Entries |
Document | Title | Date |
20080231218 | APPARATUS AND METHOD OF DRIVING MOTOR, AND DRIVE APPARATUS USING THE SAME - An open-loop driving method of a spindle motor includes determining of whether open-loop driving conditions for the spindle motor are met, and adjusting widths of driving pulses applied to the spindle motor according to a predictive speed variation of the spindle motor when it is determined that the open-loop driving conditions for the spindle motor are met. | 09-25-2008 |
20080278101 | CONTROL SYSTEMS AND METHODS FOR PERMANENT MAGNET ROTATING MACHINES - Systems and methods for controlling a rotating electromagnetic machine. The rotating machine, such as a permanent magnet motor or hybrid switched reluctance motor, includes a stator having a plurality of phase windings and a rotor that rotates relative to the stator. A drive is connected to the phase windings for energizing the windings. A controller outputs a control signal to the drive in response to inputs of demanded torque, rotor position and/or speed. Control methods include calculating a scaled torque demand from the received torque demand to obtain substantially constant torque over a range of motor speeds, calculating an optimal dr-axis injection current using a cost function and a starting method that switches from speed control mode to torque control mode at a predetermined rotor speed or at predetermined start-up timing intervals. | 11-13-2008 |
20080297081 | Brushless motor driving apparatus - In a brushless motor driving apparatus, a drive circuit arranged to rotate a magnet rotor by sequentially switching energization of coils of phases, detect a position of the magnet rotor based on back electromotive force voltage generated in each phase coil, and control the energization of each phase coil based on the detected position. The drive circuit is configured to energize each phase under duty control and, before the back electromotive force control, perform initial setting twice sequentially for sweeping energization duty with respect to each phase coil to set the magnet rotor in a predetermined initial position. | 12-04-2008 |
20080297082 | DRIVE CONTROL DEVICE OF MOTOR AND A METHOD OF START-UP - A drive control device of motor capable of starting up even a motor of such a type that the polarity of induced voltage does not switch every 180° of electrical angle or the polarity, positive or negative, does not occur with accuracy without causing a reverse rotation is provided. In a start-up control of motor, the following operation is performed: a current is passed through any coils in two phases, and the polarity of voltage induced in the non-conducting phase is detected. A conducting phase at start-up is determined based on the detected polarity of induced voltage. The average value of induced voltages in non-conducting phase detected with respect to the coils in respective phases is determined. The average value and the detected induced voltages are compared with each other, and relative polarities are determined from the magnitude relation with the average value to determine a conducting phase at start-up. | 12-04-2008 |
20090167219 | Motor Drive Circuit, Fan Motor, Electronic Device, and Notebook Personal Computer - A motor drive circuit includes: a pulse generation circuit configured to generate a pulse signal whose duty ratio of one logic level is increased as a drive voltage is increased in accordance with a target rotation speed of a motor; and a drive control circuit that configured to drive the motor with the drive voltage using a duty ratio higher than the duty ratio of the pulse signal when the motor starts rotating from the stopped state, and configured to drive the motor with the drive voltage during a period when the pulse signal is at the one logic level after the motor starts rotating, based on a rotation signal corresponding to the rotation of the motor. | 07-02-2009 |
20090167220 | Motor control apparatus, vehicle fan drive apparatus, and motor control method - A motor control apparatus has a start control section. When the motor control apparatus receives a motor start command from a host control unit when a motor is in a stop state or a low-speed rotating state where a sensorless control cannot be applied, the control section starts the motor that rotates a vehicle fan by a forced commutation which supplies a pseudo sinusoidal drive signal caused by a complementary PWM control. Thereafter, the motor control apparatus switches over to a sensorless control using a rectangular wave drive signal at an energization angle of lower than 180°. | 07-02-2009 |
20090174350 | Control system for multiphase electric rotating machine - A control system controls a multiphase rotating machine by a 120° energization process and a PWM process. In the 120° energization process, respective ones of switching elements of a high side arm and switching elements of a low side arm of a power conversion circuit are turned on. In the PWM process, the switching elements of the power conversion circuit turn on/off so that two phases that are connected to the switching elements that are in the on-state are alternately rendered conductive to the high potential side input terminal and the low potential side input terminal of the power conversion circuit. | 07-09-2009 |
20090189556 | MOTOR DRIVE DEVICE AND SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - The disclosed invention achieves a significant reduction in the noise and vibration of a brushless motor from a startup up to the number of steady revolutions. To drive the brushless motor from stop up to the number of steady revolutions, when the arithmetic sequencer detects a rise of a clock signal CARYCLK, current control arithmetic is executed. On detecting a fall of the clock signal, the arithmetic sequence determines whether a division control signal DIVCNT has changed. If this signal has changed, soft switch arithmetic is executed. When the division control signal has not changed or after the completion of soft switching arithmetic, the arithmetic sequencer determines whether a rise of a mask signal MASK has occurred during one cycle of the PWM carrier signal CARYCLK. If a rise of the mask signal has not occurred, the operation returns to the first step. If a rise of the mask signal has occurred, PLL control arithmetic is executed, then the operation returns to the first step. | 07-30-2009 |
