Class / Patent application number | Description | Number of patent applications / Date published |
318538000 | MOTOR STRUCTURE ADJUSTMENT OR CONTROL | 15 |
20080258668 | Stator position adjustment method, motor drive device and stator position adjustment system - A stator position adjustment method for a motor drive device that includes a motor case, a rotor shaft supported by the motor case in order to rotate a rotor inside the motor case, and a stator disposed at an outer circumference of the rotor concentrically with the rotor and having a configuration in which the stator is tightened and secured to the motor case by a tightening unit that tightens the stator along a rotor axis. The method includes the steps of setting a first tolerance range as a maximum tolerance range of a stator axis in which a first gap is formed between an outer circumference surface of the stator and an inner circumference surface of the motor case; measuring a position of the stator axis; and adjusting the position of the stator axis within the first tolerance range based on a measured position of the stator axis. | 10-23-2008 |
20090045765 | FIELD CONTROLLABLE ROTATING ELECTRIC MACHINE SYSTEM WITH MAGNETIC EXCITATION PART - In a magnet-exciting rotating electric machine system, every magnetic salient pole group to be magnetized in a same polarity is collectively magnetized by a magnetic excitation part. In the magnetic excitation part, a main magnetic flux path in which a magnetic flux circulates through the armature and a bypass magnetic flux path are connected to the field magnet in parallel. Magnetic flux amount in each path is controlled by mechanical displacement. Thereby, the rotating electric machine system and the magnetic flux amount control method in which magnetic field control is easy are provided. Also, means and method are provided so that a power required for the displacement may be made small by adjusting magnetic resistance of the above magnetic flux path. | 02-19-2009 |
20090096404 | Determination of the position of a component - A method for determining the position of a component, that is able to be moved into at least two end positions with the aid of a drive, especially of a flap for controlling fluid flows in an internal combustion engine, includes the following steps:
| 04-16-2009 |
20090261770 | CONTROLLER FOR MOTOR - A controller is provided for a permanent magnet field motor including two rotors concentrically provided around a rotating shaft and a phase changing device for changing an angle of relative displacement in a circumferential direction between two rotors to serve as a power source for driving driven wheels of an all-wheel drive vehicle having two main driving wheels and at least two driven wheels, the controller including a drive control portion to control driving of the motor according to a drive mode of the all-wheel drive vehicle; and a phase instruction portion to issue an instruction, when the drive mode of the all-wheel drive vehicle is a main-driving-wheel drive mode, to set the angle of relative displacement at an angle at which a magnetic flux generated at each of the two rotors is weakened, as compared with that generated at each of the two rotors in an all-wheel drive mode. | 10-22-2009 |
20100026228 | VARIABLE FIELD PERMANENT MAGNET DYNAMOELECTRIC MACHINE - A dynamoelectric machine which operates in a constant power mode. | 02-04-2010 |
20100259208 | ELECTRIC MACHINE AND CONTROL METHOD - A method for controlling an electric machine includes measuring a motor control parameter or parameters and selectively positioning an adjustable member within the electric machine in response the motor control parameters. Selective positioning of the adjustable member varies the geometry of a flux path within the electric machine, thereby inducing a predetermined voltage output in the electric machine. An electric machine includes a rotor, a shaft operatively connected to the rotor to rotate in conjunction therewith, and a stator. An adjustable member is positioned between the rotor and the stator, and has a variable offset position that can be selected by an electronic control unit (ECU) and applied by an actuator to thereby vary the geometry of a flux path within the electric machine. The adjustable member can include a non-magnetic annular hub and magnetic radial arms and axial extensions. | 10-14-2010 |
20110068729 | Wind Turbine with Adjustable Electrical Generator - A wind driven turbine includes a perimeter rim that carries a rotor, and a stator is positioned at the annular path of the rotor with field coils positioned on opposite sides of the rotor that generate electricity in response to the rotation of the rotor. A proximity gauging means selectively maintains the field coils at predetermined distances from the rotor. The wind turbine may be mounted on a floatable support. | 03-24-2011 |
