Class / Patent application number | Description | Number of patent applications / Date published |
318705000 | Synchronization systems | 14 |
20080258672 | METHOD OF STARTING A SYNCHRONOUS MOTOR WITH A BRUSHLESS DC EXCITER - A starting method and system for a motor where the motor may be started as an induction motor by applying a magnetizing current to build flux through the stator, with the field current set at the maximum permissible exciter stator current (i.e., the current that will cause rated no-load current in the main field at the transition speed). The motor stator currents will be maintained at a value that allows the motor to generate sufficient breakaway torque to overcome any stiction. At a specific transition speed or after a period of time, the drive will initiate a transition from induction motor control to synchronous motor control by removing the initial magnetizing current, and a field current is then applied to the motor through the DC exciter. Once this transition is completed, the drive may ramp up to the desired speed demand. | 10-23-2008 |
20100164427 | APPARATUS, SYSTEM, AND METHOD FOR FAULT TOLERANT COOLING IN A REDUNDANT POWER SYSTEM - An apparatus, system, and method are disclosed for fault tolerant cooling in a redundant power system. The apparatus receives power from a common power bus to power one or more power supply fans. The apparatus detects a non-functioning redundant power supply. The apparatus receives a fan control signal within a non-functioning redundant power supply. In addition, the apparatus uses the received fan control signal to synchronize a fan speed of a power supply fan within the non-functioning redundant power supply. The fan speed is synchronized with at least one fan control signal of a power supply fan within a functioning redundant power supply. Thus, the power supply fans of a non-functioning power supply continue to operate and are synchronized with power supply fans in functioning power supplies. | 07-01-2010 |
20110316468 | HYBRID MACHINE COMPRISING A SYNCHRONOUS MOTOR AND AN ASYNCHRONOUS MOTOR - A rotating electrical machine to be connected to a polyphase power grid, having: a polyphase synchronous motor including a rotor with permanent magnets and a polyphase asynchronous motor axially coupled together, and a switching system arranged so as to electrically connect the asynchronous motor to the grid during the machine starting phase in order to bring the synchronous motor to a speed that enables the motor to operate while connected directly to the grid, and to electrically connect the synchronous motor to the grid during a subsequent phase. | 12-29-2011 |
20130257342 | System and Method to Allow a Synchronous Motor to Successfully Synchronize with Loads that Have High Inertia and/or High Torque - A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed. | 10-03-2013 |
20130264990 | Synchronous Motor With Soft Start Element Formed Between The Motor Rotor And Motor Output Shaft To Successfully Synchronize Loads That Have High Inertia And/Or High Torque - A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. | 10-10-2013 |
20140097784 | Rotor Control - A method for controlling a motor at low operational speed is disclosed, wherein the motor comprises a magnetic rotor and a stator arranged to produce a magnetic field responsive to an applied electric current, wherein the method comprises ramping up an electric current applied to a stator from an initial current level to a synchronisation current level over a period of time. The initial current level is less than a minimum current required by the stator to produce a magnetic field having magnetic flux of a sufficient magnitude for synchronising a position of the magnetic rotor with respect to the magnetic field. The synchronisation current level is greater than or equal to the minimum current required to produce a magnetic field having magnetic flux of a sufficient magnitude to synchronise the position of the magnetic rotor with the magnetic field. | 04-10-2014 |
20140184132 | SWITCHING PROCESS AND ASSOCIATED CONTROL DEVICE - A method for switching the voltage supply for an alternating current electric engine between a supply from an ASD and a supply from an electrical network, the method comprises a stage for determining an ideal speed of rotation for the electric engine and for synchronising the phase and the amplitude of the voltage delivered by the ASD with the voltage delivered by the electrical network. | 07-03-2014 |
20140239875 | Coupling with Concentric Contact Around Motor Shaft for Line Start Synchronous Motor - A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft. | 08-28-2014 |
318706000 | With armature power removal upon failure to synchronize or loss of synchronism | 2 |
20090140688 | Inverter Device - This invention provides an inverter device that can detect a step-out state of an AC motor by a simple process without depending on a rotation speed of the AC motor and also surely hold an abnormal state in the step-out state of the AC motor. The inverter device | 06-04-2009 |
318707000 | Upon failure to resynchronize | 1 |