20090195198 | MOTOR AND METHOD FOR STARTING THE SAME - The method for initially starting the motor improves the reliability to the start of the motor. In particular, even though the external load is at more than a predetermined level, a rotor located at an arbitrary angle can be aligned to an accurate initial position. Moreover, it can prevent the damage of the motor or the damage of the electronic device where the motor is installed. In order to initially align the rotor of the motor, a position on a stationary coordinate system, to which an alignment current of a rotation magnetic field is applied, is varied. | 08-06-2009 |
20090200971 | DRIVE SYSTEM OF SYNCHRONOUS MOTOR - A drive system of a permanent magnet motor is constituted of a mode switching trigger generator which monitors a state of a permanent magnet motor and issues a mode switching trigger, a conduction mode determining unit which receives the mode switching trigger and switches the mode of the permanent magnet motor, and a PWM generator which outputs a PWM signal to an inverter in accordance with the output of the conduction mode determining unit. The mode switching trigger is generated on condition that the speed electromotive force of the permanent magnet motor exceeds a constant or variable threshold value. | 08-13-2009 |
20090218970 | Starting and Generating Multiplying Cotnrol System,and Method for Using the System, and an Electromotion Mixed Dynamic Vehicle - A starting and generating multiplying control system and a method for using the system. The system comprises a motor drive controller, a motor and a magneto-electric change-over switch. The motor comprises a starting winding and a motor assistant winding. Both outputs of the starting winding and the motor assistant winding are connected with the motor drive controller through the magneto-electric change-over switch respectively. When the magneto-electric change-over switch turns on the starting winding and the motor drive controller, the start winding makes the motor started. After exceeding the rated speed, the magneto electric change-over switch turns on the motor assistant winding and the motor drive controller, the motor assistant winding generates motor assistant. And an electromotion mixed dynamic vehicle uses the above system and method. | 09-03-2009 |
20090237020 | Driving device for synchronous motors - A driving device for three-phase alternating current synchronous motors controls state of charge of a capacitor, and a three-phase alternating current synchronous motor is started prior to the operation of the synchronous motor. Prior to control by a normal operation control unit, the state of charge of the capacitor is controlled by an initial state control unit and a synchronization control unit. Passage of large current through the capacitor immediately after the start of the execution of control by the normal operation control unit is suppressed. As a result, the operating state of the three-phase alternating current synchronous motor does not become unstable and the execution of control by the normal operation control unit can be started with the output voltage of the capacitor stable. | 09-24-2009 |
20090251083 | Control Apparatus for AC Rotary Machine - A control controls starting of an AC rotary machine by calculating a resistance drop component, corresponding to a resistance drop of the AC rotary machine, based on a detection current, and adjusts angular frequency of an AC output voltage based on subtracting the resistance drop component from a voltage command, and, simultaneously, adjusting amplitude of the AC output voltage so that amplitude of an AC phase current may change in conformity with a predetermined function. | 10-08-2009 |
20090251084 | ELECTRONICALLY COMMUTATED MOTOR - An electronically commutated motor (ECM | 10-08-2009 |
20090289586 | APPARATUS FOR ESTIMATING ROTOR POSITION OF BRUSHLESS MOTORS AND SYSTEM AND METHOD FOR CONTROLLING START-UP OF BRUSHLESS MOTORS - An apparatus for estimating rotor position for brushless motors capable of accurately estimating rotor position is provided. The apparatus may be used as a start-up system for brushless motors. The apparatus performs accurate estimation even though power source voltage fluctuates, and is able to provide compact configuration. The apparatus supplies voltage to the coils respectively. In each supplying period, the apparatus counts voltage supply period of time until current value reaches to a current threshold value. Since a coil indicative of rotor stop position is prone to be magnetically saturated. The apparatus estimates the rotor stop position based on the voltage supply periods. Then, the apparatus starts a switching sequence based on the rotor stop position. | 11-26-2009 |
20090289587 | APPARATUS FOR ESTIMATING ROTOR POSITION OF BRUSHLESS MOTORS AND SYSTEM AND METHOD FOR CONTROLLING START-UP OF BRUSHLESS MOTORS - An apparatus for estimating rotor position for brushless motors capable of accurately estimating rotor position even though power source voltage fluctuates is provided. First, the power source voltage is detected, and voltage is supplied only for a certain period of time and a current response is detected. The current detection value is multiplied by the ratio of a reference voltage to the power source voltage detected to correct the current detection value. Specifically, the peak current detection value is corrected upwardly or downwardly in each direction. A voltage supplying direction in which the current detection value is maximized is searched for to estimate the rotor position and a brushless motor is started. | 11-26-2009 |
20090322265 | AC MOTOR DRIVING APPARATUS AND CONTROL METHOD - Provided is an AC motor driving apparatus and an AC motor control method capable of utilizing the conventional PWM system as-is even in an ultra-compact AC motor having an extremely few turns of exciting coil and preventing occurring of vibration and noise. | 12-31-2009 |
