Class / Patent application number | Description | Number of patent applications / Date published |
318400140 | Phase shifted as function of speed or position | 72 |
20080252241 | SENSORLESS DRIVING METHOD FOR BRUSHLESS DC MOTOR - A sensorless driving method for a brushless DC motor is provided. The time for the motor to rotate an electrical angle 60° is obtained by alternatively counting the occurrences of zero crossings with two counters and comparing the counted values, and the motor is delayed an electrical angle of 30°, by which a precise commutating time is obtained. The driving method provides a mask-based phase shift digital detection mechanism for effectively detecting true zero-crossing points. The driving method further provides an inhabitation mechanism with the function of soft-switch for inhibiting noise caused by transistor switching. By using these two counters, the time for the motor to rotate two electrical angles 30°−Δθ and 30°+Δθ are obtained and stored in two registers. The time period before and after the commutating point is added into a pulse width modulation (PWM) signal to reduce the noise and vibration. | 10-16-2008 |
20080252242 | Apparatus and method for driving rotary machine - A motor driving apparatus has a loss-of-synchronism monitoring circuit that monitors the rotation of a rotary machine such as a brushless DC motor to detect a sign of transition to a state of loss of synchronism. When the sign is detected, an energization control circuit temporarily stops driving of the rotary machine to bring it into a free running state, and thereafter carries out control so as to resume driving of the rotary machine. Further, the motor driving apparatus has an inverter and a drive control circuit that controls switching operation of the inverter based on rotation of the rotary machine. | 10-16-2008 |
20090167221 | METHOD AND DEVICE FOR GENERATING SIGNALS FOR CONTROLLING A MULTI-PHASED ROTATING ELECTRIC MOTOR ACCORDING TO SPEED - A method wherein the signals (SW | 07-02-2009 |
20090200972 | BRUSHLESS DC MOTOR AND IMAGE PICKUP APPARATUS - A brushless DC motor configured to drive a driven member includes a rotor having a magnet, a stator having a coil configured to provide a rotational force to the magnet, a position detector configured to output a first signal that is periodic, in accordance with a rotating position of the rotor, a signal generator configured to generate a second signal by adding a lead angle to a phase of the first signal output from the position detector, an excitation switch configured to select an excitation to the coil in accordance with the second signal, and a phase change part configured to change the lead angle in accordance with at least one of a position and a moving direction of the driven member. | 08-13-2009 |
20090267549 | BRUSHLESS MOTOR CONTROLLER AND BRUSHLESS MOTOR - A brushless motor controller that controls a brushless motor by determining an energizing timing of a three-phase stator coil based on the rotational position and speed of a rotor. The controller includes a normal timing generation unit, an advancing timing generation unit, and a control switching unit. The normal timing generation unit generates a normal energizing timing. The advancing angle timing generation unit generates an advancing angle energizing timing advanced by a predetermined amount from the normal energizing timing and a final advancing angle energizing timing delayed by a delay amount from the advancing angle energizing timing. The control switching unit switches rotation control of the motor between a first rotation control executed in accordance with the normal energizing timing and a second rotation control executed in accordance with the final advancing angle energizing timing. | 10-29-2009 |
20100001671 | MOTOR DRIVE CONTROL APPARATUS AND METHOD - In application of a square wave voltage to a motor MG | 01-07-2010 |
20100097021 | DRIVE APPARATUS - A drive apparatus includes a magnet rotor, a stator having a coil, a position detector configured to detect a position of the magnet rotor, a lead angle circuit configured to output a signal having a lead angle relative to an output of the position detector, a first driver configured to switch an electrification state of the coil in accordance with a preset time interval, a second driver configured to switch an electrification state of the coil in accordance with an output of the lead angle circuit, and a controller configured to adjust a lead angle amount of the signal output from the lead angle circuit within a range that does not cause step out in the driving by the first driver, prior to changing the driving by the second driver to the driving by the first driver. | 04-22-2010 |
20100117573 | Controller and Method for Adaptively Adjusting Motor Driving Current Waveforms - The present invention discloses a controller and a method for adaptively adjusting motor driving current waveforms. According to the present invention, the controller receives multiple different control parameters which may be determined according to the characteristics of a fan to be controlled, and adjusts the delayed ON time and advanced OFF time of a PWM driving signal based on the control parameters and the present rotation speed of the fan motor, so that the fan operates under an optimum driving current waveform. | 05-13-2010 |
20100117574 | MULTIPHASE MOTOR DRIVING DEVICE - A multiphase motor driving device has an inverter circuit. The inverter circuit includes a pair of upper and lower switching elements, a shunt resistor for phase current detection, and a voltage for driving a multiphase motor. The device includes a determination unit for shifting a detection timing of the current flowing to the shunt resistor from the OFF period to the ON period of the switching element on the upper side in the phase. The determination unit determines whether or not ON failure occurs based on the current flowing to the shunt resistor of the phase in the ON period. The device has a current value estimation unit for estimating a current value of the phase in a case where the detection timing is shifted based on currents flowing to the shunt resistors of other phases. | 05-13-2010 |
20100134055 | MOTOR SPEED CONTROL SYSTEM AND METHOD WITHOUT PULSE-WIDTH MODULATION - A motor control system includes a power control module and a detection module. The power control module controls power applied to first and second stator coils of a motor to rotate a rotor. The rotor induces voltages in the first and second stator coils when the rotor is rotating. The detection module determines a first time when a first voltage is induced in the first stator coil and determines a second time when a second voltage is induced in the second stator coil after the first voltage is induced. The detection module determines a speed of the rotor based on a difference between the first and second time. The power control module applies current through the second stator coil a predetermined period after the second time. The power control module determines the predetermined period based on the speed of the rotor. | 06-03-2010 |
20100148711 | PSEUDO CURRENT TYPE 120-DEGREE CONDUCTION INVERTER - [Problem] In a pseudo-current source inverter which drives a motor at a high speed, a current phase adjustment is assured and facilitated to perform a field-weakening control or suppress a terminal voltage saturation at a time of the high-speed motor drive.
