a text message or an email message. The networked charging station clears the overcurrent condition or the ground fault condition without a manual reset of a circuit breaker or a GFCI device respectively. | 12-02-2010 |
20100327817 | BATTERY CHARGING CIRCUIT - A battery charging circuit comprises: a rectifier circuit ( | 12-30-2010 |
20110018500 | CHARGING DEVICE, ELECTRONIC EQUIPMENT INCLUDING SAME, AND CONTROL METHOD OF CHARGING DEVICE - A charging device to charge a secondary battery that includes a DC/DC circuit to generate a charging current supplied to the secondary battery, an impedance measurement circuit to measure an impedance of the secondary battery, a first control circuit to output a duty-cycle decrease signal in accordance with the measured impedance, a charging-current monitor circuit to detect the charging current outputted from the DC/DC circuit when the duty cycle of the pulses generated by the DC/DC circuit is decreased by the duty-cycle decrease signal, and, a second control circuit to compare the charging current detected by the charging-current monitor circuit and a charging-current threshold and to output to the DC/DC circuit a frequency change signal that increases a switching operation frequency in the DC/DC circuit. | 01-27-2011 |
20110025276 | CHARGE CONTROL CIRCUIT - A charge control circuit used to control a battery to charge includes a power management unit, a voltage converting unit, a voltage comparison unit, and a switch control unit. The power management unit supplies a voltage to the battery. The voltage converting unit provides a reference voltage to the voltage comparison unit. The voltage comparison unit compares a battery voltage obtained from the battery with the reference voltage, and sends a comparison to the switch control unit. The switch control unit controls the power management unit to charge or stop charging the battery according to the comparison. | 02-03-2011 |
20110031935 | NEGATIVE ELECTRODE FOR LITHIUM-ION SECONDARY BATTERY AND MANUFACTURING PROCESS FOR THE SAME - The present invention is characterized in that, in a negative electrode for lithium-ion secondary battery, the negative electrode being manufactured via an application step of applying a binder resin and an active material onto a surface of collector, the binder resin is an alkoxysilyl group-containing resin that has a structure being specified by formula (I); and the active material includes a lithium-inactive metal that does not form any intermetallic compounds with lithium, or a silicide of the lithium-inactive metal, and an elemental substance of Si. It is possible to upgrade cyclic characteristics by means of using the negative electrode for lithium-ion secondary battery according to the present invention. | 02-10-2011 |
20110193531 | Battery Charging Circuit for Improving Operating Stability - A battery charging circuit for charging a rechargeable battery and improving operating stability includes a plurality of resistors for generating a first voltage; a first reference voltage source for providing a first reference voltage; an error amplifier for generating a second voltage according to the voltage difference between the first reference voltage and the first voltage; a second reference voltage source for providing a second reference voltage; a modulator for generating a control voltage according to the second reference voltage and the second voltage; a voltage-to-current control unit for generating a control current according to the control voltage; and a current mirror for generating an output current which is equal to a multiple of the control current, wherein the output current and its corresponding output voltage is applied to charge the rechargeable battery. | 08-11-2011 |
20110199055 | METHODS FOR CHARGING METAL-AIR CELLS - A method of charging a metal-air battery is provided. The method comprises charging the metal-air battery using one of constant current charging or constant voltage charging during a first portion of a charging cycle. The method further comprises detecting the occurrence of a condition. The method further comprises charging the metal-air battery using the other of the constant current charging or constant voltage charging during a second portion of the charging cycle after detecting the occurrence of the condition. | 08-18-2011 |
20120091969 | UPPER-LIMIT OF STATE-OF-CHARGE ESTIMATING DEVICE AND UPPER-LIMIT OF STATE-OF-CHARGE ESTIMATING METHOD - A PM-ECU executes a program including: a step (S | 04-19-2012 |
20120153902 | Controlled Regeneration of Solid Electrolyte Interface for Prolonged Cycling of Lithium Batteries - A system implements a first charging method or a second charging method during one or more charge cycles of a battery. The first charging method includes a first voltage charging level and the second charging method includes a second voltage charging level that is higher than the first charging level. | 06-21-2012 |
20120153903 | PROTECTOR OF RECTIFIER AND WIRELESS POWER RECEIVER INCLUDING PROTECTOR - A protector that protects a rectifier, and a wireless power receiver including the protector are provided. In one embodiment, a protector for an electronic device may include: a switch configured to control current flow to a rectifier of the electronic device; and a switch controller configured to: compare, with a predetermined threshold value, a voltage difference between an output voltage of the rectifier and a voltage of the electronic device; and transmit a control signal to the switch (i) to discontinue current flow to the rectifier when the voltage difference is greater than the predetermined threshold value, and (ii) to enable current flow to rectifier when the voltage difference is less than or equal to the predetermined threshold value. | 06-21-2012 |
20120256598 | Battery Pack Detection Circuit - A battery pack detection circuit that can detect cold or false welding, charging status, and discharging status is disclosed. The battery pack detection circuit comprises a driving circuit electrically connected to a switch unit outside the battery pack detection circuit; a voltage detection and comparison circuit electrically connected to a multi-cell battery pack having a plurality of battery cells outside the battery pack detection circuit, wherein the voltage detection and comparison circuit is configured to detect cell voltages across each of the battery cells under at least two circuit connection conditions and compare the differences in cell voltage with a predetermined value, wherein the differences in cell voltage are derived from a subtraction operation performed on the cell voltages measured under the at least two circuit connection conditions; and an interface and control unit configured to receive commands from a SMBUS and provide a signal to a detection load. | 10-11-2012 |