20090322266 | Systems and Methods for Controlling a DC Motor - Various systems and methods for controlling DC motors are disclosed herein. For example, one method provides for controlling a polyphase, brushless DC motor. The method includes providing a DC motor that has a plurality of phases. Such a DC motor operates by inducing a current in the plurality of phases in accordance with a plurality of commutation states. In the example, six commutation states are discussed, but fewer than or more than six commutation states may exist. The method further includes initializing a count, inducing a current in the plurality of phases in accordance with a first commutation state, and incrementing the count until the current achieves a threshold in the first commutation state. Then, a current is induced in the plurality of phases in accordance with a second commutation state, and the count is decremented until the current achieves the threshold in the second commutation state. The sign bit of the count is stored, and a desired initial commutation state is determined based at least in part on the sign bit of the count. | 12-31-2009 |
20100019707 | MOTOR DRIVING SYSTEM AND METHOD FOR STARTING A MOTOR - A method and system is provided for starting a motor which is useful, among other things, is useful for motors under unknown or variable load/inertia conditions. If a first attempt to start the motor using a first frequency ramp-up rate fails, a subsequent start attempt may be performed at a decreased frequency ramp-up rate. Iteration may be performed until starting of the motor is successfully achieved. | 01-28-2010 |
20100026219 | MOTOR DRIVE CIRCUIT WITH SHORT STARTUP TIME - An H-bridge circuit is connected to a coil of the vibration motor that is to be driven. A comparator receives Hall signals indicating position information of a rotor of the vibration motor, and converts to an FG signal. A pulse width modulator generates a pulse-modulated pulse signal specifying energization time of the coil of the vibration motor. The pulse width modulator, in a first mode, after commencing start-up of the vibration motor, sets a duty ratio of the pulse signal to 100%, and after that, switches the duty ratio to a predetermined value in accordance with rotational frequency of the motor. In a second mode, the duty ratio of the pulse signal continues to be set to 100%. In a third mode, frequency and the duty ratio of the pulse signal are set based on a control signal of a pulse form inputted from outside. The control signal is used also in switching mode. | 02-04-2010 |
20100052584 | INCREASING TAPE VELOCITY BY DYNAMIC SWITCHING - An apparatus for controlling an electric motor is provided. A plurality of switches is provided for controlling a direction of current through motor coils of the electric motor. A brushless motor control circuit is connected to each of the plurality of switches. Responsive to a request to adjust one of an angular velocity and an angular acceleration of the electric motor, the plurality of switches are activated to place the motor coils in a predetermined configuration to maximize torque or reduce a total back electromotive force (BEMF) from the motor coils. | 03-04-2010 |
20100060217 | Brushless motor starting method and control device - For starting a three-phase four-pole sensorless brushless motor including a stator having three-phase coils and a four-pole magnet rotor provided in correspondence with the stator, it is arranged to energize any two-phase coils of the three-phase coils in a predetermined energizing sequence; monitor magnetic flux generated in the other one-phase coil; and switch the two-phase coils according to a specific case where the monitored magnetic flux changes to a positive or negative side and in mid-course further changes to an opposite side. For instance, when the specific case is a case where the magnetic flux monitored by first energization changes to the negative side and in mid-course further changes to the positive side, the first energization is immediately stopped and switched to fourth energization by skipping two energizations in the predetermined energizing sequence. | 03-11-2010 |
20100097020 | DRIVE APPARATUS - A drive apparatus includes a magnet rotor having a plurality of magnetic poles that are magnetized, a stator having a magnetic pole portion that opposes each pole of the magnet rotor, a coil configured to excite the magnetic pole portion, a position detector configured to detect a position of the magnet rotor, a first driver configured to switch an electrification state of the coil in accordance with a preset time interval, a second driver configured to switch an electrification state of the coil in accordance with an output of the position detector, and a controller configured to select the first driver when the output of the position detector is less than a first threshold, and to select the second driver when the output of the position detector is equal to or larger than the first threshold. | 04-22-2010 |
20100117572 | BRUSHLESS MOTOR CONTROL DEVICE AND BRUSHLESS MOTOR CONTROL METHOD - A brushless motor control device according to the present invention drives a brushless motor including a stator having coils of three phases U, V, and W and a neutral line, and a sub coil provided in any one phase of the phases U, V, and W, for detecting a voltage induced in the coil of the one phase, and the brushless motor control device carries out a conduction control function, for the respective phase coils of the brushless motor, that performs a 120° conduction when a rotation speed of the brushless motor is lower than or equal to a predetermined rotation speed, and that performs a 180° conduction when the rotation speed is higher than or equal to the predetermined rotation speed, and the brushless motor control device includes a motor control unit that controls the brushless motor based on information of the rotor stop position when activating the brushless motor, controls the brushless motor based on the first rotor position information when in the 120° conduction, and controls the brushless motor based on the second rotor position information when in the 180° conduction. | 05-13-2010 |