| 06-17-2010 |
20100213883 | VARIABLE-DELAY-TIME CONTROL SYSTEM FOR A MOTOR - A variable-delay-time control system for a motor is provided. The system includes a control unit, a driving unit, and a motor. The control unit is used to output at least one control signal according to at least one predetermined signal, and the control signal has a variable delay time. The driving unit is connected to the control unit, and is used to receive the control signal and generate a driving signal. The motor is connected to the driving unit, and conduction time of the motor is controlled according to the driving signal and the variable delay time. With the variable-delay-time control system of the present invention, the delay time of the control signal is variable, so the motor can operate at a high efficiency (for example, at a reduced current). Moreover, as the variable-delay time can be adjusted according to the predetermined signal, the motor can operate at a high efficiency in different operating states, thus improving the overall efficiency of the motor. | 08-26-2010 |
20100237814 | METHOD FOR CONTROLLING BRUSHLESS DC MOTOR - A method for controlling a brushless DC motor, comprising transmitting a phase-inversion signal to a motor control unit by a rotor position detecting unit after a motor enters a stable state, advancing or delaying phase shift by the motor control unit at an offset electrical angle, recording and comparing phase current values I | 09-23-2010 |
20100253259 | Driving Method and Related Driving Device for a Motor - A driving method for a motor includes sensing variation of magnetic pole of a rotator of the motor, to generate a magnetic pole sensing signal, determining dead zone of the motor according to the magnetic pole sensing signal, to generate a determination result, and adjusting voltage outputted to a coil of the rotator according to the determination result. | 10-07-2010 |
20100253260 | MOTOR DRIVE CONTROL DEVICE - To present a motor drive control device capable of realizing high speed driving by a simple power feeding control method. The motor drive control device of the invention has a three-phase full bridge circuit for adjusting the feeding phase so as to invert the terminal voltage in feeding-off time, by cyclically repeating positive direction feeding period, non-feeding period, negative direction feeding period, and non-feeding period. In high speed driving, the phase is adjusted so as to invert the terminal voltage right after feeding-off, and if not reaching the desired rotating speed, the feeding time is shortened. As a result, the phase angle to the actual applied voltage can be advanced, and high seed rotation by weak-field system driving is realized. When there is a sufficient allowance in the voltage, the phase is adjusted so as to invert the terminal voltage immediately before turning on the feeding, and the feeding time width is adjusted so that the phase relation of the feeding-off time and the terminal voltage inverting time may be a desired relation and the applied voltage and the current phase are optimized, and the maximum efficiency driving is realized. | 10-07-2010 |
20100253261 | CONTROL OF AN ELECTRIC MACHINE - A method of controlling an electric machine that includes exciting a winding of the electric machine in advance of zero-crossings of back emf by a fixed advance time over a range of speeds. Additionally, a control system for an electric machine, and a product incorporating the control system and electric machine. | 10-07-2010 |
20100253262 | CONTROL SYSTEM FOR AN ELECTRIC MACHINE - A control system for an electric machine, the control system including a position sensor and a drive controller. The drive controller generates one or more control signals for exciting a winding of the electric machine in response to edges of a signal output by the position sensor. The times at which the control signals are generated by the drive controller are corrected by a position-sensor offset that is fixed over an operating speed range of the electric machine. | 10-07-2010 |
20100253263 | CONTROL OF AN ELECTRIC MACHINE - A method of controlling an electric machine that includes sequentially exciting and freewheeling a winding of the electric machine. The winding is excited by an excitation voltage and is freewheeled over a freewheel angle. The method then includes varying the freewheel angle in response to changes in the excitation voltage. Additionally, a control system for an electric machine, and a product incorporating the control system and electric machine. | 10-07-2010 |
20100253264 | CONTROL OF AN ELECTRIC MACHINE - A method of controlling an electric machine that includes sequentially exciting and freewheeling a winding of the electric machine. The winding is excited in advance of zero-crossings of back emf in the winding by an advance angle, and the winding is freewheeled over a freewheel angle. The method then includes varying the advance angle and the freewheel angle in response to changes in the speed of the electric machine. Additionally, a control system for an electric machine, and a product incorporating the control system and electric machine. | 10-07-2010 |
20100253265 | CONTROL OF AN ELECTRIC MACHINE - A method of controlling an electric machine that includes sequentially exciting and freewheeling a winding of the electric machine. The winding is excited in advance of zero-crossings of back emf in the winding by an advance angle, and the winding is freewheeled over a freewheel angle. The method then includes varying the advance angle and the freewheel angle in response to changes in the voltage used to excite the winding. Additionally, a control system for an electric machine, and a product incorporating the control system and electric machine. | 10-07-2010 |
20100283418 | WIDE DYNAMIC RANGE MOTOR CONTROL SYSTEM AND METHOD - Methods and systems are provided for controlling a discretely commutated, multi-phase DC electric motor or actuator is used. The methods and systems may be used for motor or actuator applications where accurate, high resolution torques may be need over a relatively wide range. The methods and systems provide alternative means of selecting the magnitudes of currents to be driven into the motor windings. | 11-11-2010 |