20120126740 | Permanent Magnet Motor with Field Weakening - A permanent-magnet electrical machine is disclosed in which the rotor has a fixed back iron and movable back iron segments. When the movable back iron segments are in a first position, such as in contact with the fixed back iron, the field strength is high. When the movable back iron segments are in a second position in which the movable back iron segments are displaced away from the fixed back iron, the field strength is low. The ability to weaken the field strength causes the constant-power, speed ratio to be increased and thereby increases the utility of the motor for applications in which a wide speed range is desired. The disclosure applies to both permanent-magnet motors and generators. In an alternative embodiment, the stator ring is provided with a fixed portion and at least one movable stator segment. | 05-24-2012 |
20140091746 | ELECTROMAGNETIC PUMP COMPENSATION POWER SUPPLY APPARATUS AND ELECTROMAGNETIC PUMP SYSTEM - Provided, in parallel to an electromagnetic pump in a power supply system, is an electromagnetic pump compensation power supply mechanism ( | 04-03-2014 |
318540000 | Rotor element movable axially | 4 |
20090212730 | Control System for A Controllable Permanent Magnet Machine - A dynamoelectric machine that has at least one rotor component proximate a stator that is axially displaceable from the stator in response to pressure of lubrication oil delivered to its lubrication system has a system for changing axial displacement of each axially displaceable rotor component from the stator to cause a corresponding change in rotor-stator magnetic flux interaction, comprising: a hydraulic pump for generating a flow of lubrication oil; and means for regulating the flow of lubrication oil to the machine to develop a corresponding lubrication oil pressure that controls axial displacement of each axially displaceable rotor component. | 08-27-2009 |
20100164422 | VARIABLE MAGNETIC FLUX ELECTRIC ROTARY MACHINE - An electric rotary machine is disclosed which can adjust relative angles of sub-rotors continuously and regardless of torque direction without generating an attractive force between the field magnets of the sub-rotors. The electric rotary machine includes: a stator having a winding; a dual rotor which is rotatably disposed with a gap from the stator and divided axially along a shaft into a first rotor and a second rotor each having field magnets with different polarities arranged alternately in a rotation direction; a mechanism for varying the axial position of the second rotor relative to the first rotor continuously; and a non-magnetic member located between the first rotor and the second rotor. | 07-01-2010 |
20100253272 | Method and Arrangement to Adjust an Air-Gap - The electrical machine includes a movable part and a static part. The movable part rotates in relation to the static part around a dedicated rotary axis. An air-gap is located between the rotating and the static part of the machine. A device is positioned and used to measure the spacing of the air-gap. The static part and/or the movable part is coupled with an actuating-unit, which changes the relative position of the static part in relation to the movable part to adjust the spacing of the air-gap. | 10-07-2010 |
20120176074 | SYSTEM FOR DECOUPLING A ROTOR FROM A STATOR OF A PERMANENT MAGNET MOTOR AND FLYWHEEL STORAGE SYSTEM USING THE SAME - A system for decoupling a rotor from a stator of a permanent magnet motor and a flywheel storage system using the same are provided. The flywheel storage system uses the permanent magnet motor as a magnetic active coupler to minimize magnetic losses in flywheel energy storage system during the motor-generator electric power transfer for enabling a magnetic field weakening method and a way of cancelling the losses during a conservative mode where the stator is totally decoupled from the rotor. Also, the present invention enables the optimal sizing of a permanent motor-generator to be able to supply a constant power over a large range of rotating speeds. | 07-12-2012 |
318541000 | Brush or other current-collector control | 2 |
20110012549 | ELECTRIC MOTOR - A direct current motor comprising a stator and a rotor. The rotor comprises: a shaft; a rotor core fixed to the shaft; a commutator fixed to the shaft; and rotor windings wound about poles of the rotor core and terminated on the commutator. The motor also has a common brush and at least two selectable brushes in sliding contact with the commutator; at least two direct current power sources; and a switching device configured to connect the common brush and a selected one of the selectable brushes with predetermined combinations of the power sources to operate the motor in different speed modes. | 01-20-2011 |
20110012550 | POWER TOOL - A power tool comprises a housing, a direct current motor arranged in the housing, a speed reduction mechanism coupled to a shaft of the motor, a tool head driven by the speed reduction mechanism, a first direct current power source, and a switching device. The motor comprises a common brush, a high speed brush and a low speed brush which are in sliding contact with a commutator. The switching device is configured to selectively connect the common brush and the high speed brush with the power source to operate the motor in a high speed mode and to connect the common brush and the low speed brush with the power source to operate the motor in a low speed mode. | 01-20-2011 |