20100127647 | ELECTRIC ENERGY STORAGE INTEGRATED WITHIN OR PROXIMATE TO ELECTRICALLY DRIVEN FLIGHT CONTROL ACTUATORS - An apparatus for use with a flight control actuator and method for assembling the same is provided. The apparatus includes a motor drive system and a control unit. The motor drive system includes a capacitor-based energy storage configured to store and provide energy within or proximate to the actuator. The control unit is coupled to the motor drive system and is configured to facilitate managing power within or proximate to the actuator. | 05-27-2010 |
20100127648 | PHASE CURRENT ESTIMATION DEVICE OF MOTOR AND MAGNETIC POLE POSITION ESTIMATION DEVICE OF MOTOR - A phase current estimation device of a motor includes: an inverter which uses a pulse width modulation signal to sequentially commutate an electric flow to a motor of a three-phase alternating current; a pulse width modulation signal generation unit generating the pulse width modulation signal from a carrier signal; a control unit performing a startup control and a self control of the motor using the inverter; a direct current sensor detecting a direct current of the inverter; and a phase current estimation unit estimating a phase current based on the direct current detected by the direct current sensor. | 05-27-2010 |
20100148710 | APPARATUS AND METHOD FOR CONTROLLING A BLDC MOTOR - An apparatus for controlling a BLDC motor includes a frequency controller configured to increase frequency of a drive signal that is applied to the motor to reach a first target speed at a relatively low speed region. The apparatus also includes a sensorless controller configured to observe location of a rotor of the motor at the low speed region, and provide a control signal to the motor by comparing a command speed with an estimated speed based on detection of a voltage and/or a current of the motor at a relatively high speed region. Further, the apparatus includes a control unit configured to select one of the frequency controller and the sensorless controller based on the speed of the motor. | 06-17-2010 |
20100171452 | MOTOR CONTROL CIRCUIT, MOTOR SYSTEM, AND MOTOR CONTROL METHOD - In a motor control circuit which controls energization of a coil on the basis of a detection result of a rotor position, control is performed so that continuous rotation of the rotor by inertia is suppressed, rotation is stopped quickly, and reverse rotation of the rotor is prevented. When an external control signal CTL is changed from L to H, the normal rotation control is switched to reverse rotation control, and a reverse brake state is effected. When motor rotation speed is monitored and reduced to a set rotation speed, a brake control signal SPSB is changed from L to H, and a short brake state is effected. However, the motor continues to be rotated by its own inertia, and a position detection signal HALL is changed. Thus, reverse brake control is temporarily performed (only during a time period corresponding to a pulse width T | 07-08-2010 |
20100181950 | FAN AND CONTROLLING DEVICE THEREOF - A fan is electrically connected with an alternating current power source. The fan includes an impeller, a motor and a controlling device. The controlling device includes a commutating unit, a magnetic detecting unit, a first switching unit, a second switching unit, a third switching unit and a controlling unit. The alternating current power source is electrically connected with the first switching unit, the second switching unit and the commutating unit, respectively. The commutating unit is electrically connected with the magnetic detecting unit and the controlling unit, respectively. The controlling unit is electrically connected with the third switching unit and the first switching unit, respectively. The third switching unit is electrically connected with the second switching unit. The first switching unit and the second switching unit are electrically connected with the motor, respectively. A controlling device of the fan is also disclosed. | 07-22-2010 |
20100181951 | MOTOR DRIVE CIRCUIT - The invention provides a motor with a low speed start function and a soft start function. The motor includes a first pulse generation circuit generating a first pulse signal of which a first duty ratio of one of logic levels is increased as a drive voltage corresponding the target rotation speed of the motor is increased, a second pulse generation circuit generating a second pulse signal of which a second duty ratio of one of logic levels is different from the first duty ratio, and a drive control circuit supplying a drive current to a motor coil at the second duty ratio in order to start the rotation of the motor that is stopping and supplying a drive current to the motor coil at the first duty ratio after a predetermined time passes from the start of the rotation of the motor in response to a rotation signal corresponding to the rotation of the motor. | 07-22-2010 |
20100188031 | APPARATUS AND METHOD FOR STARTING MOTOR - A motor starting apparatus includes a driving signal generating unit that generates an open-loop driving signal and a drive circuit that is connected to a motor. The driving signal generating unit includes a data storing unit that stores therein predetermined data, a velocity integrating unit that integrates velocity data, a phase adjusting signal generating unit that generates a phase adjusting signal, a three-phase driving signal generating unit that generates a three-phase applied voltage, and a drive circuit driving unit that generates a driving signal of the motor. The three-phase driving signal generating unit performs open-loop driving by outputting the three-phase applied voltage based on the phase adjusting signal to the drive circuit driving unit. | 07-29-2010 |
20100225259 | Brushless Motor Apparatus - A brushless motor apparatus includes a fixedly arranged stator | 09-09-2010 |