20110101901 | Power control system for vehicle disk motor - A brushless D.C. disk motor has one or more disk rotor assemblies and pairs of stator assemblies for each rotor assembly. Each disk rotor assembly has a disk and a plurality of permanent magnets distributed along two or more circular paths in the disk inboard of the peripheral edge of the rotor. Each stator assembly has a plurality of pole pieces and coils distributed along a mounting plate in corresponding circular paths. The disk is rotatably mounted to a support member; while the stator sub-assemblies are fixed to the support member. The coils are selectively activated by commutated power control signals generated in response to a vehicle condition parameter, such as vehicle speed or disk motor load, to optimize power drain from the source of electrical power in accordance with the value of the vehicle condition parameter. | 05-05-2011 |
20110227520 | BRUSHLESS MOTOR CONTROLLER AND METHOD FOR CONTROLLING BRUSHLESS MOTOR - A brushless motor controller is disclosed. The brushless motor controller includes a control unit and a drive timing generation unit. The control unit detects a load state of the motor. The drive timing generation unit generates a normal energizing timing determined by the rotational position of the rotor. Also, the drive timing generation unit generates an advancing angle energizing timing determined by the rotational position of the rotor and advanced by a predetermined amount from the normal energizing timing, generates a delay amount that changes in correspondence with the detected load state of the motor and the rotational speed of the rotor, and generates a final advancing angle energizing timing delayed by the delay amount from the advancing angle energizing timing. | 09-22-2011 |
20110234132 | TORQUE BASED ELECTRONIC PULSE WIDTH MODULATION CONTROL SYSTEM FOR A SWITCHED RELUCTANCE MOTOR - Methods and systems of accelerating a brushless, DC electric motor based on torque may include determining a slope based on a maximum torque of the BLDC motor at a lower operating load and a maximum torque of the motor at a higher operating load, determining a period of the rotor based on sensor signals, and determining and applying a phase advance to a PWM pulse for a subsequent revolution of the rotor based on the period and the slope. In some embodiments, the amount of the phase advance is further based on maximum load optimum advance and/or maximum load speed. In some embodiments, a phase dwell is determined based on a positive torque zone and applied to the PWM pulse. In some embodiments, when the motor is operating below a given threshold, fixed-width PWM pulses are applied to subsequent revolutions of the rotor instead of phase-advanced PWM pulses. | 09-29-2011 |
20110254485 | CONTROL OF A BRUSHLESS MOTOR - A method of controlling a brushless motor that includes exciting a winding of the motor for a conduction period over each electrical half-cycle of the motor. The length of the conduction period is defined by a waveform that varies periodically with time. Additionally, a control system that implements the method, and a motor system that incorporates the control system. | 10-20-2011 |
20110254486 | CONTROL OF A BRUSHLESS MOTOR - A method of controlling a brushless motor that includes rectifying an alternating voltage to provide a rectified voltage, and exciting a winding of the motor with the rectified voltage. The winding is excited in advance of predetermined rotor positions by an advance period and is excited for a conduction period over each electrical half-cycle of the motor. The length the advance period and/or the conduction period is defined by a waveform that varies periodically with time. The method then includes adjusting the phase of the waveform relative to the alternating voltage in response to a change in one of motor speed and RMS value of the alternating voltage. Additionally, a control system that implements the method, and a motor system that incorporates the control system. | 10-20-2011 |
20110254487 | CONTROL OF A BRUSHLESS MOTOR - A method of controlling a brushless motor that includes exciting a winding of the motor in advance of predetermined rotor positions by an advance period. The length of the advance period is defined by a waveform that varies periodically with time. Additionally, a control system that implements the method, and a motor system that incorporates the control system. | 10-20-2011 |
20110254488 | CONTROL OF A BRUSHLESS PERMANENT-MAGNET MOTOR - A method of controlling a brushless permanent-magnet motor that includes rectifying an alternating voltage to provide a rectified voltage having a ripple of at least 50%, and exciting a winding of the motor with the rectified voltage. The winding is excited in advance of zero-crossings of back EMF by an advance period and is excited for a conduction period over each electrical half-cycle of the motor. The advance period and/or the conduction period are then adjusted in response to changes in the speed of the motor and/or the RMS value of the alternating voltage so as to maintain constant average power. Additionally, a control system that implements the method, and a motor system that incorporates the control system. | 10-20-2011 |
20110254489 | CONTROL OF A BRUSHLESS MOTOR - A method of controlling a brushless motor that includes exciting a winding of the motor until current in the winding exceeds a threshold, and then continuing to excite the winding for an overrun period. The length of the overrun period is adjusted in response to a change in one of time, motor speed and excitation voltage. Additionally, a control system that implements the method, and a motor system that incorporates the control system. | 10-20-2011 |
20110260664 | MOTOR CONTROLLING APPARATUS AND CONTROLLING METHOD OF THE SAME - Disclosed herein is a motor control apparatus and a method thereof. A phase error of the reference voltage output corresponding to a time delay caused by digital control may be compensated to stably control a motor, thereby improving the stability of a system. The phase compensation unit may be provided therein to convert a reference voltage of the synchronous coordinate system into a reference voltage of the stationary coordinate system when controlling the high-speed operation of the motor, thereby compensating a phase error of the reference voltage output, and allowing the motor to be operated at a high speed while maintaining its efficiency and reducing a volume of the compressor. | 10-27-2011 |
