Class / Patent application number | Description | Number of patent applications / Date published |
318500000 | Plural sources of voltage (including counter e.m.f. cells) | 12 |
20110148338 | ENERGY SAVING ELECTRONIC DEVICE, HEAT DISSIPATING FAN POWER CONTROL SYSTEM AND CONTROL METHOD THEREOF - The present invention relates to energy saving electronic device, a heat dissipating fan power control system and a control method thereof. The heat dissipating fan power control system comprises a voltage selection circuit and a voltage conversion circuit. A plurality of voltage signals from a plurality power input terminals and a control are received by the voltage selection circuit to select one of the voltage signals as an output voltage signal. The voltage conversion circuit is connected to the voltage selection circuit to receive the output voltage signal and the control signal and to convert the voltage value of the output voltage into the work voltage value according to the control signal to thereby drive the heat dissipating fan. | 06-23-2011 |
20110254493 | METHOD AND ARRANGEMENT IN CONNECTION WITH ELECTRIC DEVICE SYSTEM - A method and arrangement in connection with an electric drive system are provided. The electric drive system includes an intermediate circuit with two or more supply units and two or more inverter units connected thereto, and an electric machine having two or more three-phase windings galvanically separated from each other. Two or more inverter units are connected to the three-phase windings. The arrangement also includes first main circuit switches to galvanically separate each supply unit from a supply, second main circuit switches to galvanically separate each supply unit from the intermediate circuit, first intermediate circuit switches to galvanically separate each inverter unit from the intermediate circuit, and second intermediate circuit switches to galvanically separate each inverter unit from the electric machine. | 10-20-2011 |
20120126739 | METHOD AND DEVICE FOR CONTROLLING INDUCTIVE LOADS - Control circuitry for inductive loads comprehending a DC power source (DC), electrical switches (A and R) and appropriate electrical conductors to direct current to an inductive load, as the control system includes a primary circuit and a secondary circuit which is partly concurrent with the primary electrical circuit. The primary electrical circuit includes a series of DC power sources (DC), an inductive load in the form of an electric motor (M) or transformer (T) and a capacitor (C), while the secondary electrical circuit includes the inductive loads and capacitor (C), since the two electrical switches (A and R) are so arranged that the power of a first operational phase is driven through the primary electric circuit by the voltage supplied by the DC power source (DC) while the current in another phase of operation runs through the secondary electric circuit by the voltage supplied by the capacitor (C). | 05-24-2012 |
20120153884 | Integrated motor controller system - A controller for managing electrical power storage in a machine having an electric energy storage device and an electric motor comprises a gate drive stage for providing gate signals to one or more power electronics elements, as well as a control processor adapted to generate gate signals and supply the generated gate signals to the gate drive stage for controlling the one or more power electronics elements. The gate signals control the one or more power electronics elements to power the motor windings in a drive mode of operation and to charge the electric energy storage device in a charging mode of operation. In either mode, the motor windings are used as conductors or inductive elements. | 06-21-2012 |
20130293175 | APPARATUS AND METHOD FOR HIGH EFFICIENCY OPERATION OF FUEL CELL SYSTEMS - A drive circuit comprising a DC bus configured to supply power to a load, a first fuel cell coupled to the DC bus and configured to provide a first power output to the DC bus, and a second fuel cell coupled to the DC bus and configured to provide a second power output to the DC bus supplemental to the first fuel cell. The drive circuit further includes an energy storage device coupled to the DC bus and configured to receive energy from the DC bus when a combined output of the first and second fuel cells is greater than a power demand from a load, and provide energy to the DC bus when the combined output of the first and second fuel cells is less than the power demand from the load. | 11-07-2013 |
20130342151 | ELECTRIC POWER SUPPLY APPARATUS - A control device of an electric power supply apparatus controls a voltage applied to an inverter to fall within a voltage range between a first voltage that is the voltage of one of a first electric power supply and a second electric power supply and a second voltage that is the sum of the voltage of the first electric power supply and the voltage of the second electric power supply, by alternately switching between a series state in which a current loop that connects the first electric power supply, the second electric power supply, and a reactor in series with the inverter is formed, and a parallel state in which the first electric power supply and the second electric power supply are connected in parallel with the inverter as an electric load. | 12-26-2013 |
20140042947 | CONTROL CIRCUIT FOR FAN - A control circuit for a fan includes a fan controller, a switch controller, and a frequency detector. When a pulse-width modulation (PWM) signal output pin of the fan controller outputs PWM signals, the frequency detector outputs a high level signal, connecting an input pin of the switch controller to an output pin of the switch controller. The fan receives the PWM signal. When the PWM signal output pin of the fan controller does not output PWM signals, the frequency detector outputs a low level signal, such that the output pin of the switch controller does not output any signal. In this state, the fan receives a high level signal through a resistor and a power supply, enabling the fan to continue operating. | 02-13-2014 |
20140132193 | FUEL CELL SYSTEM AND CONTROL METHOD THEREFOR - A fuel cell system ( | 05-15-2014 |
20140139168 | ELECTRICAL SYSTEM - This invention relates to a multiple phase electrical system, including: a first and a second electrical lane, each lane having a generator and a load connected by a bus system, and a rectifier between the generator and load; and, a transformer connected between the two lanes, the transformer having a plurality of power windings across each of which corresponding phases of the first and second lanes are connected, and a plurality of phase shift windings. | 05-22-2014 |
20140152225 | Electric Drive System and Energy Management Method - An electric drive system includes an energy storage system (ESS), a power conversion system, and an alternating current (AC) traction system. The ESS provides or receives electric power. The ESS includes a first energy storage unit and a second energy storage unit. The power conversion system is electrically coupled to the ESS for converting an input power to an output power. The AC traction system is electrically coupled to the power conversion system for converting the output power of the power conversion system to mechanical torques. The AC traction system includes a first AC drive device and a second AC drive device. An energy management system (EMS) is in electrical communication with the ESS, the AC traction system, and the power conversion system for providing control signals. | 06-05-2014 |
20140327384 | ELECTRONIC DEVICE AND CONTROL METHOD - An electronic device includes a first control circuit which controls a first drive circuit to drive a cooling device, a second control circuit which controls the first drive circuit, a switch circuit which connects one of the first and second control circuits to the first drive circuit, and a switch control unit which controls the switch circuit when there occurs a fault on the first control circuit, and switches a connection target of the first drive circuit from the first control circuit to the second control circuit. | 11-06-2014 |
20150022135 | MULTILEVEL INVERTER - The present disclosure discloses a multilevel inverter configured to output a 3-phase voltage to a motor by allowing a plurality of unit power cells forming one phase to be serially connected, the multilevel inverter, the multilevel inverter including a plurality of current sensors configured to detect an output current of the plurality of unit power cells. | 01-22-2015 |