20100225260 | Efficient circuit for brushless low cogging machine with congruent stator - A brushless dynamo-electric machine that can be used either as electric generator or electric motor driven by sine wave pulses or by commutated DC pulses. | 09-09-2010 |
20100244754 | Sensorless-Brushless Motor Control Device and Electric Fluid Pump Using the Same - A sensorless-brushless motor control device comprises an inverter, an inverter drive circuit that drives the inverter and a current control part that controls the inverter drive circuit according to a current command from a superior control part and includes a first order lag compensating part. The device is characterized by further comprising a control mode changeover judging part that judges changeover of a control gain of the current control part after startup of the sensorless-brushless motor in response to a motor revolution sensing signal from the inverter drive circuit and a control mode changeover part that changes over the control gain of the current control part in response to an output of the control mode changeover judging part. | 09-30-2010 |
20100253256 | FREQUENCY CONVERTER START-UP - Method and apparatus to start a frequency converter equipped with a direct current intermediate circuit, particularly when a permanent magnet motor whose rotor is rotating at the start-up time is connected to it, wherein the frequency converter has a network bridge ( | 10-07-2010 |
20100308760 | CIRCUIT AND METHOD FOR DRIVING MOTOR - A cycle counter generates a cycle signal which indicates, in the form of a digital value, the cycle of Hall signals H+ and H− that indicate the position of a rotor of a motor to be driven. An up/down counter repeatedly alternates between counting “up” and counting “down” upon detecting phase transitions that occur in the Hall signals, and generates a digital driving waveform signal having a sloping region the slope of which is set according to the cycle signal. A D/A converter receives the driving waveform signal, and converts the driving waveform signal thus received into an analog voltage. A driving unit supplies a driving voltage to the motor according to the analog voltage thus received. | 12-09-2010 |
20100327788 | METHOD FOR STARTING A BRUSHLESS SENSORLESS DC MOTOR - A method for starting a brushless DC motor. A rotor is aligned with a stator in accordance with a predetermined phase. After alignment, the rotor is positioned in accordance with another phase, two phases are skipped, a timer is set to a first count time, and the rotor is aligned with the stator in accordance with a third phase. Then the timer is restarted and the rotor is aligned with the stator in accordance with a fourth phase. After a first delay, first back electromotive force value is stored. The timer is stopped when the first back electromotive force value substantially equals a peak amplitude of opposite polarity. The timer is updated to a second count time that is substantially equal to a time at which the second timer was stopped. The process is repeated until the rotor has a position and a velocity that are suitable for normal operation. | 12-30-2010 |
20110006712 | ONE-PHASE BRUSHLESS MOTOR - An electronically commutated one-phase motor ( | 01-13-2011 |
20110012545 | METHOD FOR CONTROLLING A MULTIPHASE ELECTRIC MOTOR OPERATING IN STAR-CONNECTED MODE - A method serves for starting a polyphase electric motor which is operated in a star connection. The method conductively bridges at least one winding part of a phase of the motor and electrically disconnects the bridged winding part, in order in this manner, to supply a higher voltage to the remaining, electrically effective windings, and thus to increase the flow of current and thus the torque. | 01-20-2011 |
20110025243 | ROBUST ROTATIONAL POSITION ALIGNMENT USING A RELATIVE POSITION ENCODER - A robust method for detecting a relative position of a feedback device, such as an encoder or resolver, coupled to a shaft, such as a motor shaft, is provided. To detect the relative position, electrical commands are issued in an open loop mode to spin the motor shaft an amount greater than the apparent rotational angle between two consecutive markers of the position feedback device, such that the net mechanical rotation is equal to or greater than the total rotational angle between two consecutive markers. | 02-03-2011 |
20110031914 | CONTROLLER AND METHOD FOR TRANSITIONING BETWEEN CONTROL ANGLES - A system includes a pulse-width modulation (PWM) module, a subtraction module, an error reducing module, and a summing module. The PWM module controls switching of an inverter that powers a motor. The PWM module controls the switching based on a first angle in a first mode and a second angle in a second mode. The subtraction module determines a difference between the first and second angles. The error reducing module (i) stores the difference when a transition from the first mode to the second mode is commanded and (ii) decreases a magnitude of the stored difference to zero. The summing module calculates a sum of the stored difference and the second angle. The PWM module controls the switching based on the sum in the second mode. | 02-10-2011 |
20110095713 | METHOD AND SYSTEM FOR INITIATING OPERATION OF AN ELECTRIC MOTOR - Methods and systems for controlling an electric motor are provided. The motor includes a plurality of windings. Each winding is coupled to a respective set of first and second switches. The first switch of each set of switches is simultaneously activated. Current flow through the plurality of windings is measured while the first switch of each set of switches is activated. The electric motor is controlled according to a first motor control method if the measured current is below a predetermined threshold. The electric motor is controlled according to a second motor control method if the measured current is above the predetermined threshold. | 04-28-2011 |