20110285333 | MOTOR DRIVE UNIT - A motor drive unit includes a position detection section configured to detect a rotor position by detecting a zero cross of a counter electromotive voltage during a de-energizing period to output a position detection signal, a current waveform generation section configured to generate, based on a torque command signal and the position detection signal, a current waveform which is to flow through the motor and includes the de-energizing period, an energizing control section configured to generate a control signal for controlling energizing of each of motor coils, and perform switching of an energizing phase of the motor based on the position detection signal, and a drive section configured to supply a current to each of the motor coils according to the control by the energizing control section, and the current waveform generation section changes a start timing of the de-energizing period according to a given control signal. | 11-24-2011 |
20110291599 | HIGH-SPEED SELF-CASCADED ELECTRIC MACHINE - An electric machine is disclosed comprising a first energy source, a second energy source, and a stator which comprises a first set of windings and a second set of windings. The electric machine has a rotor and a controller, the controller configured to control the first energy source to supply a first current to the first set of windings and control the second energy source to supply a second current to the second set of windings. The controller also detects an angular position of the rotor, detects the first current, detects the second current, and determines an optimum phase shift angle of the first current based on the angular position of the rotor, the first current, and the second current. The controller controls the first energy source based on the optimum phase shift angle to modify the first current supplied to the first set of windings. | 12-01-2011 |
20110291600 | ELECTROMECHANICAL DEVICE - An electromechanical device includes: a magnet coil; a PWM driving circuit; and a control unit, wherein the control unit performs a first control of setting an excitation interval which is an interval in which a PWM drive signal is supplied to the magnet coil and a second control of changing a duty ratio of the PWM drive signal, and wherein the control unit performs an advance angle control of putting the phase of the center of the excitation interval earlier than the phase in which a counter-electromotive force generated in the magnet coil has the maximum value in the first control, and increases the duty ratio of the PWM drive signal in the second control so that a gain is greater than 100% when the gain is 100% at the time of generating the PWM drive signal so as to have a sinusoidal shape. | 12-01-2011 |
20120081050 | CONTROL OF AN ELECTRICAL MACHINE - A method of controlling an electrical machine that includes commutating a phase winding of the electrical machine at a time T_COM( | 04-05-2012 |
20120126731 | BRUSHLESS ELECTRIC MOTOR OR GENERATOR IN SHELL CONSTRUCTION - The invention relates to an electric motor having at least two stators disposed coaxially to each other and a rotor, wherein each stator has 2*n poles, with n=1, 2, 3, . . . , wherein each stator has at least one common coil or winding for all poles, wherein each stator has a first and second partial shell, wherein each partial shell has a shell bottom and n poles, wherein each pole is formed as a tooth extending in axial direction or substantially in axial direction and beginning on the shell bottom, wherein with assembled partial shells of a stator the tooth or the teeth of the first partial shell is or are disposed in alternating manner in circumferential direction with the tooth or the teeth of the second partial shell, and wherein with assembled partial shells or a stator, the at least one coil) or winding is received between the partial shells. | 05-24-2012 |
20120169260 | Method and Device for Compensating for Load Factors in Permanently Excited Motors - The invention relates methods and devices for compensating for load factors in permanently excited motors, wherein the rotor position is determined from the inductivities of the phases. The methods and devices are characterized by a stabilization of the inductivity-based signals for the determination of the position of the rotor in permanently excited motors against load factors. To this end, advantageously current-dependent faults of the angular values determined during the operation of the motor are corrected. For this purpose, in order to correct the inductivity-based determination of the position of the rotor, in a measuring device either the phase currents are measured or the intermediate circuit current is captured. Furthermore, including at least one motor-specific characteristic value, at least one current-dependent correction value, which is determined from said characteristic value, is applied in a correction device against the inductivity-based signals, which result from the inductivity-based determination of the position of the rotor, of a device for determining the inductivities such that switch states, which are loaded with the correction value by a control device and thus are corrected, are present at a converter for actuating the motor. | 07-05-2012 |
20120176071 | THREE-PHASE AC MOTOR DRIVE CONTROL DEVICE - A three-phase AC motor drive control device has a phase command calculation unit. When driving a three-phase AC motor by a three-phase alternating square-wave voltage that is converted in power according to a switching command corresponding to one cycle of the electrical angle obtained from a rotational position of the rotor of the three-phase AC motor, the phase command calculation unit performs a torque feedback calculation based on a torque deviation, obtains, based on this calculation result, a phase command that is the lead or lag angle amount of a phase to be corrected, and stores and updates this obtained phase command. To generate the switching command, the three-phase AC motor drive control device outputs a pulse pattern to an inverter, the pulse pattern being shifted in phase by the amount of the phase command with respect to the basic phase of the three-phase alternating square-wave voltage uniquely determined with respect to the one cycle of the electrical angle. | 07-12-2012 |
20120293098 | METHOD AND APPARATUS FOR APPLYING A COMMUTATION ADVANCE AUTOMATICALLY IN A BRUSHLESS DC MOTOR - To achieve peak acoustic and power performance, the coil or applied current should be in phase or substantially aligned with the back electromotive force (back-EMF) voltage. However, there are generally phase differences between the applied current and back-EMF voltage that are induced by the impedance of the brushless DC motor (which can vary based on conditions, such as temperature and motor speed). Traditionally, compensation for these phase differences was provided manually and on an as-needed basis. Here, however, a system and method are provided that automatically perform a commutation advance by incrementally adjusting a drive signal over successive commutation cycles when the applied current and back-EMF voltage are misaligned. | 11-22-2012 |