20090102412 | Motor controller and method of controlling the motor - The present invention relates a motor controller and a motor control method of controlling a motor having a stator coil and a rotator. The motor controller includes: an activating operator receiving an operation command with a prescribed target frequency while the motor remains stationary, activating the motor at a prescribed voltage and a voltage phase, and then gradually increasing an operation frequency of the motor; an operation exchanger switching an activation operation into a normal operation when the operation frequency reaches a prescribed frequency lower than the target frequency; an evaluator evaluating a location of the rotor included in the motor and the operation frequency based on a current or voltage detected from the motor; a normal operator operating the motor in a normal manner based on the evaluated rotor location; an error determiner determining during the normal operation whether there is an error on the motor based on at least one of the detected current, the detected voltage, and the evaluated operation frequency; and an operation controller enabling the motor to stop in a case where it is determined that there is an error on the motor. The motor controller and the motor control method determine failure of location detection in a sensor-less manner and enable the motor to be stably stopped according to such a determination. | 04-23-2009 |
318709000 | Having different armature voltage prior to synchronism | 2 |
20110291605 | SINGLE-PHASE AC SYNCHRONIZED MOTOR - There is provided a single-phase AC synchronized motor that does not need smooth of rectifier waves but stably performs shift from a starting operation to a synchronized operation. In the motor, based on detected signals of a position sensor, rectified current is reciprocally flowed to each direction of a single-phase coil which starts the motor. The motor includes a start-up operation circuit with a sensor starting period that increases a rotational speed until reaching to a first predetermined rotational speed; and a control device that controls operation of the motor as that shift to synchronized operation is performed when a rotational speed of a permanent magnetic rotor is reached to a second predetermined rotational speed nearby a synchronized rotational speed but not exceeding the synchronized rotational speed, and when the rise and fall of detected signals of the position sensor and the zero-cross point of AC current are approximately correspondent to each other. | 12-01-2011 |
20130057192 | AUTOMATIC REVERSIBLE SYNCHRONIZING SWITCHING CIRCUIT - A multifunctional device for measuring fluorescence, luminescence and light transmission for diagnostics comprises a first and second group of screens mounted behind the rear surface of a sample solid carrier. A sample carrier is designed in the form of a biochip, cell, pan or microplate. The sample carrier's light sources are provided with light-absorbing elements for suppressing light reflected from the front surface of the sample carrier and from screen surfaces. Screen holders allow for alternatively mounting light reflective/retroreflective screens to maximize fluorescent or luminescent signal. A diffusing screen measures light transmission through the sample. Light-absorbing screens behind the rear surface of the sample and light-absorbing elements on light sources from the sample's top surface, increase signal-to-noise ratio. The device permits measuring signals on biochip surfaces and in solutions during hybridization or amplification reactions. The device and diagnostic method are suitable for mass screening of biological material samples. | 03-07-2013 |
318712000 | With field excitation application | 2 |
318715000 | Responsive to rotor speed or rotor driven member | 2 |
20080252249 | Driver for an inflatable rotating exhibit - A driver for an inflatable rotating exhibit is mounted inside an inflatable rotating exhibit having a transparent inflatable body and a rotating body and has a rotating assembly and a reverse-rotation preventer. The rotating assembly connects to and rotates the rotating body, has a synchronous motor. The synchronous motor rotates in a direction and has a shaft. The shaft is driven by the synchronous motor and rotates the rotating body. However, the synchronous motor will reverse its rotation when the rotating body encounters even temporary resistance while rotating. The reverse-rotation preventer applies a resistance when the rotating body rotates in the wrong direction to make the synchronous motor reverse rotation again to the desired direction. So the reverse-rotation preventer ensures that the rotating inflatable exhibit rotates in the desired direction. | 10-16-2008 |
20080278108 | MOTOR AND METHOD FOR CONTROLLING OPERATION OF MOTOR - A self-magnetizing motor incorporates a control circuit that starts the motor, controls a magnetizing unit, and then operates the motor. The control circuit can include relay, such as a bi-directional conductive power semiconductor device, and one or more PTC (Positive Temperature Coefficient) switches. This control circuit eliminates the need for a separate controller and the implementation costs can be reduced. | 11-13-2008 |