20110115421 | System and Method for Inducing Rotation of a Rotor in a Sensorless Motor - System and method for initiating rotation of a rotor in a motor. The motor may include the rotor and a plurality of pairs of electromagnets. A rotation period may be determined. One or more pairs of electromagnets of the plurality of pairs of electromagnets may be excited at a first excitation level. The excited one or more pairs of electromagnets may be determined based on the rotation period. The excitation level may be decreased, over a first period of time, to a second excitation level. The second excitation level may be a lower excitation level than the first excitation level. The excitation level may be increased, over a second period of time, to a third excitation level. The third excitation level may be a higher excitation level than the second excitation level. The rotation period may be decreased over the first and second periods of time. | 05-19-2011 |
20110121768 | MOTOR STARTING CONTROL METHOD, MOTOR DRIVING SYSTEM AND MOTOR SYSTEM - A method for controlling starting of a motor is described, which is mainly applicable to estimate a possible initial position of a rotor of a motor by detecting a rotor rotation signal of the motor, and find out a most possible initial position of the rotor after making statistics. In the method for controlling the starting of the motor, a starting angle position region of the motor is calculated simply by using the rotor rotation signal of the motor, without additionally arranging a Hall sensor, so as to save a cost of a Hall device and an assembling cost. Furthermore, accuracy for estimating the starting position region can be increased according to an accuracy specification of products, thereby achieving a high flexibility. | 05-26-2011 |
20110181215 | CONTROLLER OF A MOTOR AND METHOD OF CONTROLLING THE SAME - According to one embodiment, a controller of a motor includes a driving signal output module, a position detector, a determiner, and an over current detector. The driving signal output module is configured to generate a driving signal for generating a driving current of a motor, a duty ratio of the driving signal being depending on an over current detection signal. The position detector is configured to generate a position detection signal for determining an operating status of the motor by comparing an induction voltage generated by a rotation of a rotor of the motor by the driving current with a predetermined reference voltage. The determiner is configured to determine whether the motor is in a starting state where a rotating frequency of the rotor is smaller than a predetermined value or in a steady state where the rotating frequency of the rotor is equal to or higher than the predetermined value based on the position detection signal. The over current detector is configured to output a comparison result as the over current detection signal in accordance with a determination result of the determiner. | 07-28-2011 |
20110181216 | SPEED-DEFINED TORQUE CONTROL - Motors, such as DC motors, and methods and systems for operating a motor, are described. The motor is optionally an electronically commutated motor. The motor comprises one or more electromagnets and a controller device to control the electromagnets. The controller device is configured to calibrate the motor operation in a desired installation to determine the torque needed to achieve a desired operating speed by causing the motor to ramp up to the desired speed, measuring an electric current needed to operate the motor at the desired speed, and setting a value corresponding to a first speed tap using the measured electric current. The controller device is configured to operate the motor in a substantially constant torque mode using the set value at least after the completion of the calibration operation. The motor may be configured for use in a ventilation system, such as an HVACR system. | 07-28-2011 |
20110227519 | SENSORLESS STARTING CONTROL METHOD FOR A BLDC MOTOR - A sensorless starting control method for a brushless direct current (BLDC) motor, comprising a first rotor-positioning step configured to position a rotor in a first position by operating a coil unit in a first excitation state, a second rotor-positioning step configured to operate the coil unit in a second excitation state such that the rotor rotates from the first position to a second position, and an open-looped starting step configured to excite a plurality of coils of the coil unit in sequence so as to drive the rotor to rotate in a predetermined direction, wherein the coil unit generates a back electromotive force (EMF) when the rotor rotates in the predetermined direction. The method further comprises a close-looped operation step configured to control the BLDC motor to attain a predetermined rotational speed via a feedback of the back EMF. | 09-22-2011 |
20110291597 | Method for Aligning and Starting a BLDC Three Phase Motor - System and method for aligning and initiating rotation of a rotor in a motor. The motor may include the rotor and a plurality of pairs of electromagnets. The energy needed for alignment of the rotor of the motor may be used to generate the first movement in forced commutation. The energy needed for alignment may be combined with the initial energy to start the motor. The logic may be configured to align the rotor of the motor by energizing the three coils of the motor. Pulse width modulation may be applied to the first coil to control current on the coils; when a maximum PWM duty cycle is reached, the coil not required to rotate the correct direction may be released, thereby initiating motion in a rotor of the three phase motor. A rotation period may be determined. One or more pairs of electromagnets of the plurality of pairs of electromagnets may be excited at a first excitation level. The excitation level may be increased, over a second period of time, to a second excitation level. The second excitation level may be a higher excitation level than the first excitation level. The rotation period may be decreased over the first and second periods of time. | 12-01-2011 |