20130009578 | ELECTRONIC CIRCUIT AND METHOD GENERATING ELECTRIC MOTOR DRIVE SIGNALS HAVING PHASE ADVANCES IN ACCORDANCE WITH A USER SELECTED RELATIONSHIP BETWEEN ROTATIONAL SPEED OF AN ELECTRIC MOTOR AND THE PHASE ADVANCES - An electronic circuit and an associated method used to drive an electric motor provide a user selectable relationship between rotational speed of the electric motor and phase advances of signals used to drive the electric motor. By selecting the relationship, efficiency of the electric motor drive can be improved. | 01-10-2013 |
20130015796 | CONVERTER FOR AN ELECTRICAL MACHINE, CONTROLLER AND METHOD FOR OPERATING A CONVERTER - A converter for an electrical machine having a plurality of phase lines for connecting the electrical machine. For each phase line the converter has a half-bridge with a first first semiconductor switch is configured to electrically connect at least one of the phase lines intermittently to a first supply line of the converter, and a second semiconductor switch configured to electrically connect the phase line intermittently to a second supply line of the converter. The converter is configured for operation in a first energy recovery limiting mode in which at least two of the first semiconductor switches are at least intermittently on simultaneously. | 01-17-2013 |
20130063060 | METHOD AND CONTROL DEVICE FOR OPERATING A THREE-PHASE BRUSHLESS DIRECT CURRENT MOTOR - A method and a control device operate a three-phase brushless direct current motor with phase windings that are fed by an inverter connected to a voltage source having a high potential and a low potential. The semiconductor switches of the inverter are arranged in a bridge circuit and are controlled such that current always flows through two phase windings during motor operation. The motor is operated with normal commutation when the rotational speed is greater than or equal to a minimum rotational speed, wherein the angles are shifted by 60°. During start-up operation, up to the minimum rotational speed, a high-potential-side commutation angle of a phase winding is shifted toward a low-potential-side commutation angle of the phase winding by an angle greater than 0° and less than or equal to 60° with respect to the normal commutation. | 03-14-2013 |
20130063061 | MOTOR DRIVE APPARATUS AND VEHICLE WITH THE SAME MOUNTED THEREON - A motor drive apparatus drives a motor generator using electric power provided from a DC power supply. The motor generator rotates a rotor provided with a permanent magnet using a current magnetic field generated by passing a drive current through a coil of a stator. The motor drive apparatus includes an inverter configured to convert DC electric power provided from the DC power supply into AC electric power for driving the motor generator. An ECU of the motor drive apparatus controls the inverter such that an offset current is superimposed on at least one phase of the coil of the stator and a temperature of the permanent magnet provided at the rotor is raised. | 03-14-2013 |
20130069572 | MOTOR CONTROL DEVICE - A motor control device includes an inverter circuit having switching elements on/off controlled according to a predetermined PWM signal pattern to convert an input direct current to three-phase alternating current supplied to drive an electric motor. A phase current of the motor is detected based on a detection of the input direct current and the PWM signal pattern. A PWM signal generation unit which generates a three-phase PWM signal pattern to enable detecting two-phase currents twice in synchronization with four time-points within a carrier wave period of the PWM signal respectively and so that the detection of current follows a magnetic pole position of the motor. A current differential unit supplies, as current differential values, differences between twice detected current values regarding the two phases respectively, and a magnetic pole position estimation unit estimates the magnetic pole position of the motor based on the current differential values. | 03-21-2013 |
20130076282 | LEAD ANGLE CONTROL CIRCUIT, AND MOTOR DRIVE DEVICE AND MOTOR DRIVE SYSTEM USING THE LEAD ANGLE CONTROL CIRCUIT - According to an embodiment, a lead angle control circuit is configured to control a lead angle of a motor drive signal driving a motor. The lead angle control circuit includes a control signal generating section, an upper limit voltage limit section and a lead angle data generating section. The lead angle data generating section is configured to generate a relationship line between lead angle data representing the lead angle and a lead angle control signal, and configured to generate the lead angle data based on the relationship line and the lead angle control signal. The relationship line reaches an upper limit point from a lower limit point through a changing point. In the changing point, the lead angle control signal is a changing point voltage, and the lead angle data represents the lead angle corresponding to a lead angle setting voltage. | 03-28-2013 |
20130113400 | PHASE-SHIFT DETECTION DEVICE, MOTOR DRIVE DEVICE, BRUSHLESS MOTOR, AND PHASE-SHIFT DETECTION METHOD - A phase-shift detection circuit detects a phase shift in motor driving, using pulse-shaped position detection signal Rd and measurement signal Ms. The position detection signal is based on sensor signal Hs from a position sensor disposed in a motor. The measurement signal is based on the induced voltage from windings. The phase-shift detection circuit includes a level difference calculator and a phase-shift calculator. The level difference calculator calculates a level difference between the level of measurement signal Ms at a rising timing of position detection signal Rd and the level of measurement signal Ms at a falling timing thereof. The phase-shift calculator calculates the amount of phase shifts based on the level difference. | 05-09-2013 |
20130119904 | METHOD AND SYSTEM FOR CONTROLLING MOTOR - A method for controlling a motor is provided. The method comprises obtaining electrical signals of the motor with a signal unit, the electrical signals comprising a motor torque and an angular velocity, calculating a voltage phase angle of a voltage vector with a calculating component, wherein a command torque, the motor torque, the angular velocity and a voltage amplitude of the voltage vector are inputs of the calculating component, and wherein the voltage phase angle is a variable and the voltage amplitude is a constant. The method further comprises modulating the voltage phase angle and the voltage amplitude to a switching signal for controlling an inverter; converting a direct current voltage to the voltage vector according to the switching signal, and applying the voltage vector to the motor. | 05-16-2013 |