20130154574 | Charge Acceptance Limit Determination Apparatus and Charge Acceptance Limit Determination Method - A charge acceptance limit determination apparatus includes a voltage measuring unit that measures a voltage of a secondary battery, a current measuring unit that measures an electric current flowing through the secondary battery, and a determining unit that determines whether or not the secondary battery has reached a charge acceptance limit in accordance with a position on a current-voltage plane of a voltage value and a current value that are measured by the voltage measuring unit and the current measuring unit. | 06-20-2013 |
20140217992 | SEPARATORS FOR LITHIUM-SULFUR BATTERIES - This invention, in some variations, provides a separator for a lithium-sulfur battery, comprising a porous substrate that is permeable to lithium ions; and a lithium-ion-conducting metal oxide layer on the substrate, wherein the metal oxide layer includes deposits of sulfur that are intentionally introduced prior to battery operation. The deposits of sulfur may be derived from treatment of the metal oxide layer with one or more sulfur-containing precursors (e.g., lithium polysulfides) prior to operation of the lithium-sulfur battery. Other variations provide a method of charging a lithium-sulfur battery that includes the disclosed separator, the charging being accomplished by continuously applying a substantially constant voltage to the lithium-sulfur battery until the battery charging current is at or below a selected current. | 08-07-2014 |
20140354241 | SYSTEMS AND METHODS FOR INITIALIZING A CHARGING SYSTEM - Systems and methods are provided for charging a battery. The system, for example, includes, but is not limited to a first interface configured to receive a voltage from an AC voltage source, a matrix conversion module comprising a plurality of switches electrically connected to the first interface and configured to provide a charging voltage to the battery, and a controller communicatively connected to the matrix conversion module, wherein the controller is configured to: determine a voltage of the battery, determine an angle of the AC voltage source to initiate charging of the battery based upon the voltage of the battery, and control the plurality of switches to provide the charging voltage to the battery between the determined angle of the AC voltage source and a subsequent zero-crossing of the AC voltage source. | 12-04-2014 |
20150326043 | Battery System and Motor Vehicle with Battery System - A battery system is described, comprising a battery management unit, a battery cell monitoring unit, at least one battery cell and a safety electronics system for the battery cell. The safety electronics system has a first comparator and an alarm signal output for an alarm signal. The first comparator compares a battery cell voltage of the battery cell to a predetermined threshold voltage value and generates the alarm signal on the basis of the comparison. The battery threshold voltage is lower than the battery cell voltage in normal operation and higher than a critical voltage value. In addition, a motor vehicle with the battery system is described, the battery system being connected to a drive system of the motor vehicle. | 11-12-2015 |
20150349581 | CHARGING CONTROL DEVICE, CHARGING CONTROL METHOD, COMPUTER PROGRAM, AND RECORDING MEDIUM - A charging control unit is used in a system having an engine, an electric power generator, and a battery charged by electric power generated by the electric power generator and being capable of executing stop control for prohibiting the engine from restarting in a state where the engine is stopped. The charging control device is provided with a charging and discharging rate calculation unit calculating a charging and discharging rate, the charging and discharging rate being the ratio of the absolute value of a charging current integrated value of the battery to the absolute value of a discharging current integrated value of the battery following the full charging of the battery, a pre-charging execution unit allowing the execution of the stop control, charging the battery by the electric power generated by the electric power generator, and executing pre-charging for increasing the average remaining capacity of the battery, the pre-charging execution unit shortening a period during which the pre-charging is executed when the calculated charging and discharging rate is high, and a refresh charging execution unit executing refresh charging for charging the battery by the electric power generated by the electric power generator, without executing the stop control, after the execution of the pre-charging and allowing the battery to be fully charged. | 12-03-2015 |
20160090000 | METHOD FOR CHARGING THE STARTER BATTERY OF A VEHICLE - A method for charging the starter battery of a motor vehicle at a voltage source includes charging the starter battery after a traction battery of the vehicle has been charged up to a defined value. The starter battery is charged if a charge state of the starter battery is established that is below a defined threshold value. If the charge state of the starter battery is of such a low level, the starter battery is charged until one or more defined termination conditions are fulfilled. The termination conditions may include the total charging period since the low charge state of the starter battery has been established exceeds a defined threshold value and/or the total time period charging the traction battery and the starter battery at the voltage source exceeds a defined threshold. | 03-31-2016 |
20160126763 | FREQUENCY BASED RECHARGEABLE POWER SOURCE CHARGING - A charging method and system. The method includes detecting and monitoring by a computer processor, a frequency signal associated with an input voltage signal used for powering power consumption devices at a first specified location. The computer processor generates frequency level data associated with the monitoring. The computer processor receives a request to enable a charging process for charging a rechargeable power source and power source data associated with the rechargeable power source and a user. In response to the request, the computer processor enables a customized charging process associated with charging the rechargeable power source based on the frequency level data and/or the power source data. | 05-05-2016 |