20120019180 | METHOD FOR STARTING A PERMANENT MAGNET SINGLE-PHASE SYNCHRONOUS ELECTRIC MOTOR AND ELECTRONIC DEVICE FOR IMPLEMENTING SAID METHOD - Method for starting a single-phase synchronous electric motor using permanent magnets with simple and cost-effective implementation, said method comprising a step of application of a control logic of the switch that provides a first and a second condition for switching on: | 01-26-2012 |
20120038297 | Anti-noise Method for Sensorless-Brushless Direct Current Motor System - An anti-noise method for the Direct Current Brushless motor System, which includes a startup circuit, phase detective circuit, motor phase commutation circuit, driving circuit, BEMF detective circuit, and frequency detector, utilizes the BEMF detective circuit to detect the BEMF induced from the coils of the outer motor, and utilizes the sampled voltage phase to determine rotation speed and phase of the external motor by the phase detection circuit and frequency detector. Further, the sampling voltage of the BEMF detection circuit is feedback controlled by the frequency detector, utilized to keep good BEMF to noise ratio, and avoids the BEMF sampling error from the system. | 02-16-2012 |
20120038298 | Apparatus And Method For Rotating-Sensorless Identification Of Equivalent Circuit Parameters Of An AC Synchronous Motor - Identification without shaft encoder of electrical equivalent circuit parameters of a three-phase asynchronous motor comprising: standstill position search of the rotor, so that the d flux axial direction of the rotor is aligned opposite the α axial direction of the stator; test signal voltage supply U | 02-16-2012 |
20120043919 | Pulse Amplitude Modulation Method for the DC Brushless motor - A method of the Pulse Amplitude Modulation for the Sensorless Brushless motor, which includes a start-up circuit, a phase detect circuit, a phase commutation circuit, a driving circuit, BEMF detection circuit, and frequency detector, utilizes the control signal of the phase commutation circuit to control the driving circuit so as to drive the outer motor coil and detect the control signal for the driving motor driving circuit by a detection circuit. The motor system can be controlled to reduce the discharge speed to avoid the motor driving circuit shutdown and further speed up the start-up time for the next charging period of the motor driving circuit to achieve the effect of low speed rotation and power saving. | 02-23-2012 |
20120068642 | SINGLE PHASE DC BRUSHLESS MOTOR CONTROLLER AND METHOD FOR CONTROLLING ROTATION SPEED AND DIRECTION OF SINGLE PHASE DC BRUSHLESS MOTOR - A single phase DC brushless motor controller, including: a micro control unit including: a Pulse Width Modulation (PWM) pin for receiving a PWM signal from a system; and a commutation logic unit for controlling the speed and rotation of a single phase DC brushless motor according to the PWM signal. | 03-22-2012 |
20120074882 | STARTUP CONTROL CIRCUIT OF DRIVE CIRCUIT - Startup of motor is reliably executed and sonic noise is reduced. A control circuit controls a selector to apply control to output a full-drive waveform at startup and then output a PWM modulation waveform. The full-drive waveform which is an alternating waveform in which positive and negative are inverted at 180° is output. Then, the PWM drive waveform is selected. | 03-29-2012 |
20120098472 | ENGAGEMENT OF A SPINNING AC INDUCTION MOTOR - A mechanism for a motor controller for engaging a spinning motor is provided. A power section is configured to provide power to the motor. A control is configured to control the power section. The control is configured to search for a motor frequency of the motor by applying a small excitation voltage to the motor, and the excitation voltage is initially applied at a voltage frequency which is a maximum frequency. The control is configured to track the motor frequency until the motor frequency is below an equivalent speed command and engage the motor by applying a higher voltage to the motor. | 04-26-2012 |
20120217916 | Device And Method For Generating An Initial Controller Lookup Table For An IPM Machine - Embodiments of the present invention provide a device and method for generating initial operating points for controlling an interior permanent magnet (IPM) machine. The method includes loading an inductance lookup table, first calculating a maximum torque per Ampere (MTPA) trajectory for a first threshold speed based on machine parameters of the IPM machine, second calculating a truncated voltage limit ellipse with monotonically increasing torque for a first speed based on the machine parameters, if the first speed is higher than the first threshold speed, determining an operating trajectory at the first speed based on at least one of the calculated MTPA trajectory and the calculated truncated voltage limit ellipse, and generating an I | 08-30-2012 |
20120217917 | METHOD AND DEVICE FOR CONTROLLING AN ELECTRIC MOTOR - A method and device for controlling an electric motor, in particular a machine tool drive, wherein during a sensorless open-loop control mode of operation of the electric motor the speed and the torque are determined from the motor current and the motor voltage, and the moment of inertia of the electric motor torque are determined from the determined motor current and the determined motor voltage, wherefrom then a control torque is determined, which is then associated with an open-loop torque control value and supplied as the torque setpoint value to a control element for setting the motor current and/or the motor voltage in the open-loop mode of operation. As long as the speed is below a minimum speed, the control element receives as input variable a control or pilot control torque generated from a predefined moment of inertia for a sensorless closed-loop control mode of operation of the electric motor. | 08-30-2012 |
20120242265 | Method for operating an electric machine, and drive device - In a method for operating an electric machine of a drive device, which electric machine has a rotor and a stator, and which drive device has a drive unit, an angular position of the rotor with respect to the stator is determined on the basis of an angle-of-rotation encoder associated with the drive unit. | 09-27-2012 |