20130127384 | METHOD OF CONTROLLING A BRUSHLESS MOTOR - A method of controlling a brushless motor that includes storing a lookup table of control values, periodically obtaining a speed-adjusted control value, and exciting a phase winding of the motor. The speed-adjusted control value is then used to define the phase and/or length of excitation. Obtaining the speed-adjusted control value includes measuring the speed of the motor, increasing or decreasing a speed-adjust variable in the event that the measured speed is greater or less than a threshold, selecting a control value from the lookup table using the measured speed, and adjusting the selected control value using the speed-adjust variable to obtain the speed-adjusted control value. Additionally, a control system that implements the method, and a motor assembly that incorporates the brushless motor and the control system. | 05-23-2013 |
20130134915 | CONTROL METHOD OF HYBRID VEHICLE - A control method of a vehicle having a motor according to an exemplary embodiment of the present invention can include confirming that a speed of the motor is not 0 and an output torque thereof is 0 in a condition that the vehicle is being operated, confirming that a voltage of the motor converges to a regular value, and accumulating control data for the motor and processing the control data to calculate an offset value of a resolver. Accordingly, the control method of a vehicle effectively determines whether the offset of the resolver is to be compensated without affecting the drivability of the vehicle. | 05-30-2013 |
20130141024 | METHOD AND SYSTEM FOR CONTROLLING A PERMANENT MAGNET SYNCHRONOUS MOTOR - A method is disclosed for controlling a synchronous motor by determining a rotor position of the synchronous motor based on estimating a flux linkage. The method includes applying a voltage of a stator winding of the motor to a transfer function. The transfer function includes an S-domain integration operation and an error correction variable. An output of the transfer function is processed to compensate for the error correction variable introduced in the transfer function. An estimated flux linkage is generated and an angle of the rotor position is computed based on the flux linkage. The computed rotor position is input to a controller for controlling a position or speed of the motor. | 06-06-2013 |
20130187582 | CONTROL DEVICE - A control device that controls an electric motor drive device including a DC/AC conversion section that converts a DC voltage into an AC voltage using a detected angle detected by a resolver provided in an AC electric motor to supply the resulting AC voltage to the AC electric motor. The control device includes a correction information acquisition section that acquires first correction information on the basis of the rotational speed, and that acquires the second correction information on the basis of the modulation rate at the angle acquisition time point in the case where the rotational speed at the angle acquisition time point is less than the rotational speed threshold. A detected angle correction section corrects the detected angle on the basis of the correction information acquired by the correction information acquisition section. | 07-25-2013 |
20130249456 | MOTOR CONTROL CIRCUIT - To provide a motor control circuit that variably controls the speed of a motor, in which an appropriate advance angle value corresponding to the speed of the motor that is set can be automatically set. The motor control circuit according to the present invention includes an advance angle setting means that adds a reference advance angle value to an advance angle correction value obtained by multiplying a proportional coefficient by a correction amount and outputs an advance angle setting signal, and an advance angle setting correction means that uses a ratio of a correction reference period relative to a period of a reference signal input from the outside as a correction amount and corrects the reference advance angle value by an advance angle correction value obtained by multiplying the correction amount by a predetermined proportional coefficient of the advance angle setting means. | 09-26-2013 |
20130314011 | METHODS, SYSTEMS AND APPARATUS FOR COMPUTING A VOLTAGE ADVANCE USED IN CONTROLLING OPERATION OF AN ELECTRIC MACHINE - Embodiments of the present disclosure relate to methods, systems and apparatus for computing a voltage advance used in controlling operation of an electric machine. | 11-28-2013 |
20130320892 | MOTOR DRIVE CIRCUIT - A motor drive circuit includes: an advance angle setting correcting device having a correction reference cycle according to a reference advance angle count value, in which a correction amount is calculated as a ratio of the correction reference cycle to a cycle of a detection signal indicating a detected frequency proportional to a motor rotation speed, and in which an advance angle setting signal is obtained by multiplying the correction amount by a proportionality factor; and an advance angle setting device in which the advance angle correction value is added to the reference advance angle count value thereby outputting an advance angle setting signal, wherein a drive command signal containing a rotation speed information based on a target rotation speed is externally fed, the motor rotation speed is variably controlled in response to the drive command signal, and the detection signal is fed from a rotation speed detecting device. | 12-05-2013 |
20140035494 | MOTOR DRIVING APPARATUS - There is provided a motor driving apparatus capable of optimizing driving efficiency by adjusting a phase difference between current applied to a motor and voltage detected from the motor and performing the adjustment of the phase difference when a pulse width modulation (PWM) signal has a set duty. The motor driving apparatus includes: a driving unit driving a motor according to driving control; a driving controlling unit controlling the driving of the motor by the driving unit, based on an adjusted phase correction signal; and a phase correcting unit correcting a phase difference between a motor detection signal having motor rotation speed information and a current detection signal having detection information regarding current flowing in the motor when a duty of a pulse width modulation (PWM) signal driving the motor satisfies a preset reference duty, and providing the phase correction signal to the driving controlling unit. | 02-06-2014 |
