Class / Patent application number | Description | Number of patent applications / Date published |
318723000 | Having variable frequency supply | 7 |
20090045769 | MOTOR CONTROL APPARATUS - The present invention restrains high frequency leakage current while reducing ripples of current flowing through a motor having one set and another set of independent phase windings. A plurality of inverter type drive means drives the respective phase windings and a PWM control means controls the respective inverter type drive means, by a switching sequence connecting one end of all phase windings including the other set to the negative side of the power supply when both ends of the phase winding included in one set are connected to the positive side of the power supply and connecting at least one end of all phase windings included in the other set to the positive side of the power supply when both ends of at least one phase winding included in one set are connected to the negative side of the power supply. | 02-19-2009 |
20100019717 | METHOD AND SYSTEM FOR START AND OPERATION OF AN ELECTRICALLY DRIVEN LOAD - A method and system for starting and operating an electrically driven load, e.g. a compressor or pump, by power supply from a mechanical driver, e.g. a turbine or combustion engine, whereby the load is mechanically connected to a first electrical machine, and the mechanical driver is mechanically connected to a second electrical machine. The first electrical machine is electrically interconnected to the second electrical machine at a standstill or when the first and or second machine have low speed. In an acceleration phase, the first electrical machine is accelerated by accelerating the second electrical machine with the mechanical driver. When the first electrical machine has reached a predefined rotational speed, the first machine is synchronized with a local electrical power network and connected it to that network. | 01-28-2010 |
20120032629 | Electric Motor and Motor Control - Various embodiments of an electric motor and electronic control for an electric motor are disclosed. An exemplary electric motor comprises a single-phase brushless permanent magnet electric motor. In exemplary embodiments, the electronic motor control is configured to commutate an electric motor at a frequency other than line frequency, perform pulse width modulation, and drive the electric motor with a drive waveform that approximates the counter-electromotive force of the motor. | 02-09-2012 |
20130082636 | SIGNAL PROCESSOR, FILTER, CONTROL CIRCUIT FOR POWER CONVERTER CIRCUIT, INTERCONNECTION INVERTER SYSTEM AND PWM CONVERTER SYSTEM - A signal processor is configured to perform a process equivalent to performing a series of fixed-to-rotating coordinate conversion, a predetermined process and then rotating-to-fixed coordinate conversion, while maintaining linearity and time-invariance. The signal processor performs a process given by the following matrix G: | 04-04-2013 |
20140312826 | METHOD AND ASSEMBLY FOR OPERATING SYNCHRONOUS MOTORS - A method is disclosed for operating a synchronous machine via a three-phase power controller including three semiconductor controllers and connected to a three-phase network. The method includes determining the phase difference between the magnet-wheel voltage of the synchronous machine and the network voltage of the three-phase network; determining the rotational speed of the rotor of the synchronous machine; determining the phase position of the three-phase network; determining at least some of the stator currents of the synchronous machine; determining a decision characteristic number based upon an advance calculation of the torque curve in the event of activation of at least two of the semiconductor controllers while taking into account the current values for phase difference, rotational speed, stator current, and phase position; and determining at least one switching time point based upon the decision characteristic number, wherein the at least two semiconductor controllers are activated at the switching time point. | 10-23-2014 |
20160094176 | Drive System - A drive system includes a three-phase motor having a shaft, a first three-phase stator winding, which is to be connected to a three-phase AC voltage grid, a second three-phase stator winding, which is to be connected to the three-phase AC voltage grid in such a way that a second stator rotating field is produced rotating in opposition with respect to a first stator rotating field, which is generated by the first stator winding, and a rotor winding system which is mechanically coupled in rotationally fixed fashion to the shaft. The drive system further includes at least one inverter, which is mechanically coupled in rotationally fixed fashion to the shaft and which is electrically coupled to the rotor winding system, wherein the at least one inverter is designed to generate actuation signals for the rotor winding system in such a way that a first rotor rotating field and a second rotor rotating field are generated, wherein the first rotor rotating field interacts with the first stator rotating field in such a way that a first motor speed and a first torque are produced, and wherein the second rotor rotating field interacts with the second stator rotating field in such a way that the first motor speed and a second torque are produced, wherein the second torque has an identical direction of action with respect to the first torque. | 03-31-2016 |
20160126870 | MOTOR DRIVE CONTROLLER AND CONTROL METHOD OF MOTOR DRIVE CONTROLLER - A motor drive controller includes: a control circuit unit configured to output a drive control signal for driving a motor in response to a command signal externally input to the control circuit unit; and a motor driving unit configured to output a drive signal to the motor based on the drive control signal output from the control circuit unit. The control circuit unit is provided with: a speed setting unit configured to generate a target rotation speed signal corresponding to a target rotation speed based on a command step determined in response to a step command signal and predetermined setting information when the step command signal is input as the command signal; and a drive control signal generating unit configured to generate and output the drive control signal based on the target rotation speed signal. | 05-05-2016 |