20140049200 | CONTROL DEVICE AND STEPPING MOTOR CONTROL METHOD - A motor control device includes a drive unit configured to rotate a rotor by supplying a drive signal with periodical changes to a coil; a detection unit configured to output a signal that is changed in association with a rotation of the rotor; and a control unit configured to control the drive signal supplied by the drive unit in accordance with the signal output from the detection unit, wherein the control unit performs a first control and a second control so as to achieve a target rotation velocity of the rotor, and wherein the first control is a control for controlling the rotation velocity of the rotor by controlling an advance angle of the drive signal with periodical changes and the second control is a control for controlling the rotation velocity of the rotor by controlling a voltage for supplying the drive signal. | 02-20-2014 |
20140055065 | PMSM FIELD WEAKING FOR APPLIANCE MOTORS - An electric motor in an appliance and a method of controlling the motor to achieve speeds greater than a base speed of the motor is provided. To achieve speeds above the base speed of the motor, field weakening can be implemented by applying a field weakening angle to a phase advance angle between a desired stator flux and a rotor flux. The field weakening angle can be based on the current speed of the motor. The field weakening angle can be a fixed angle and can be determined by comparing the current speed of the motor with a predetermined threshold. In addition, the magnitude of the electrical signal applied to the motor can be adjusted during field weakening based on a desired speed of the motor where the electrical signal can be a voltage. | 02-27-2014 |
20140062360 | MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD - A motor control device includes an energization pattern output portion and an inverter circuit. The energization pattern output portion cyclically outputs a plurality of energization patterns. The inverter circuit selectively connects respective coils provided in a motor to a rectifier circuit according to the output energization pattern. The energization pattern output portion delays the output timing of the energization pattern according to a rotation speed of the motor. | 03-06-2014 |
20140152215 | ELECTRIC DRIVE UNIT - An electric drive unit includes an electric motor, an inverter supplying electricity to the motor, a continuous current stage supplying electricity to the inverter, a controller including a modulator for driving the inverter controlled by a first digital signal representing the amplitude of the phase voltages to be applied to the motor and by a second digital signal representing the electrical frequency of the phase voltages. An analogue/digital stage calculates the optimum value of the advance angle (δopt) of the voltage applied to the motor relative to the counter-electromotive force (“CEMF”) as a linear function of the peak value of the phase current and an analogue/digital stage for measuring the angle (100 act) between the voltage applied to the electric motor and the phase current. The controller is programmed for estimating the angle (γact) between the phase current and the CEMF as the difference between δopt and φact. | 06-05-2014 |
20140167664 | Method and Device for Synchronizing a Rotation Speed of a Rotor with a Rotation Field of a Stator - A method for synchronizing a rotation speed of a permanently excited rotor of an electric motor with a frequency of a rotation field of a sensorless commutated stator of the electric motor during a run-up procedure of the electric motor includes determining a phase position of the rotation field and a phase position of a countervoltage that is induced by the rotor in the stator in order to obtain a phase offset between the rotation field and the countervoltage. The method further includes adjusting a prevailing amplitude of one component of the rotation field using the phase offset to synchronize the rotation speed with the frequency. The amplitude of the component is increased if the rotor is lagging behind the rotation field or the amplitude of the component is reduced if the rotor is running ahead of the rotation field. | 06-19-2014 |
20140176031 | BACK ELECTROMOTIVE FORCE DETECTION CIRCUIT AND MOTOR DRIVING CONTROL APPARATUS USING THE SAME - There are provided a back electromotive force detection circuit and a motor driving control apparatus using the same. The back electromotive force detection circuit includes a duty determining unit and a delay compensation unit. The duty determining unit outputs a differential level according to a duty of a driving control signal of a motor. The delay compensation unit performs delay compensation differently on each differential level to compensate for a delay in back electromotive force of the motor regardless of a variation in a duty of the driving control signal. | 06-26-2014 |
20140203743 | DRIVE APPARATUS AND DRIVE METHOD FOR BRUSHLESS MOTOR - The present invention relates to a drive apparatus that drives a brushless motor with a square wave, and relates to a drive method thereof. The drive apparatus limits a duty cycle of once in N times of pulse width modulation periods so that the duty cycle does not fall below a set value, and increases the N value according to a rotation speed of the brushless motor, and then obtains position information in a period in which the duty cycle is limited to the predetermined duty cycle. Then, when the rotation speed cannot be decreased to a target rotation speed even when an average duty cycle is decreased to a limit, electric angles of a switching period of an energization pattern are switched from 60 degrees to 120 degrees. | 07-24-2014 |
20140239860 | ELECTRIC MOTOR FEEDFORWARD CONTROL UTILIZING DYNAMIC MOTOR MODEL - A motor control system comprising a motor configured to operate at a rotational velocity and a control module in communication with the motor is provided. The control module is configured to receive a torque command indicating a desired amount of torque to be generated by the motor, obtain a rotational velocity of the motor, receive a desired phase advance angle for driving the motor; and generate a voltage command indicating a voltage magnitude to be applied to the motor based on the rotational velocity of the motor, the motor torque command, and the desired phase advance angle by using a plurality of dynamic inverse motor model equations that (i) allow the desired phase advance angle to exceed an impedance angle of the motor and (ii) specify that the voltage magnitude is a function of a voltage magnitude of a previous voltage command. | 08-28-2014 |
20140340011 | HIGH EFFICIENCY PERMANENT MAGNET MACHINE - The present invention is a high efficiency permanent magnet machine capable of maintaining high power density. The machine is operable over a wide range of power output. The improved efficiency is due in part to copper wires with a current density lower than traditional designs and larger permanent magnets coupled with a large air gap. In a certain embodiment wide stator teeth are used to provide additional improved efficiency through significantly reducing magnetic saturation resulting in lower current. The machine also has a much smaller torque angle than that in traditional design at rated load and thus has a higher overload handling capability and improved efficiency. In addition, when the machine is used as a motor, an adaptive phase lag compensation scheme helps the sensorless field oriented control (FOC) scheme to perform more accurately. | 11-20-2014 |
20140368141 | METHOD OF CONTROLLING A BRUSHLESS PERMANENT-MAGNET MOTOR - A method of controlling a brushless permanent-magnet motor. The method includes commutating a winding of the motor at times relative to zero-crossings of back EMF in the winding. Commutation is then advanced when the motor operates over a first speed range, and commutation is retarded when the motor operates over a second speed range higher than that of the first speed range. | 12-18-2014 |
20150357947 | MOTOR DRIVE DEVICE AND BRUSHLESS MOTOR EQUIPPED WITH SAME, AND AIR CONDITIONER - A motor drive device of the present invention includes a speed signal generator that generates a rotation speed signal indicating rotation speed; a PWM signal generator that acts on the power switch unit to control the power switch unit so as to generate coil-applied voltage; and a phase advance information generator that has characteristic curve information representing changes of rotation speed of and load on a brushless motor, preliminarily set. The phase advance information generator generates phase advance information according to the load characteristic curve to variably control the phase advance (the phase of voltage applied to the coils of the brushless motor, relative to the induced voltage phase) according to the load characteristic curve. | 12-10-2015 |
20150365027 | METHOD AND SYSTEM FOR DETERMINING AN OFFSET BETWEEN A DETECTOR AND A POINT ON A MOTOR - The present disclosure relates to a method of determining an offset between a detector and a point on a motor, the movement of the point on the motor being impeded in at least one direction. In particular, this disclosure relates to a method of determining a commutation offset for an encoder that works in conjunction with a synchronous motor. The commutation offset is an offset between the detector and the north pole of a permanent magnet within the motor. The method comprises setting a test value for the offset, causing a displacement of the detector based on the test value and measuring that displacement. The method further comprises repeatedly increasing the test value, and causing and measuring a displacement for each so increased test value until it is determined that the test value has crossed a threshold. | 12-17-2015 |
20160056746 | APPARATUS FOR DRIVING SRM AND CONTROLLING METHOD THEREOF - There is provided an apparatus for driving a switched reluctance motor (SRM), the apparatus including a motor driver for applying an input voltage to each phase of the SRM to drive the SRM through a switching operation, and a processor for controlling a driving state of the SRM through control of the switching operation based on a rotational speed of the SRM. | 02-25-2016 |
20160118917 | CONTROL FOR PULSE WIDTH MODULATED DRIVEN MOTORS - A method for assisting in operating a PWM driven motor comprising for at least one phase of the PWM driven motor: generating a pulse width modulated phase voltage scheme according to a desired phase profile with a base scaling factor, by time multiplexing a first pulse and at least a further pulse within a pulse width modulation period of the phase the first pulse having a pulse width according to a first profile, for that rotor position, multiplied with a first scaling factor, the first profile being in phase with the desired phase profile, and the at least a further pulse having a pulse width corresponds with a further profile, for that rotor position, multiplied with a further scaling factor, the further profile being not in phase with the desired phase profile, whereby the first pulse and the at least one further pulse are positioned within the pulse width modulation period of the phase in at least partially non-overlapping way. | 04-28-2016 |
20160118926 | MOTOR DRIVING APPARATUS AND CLEANER MOTOR APPARATUS USING THE SAME - There is provided a motor driving apparatus comprising: a timer configured to output a time information; and a control unit configured to decrease a speed of a motor, after determining, based on the time information, that a driving time of the motor has elapsed for a predetermined period of time. | 04-28-2016 |
20160164442 | METHOD FOR ASCERTAINING A COMMUTATION ANGLE - In a method for ascertaining a commutation angle in a permanently excited synchronous motor, the commutation angle indicates the position of a rotor within a magnetic period of the synchronous motor and is used for the field-oriented energization of the synchronous motor. The method includes the steps of specifying a random commutation angle as starting point of the method, impressing a current vector into the motor using the initially randomly specified commutation angle, ascertaining a positional deviation of the rotor, varying the commutation angle used for the energization with the aid of a controller structure in order to counteract the ascertained positional deviation, so that the commutation angle that comes about after a stabilizing period corresponds to the actual commutation angle of the rotor, an initial speed of the rotor being taken into account when ascertaining the positional deviation of the rotor. | 06-09-2016 |
20160202654 | MOTOR CONTROL DEVICE, IMAGE FORMING APPARATUS, MOTOR CONTROL METHOD, METHOD FOR CONTROLLING IMAGE FORMING APPARATUS | 07-14-2016 |
20190149070 | DRIVING CIRCUIT AND DRIVING METHOD FOR DC MOTOR | 05-16-2019 |