20120274249 | ELECTRICAL MACHINE, METHOD OF CONTROLLING AN ELECTRICAL MACHINE, AND SYSTEM INCLUDING AN ELECTRICAL MACHINE - A method of controlling an electrical machine. The electrical machine includes a stator having a core and a plurality of windings, and a rotor disposed adjacent to the stator to interact with the stator. The method includes detecting a movement of the rotor, generating a three phase alternating current (AC) voltage signal by all phases of the electrical machine, monitoring for a transfer speed of the electrical machine, discontinuing the three phase AC voltage signal when the transfer speed is traversed, and switching to a back electromotive force (BEMF) control mode after discontinuing the three phase AC voltage signal. | 11-01-2012 |
20120280642 | Start-up Circuit and Motor Driving IC - The present invention discloses a start-up circuit for a motor driving IC. The activation circuit includes a determination unit, for generating a determination result indicating an operating mode of the motor driving IC according to an external pulse width modulation signal, and an output unit, for outputting an activation signal according to the determination result and a pulse width modulation activation signal. A duty of the pulse width modulation activation signal is greater than a duty of the external pulse width modulation signal. | 11-08-2012 |
20120299515 | WOUND FIELD SYNCHRONOUS MACHINE ROTOR TRACKING USING A CARRIER INJECTION SENSORLESS SIGNAL AND EXCITER CURRENT - An example method of initiating operation of a wound field synchronous machine in a motoring mode includes estimating an initial position of a rotor of a wound field synchronous machine using a carrier injection sensorless stimulation signal. The method tracks an operating position of the rotor based on current harmonics of the wound field synchronous machine. The method also calibrates the tracking using the initial position. | 11-29-2012 |
20120306414 | CONTROLLER AND METHOD FOR TRANSITIONING BETWEEN CONTROL ANGLES - A system includes a control module that controls a motor based on a first rotor angle and an angle determination module that generates the first rotor angle. An estimator module determines an estimated rotor angle of the motor. A transition module generates a transition signal in response to convergence of the estimator module. The angle determination module initially generates the first rotor angle based on an open loop angle. In response to the transition signal, the angle determination module switches to generating the first rotor angle based on the estimated rotor angle and an offset value. The offset value is based on a difference between the estimated rotor angle and the open loop angle at the time when the transition signal is generated. | 12-06-2012 |
20120319631 | SENSORLESS MOTOR CONTROL USING THE RATE OF CHANGE OF THE INDUCTIVE RISE TIME - A conventional method used for a startup mode for a brushless direct current (DC) motor employed complementary inductive rise times. Specifically, inductive rise times rise times for a driving state and its complementary state were compared to one another such that when the inductive rise times cross a switching point had been reached. This methodology, however, significantly affects the efficiency of the driving torque and power consumption. Here, however, a derivative of the inductive rise time is employed, which can determine the switching event without the need for a use of a complementary state, improving motor performance. | 12-20-2012 |
20120326642 | SENSORLESS CONTROL UNIT FOR BRUSHLESS DC MOTOR - A command rotation speed is set to an initial rotation speed, and a forced commutation mode is started. In the forced commutation mode, a rotation speed is increased by a predetermined increase amount each time and forced commutation is executed until the rotation speed reaches a set rotation speed. Then, a switchover to the sensorless control mode is made when the rotation speed reaches the set rotation speed (S | 12-27-2012 |
20120326643 | Position Corrected Pulse Width Modulation for Brushless Direct Current Motors - A method of operating a brushless direct current motor is provided that generates a rotor position dependent pulse width modulation waveform. The waveform can improve motor efficiency and reduce torque variation. | 12-27-2012 |
20130002177 | SENSORLESS CONTROL UNIT FOR BRUSHLESS DC MOTOR - When a forced commutation mode ends, a switchover to a sensorless control mode is made. The sensorless control mode immediately after the switchover to the sensorless control mode is executed with a power source current maximum value set at a value higher than a rated current value of a motor. The sensorless control mode immediately after the switchover is executed only over a predetermined period of time, and, after a lapse of the predetermined period of time, a steady sensorless control mode is executed. In the steady sensorless control mode, the power source current maximum value is set at a value equal to the rated current value of the motor. | 01-03-2013 |
20130002178 | INVERTER CONTROL DEVICE, ELECTRIC COMPRESSOR USING INVERTER CONTROL DEVICE, AND ELECTRIC EQUIPMENT - An inverter control device controls the operation of a brushless DC motor selsorlessly. A driving controller of the inverter control device switches commutation of switching elements from control based on a position detection commutation signal to control based on a forced synchronization commutation signal if an output voltage of an inverter circuit section is equal to or greater than a preset threshold and a value of a rotational speed detected by the rotational speed detector is equal to or less than a reference value less than a target value of the rotational speed. The output voltage controller of the inverter control device changes the output voltage control signal based on a phase difference detected by a phase difference detector when the driving controller is controlling commutation of switching elements based on the forced synchronization commutation signal. | 01-03-2013 |
20130015794 | CLOSED LOOP STARTUP CONTROL FOR A SENSORLESS, BRUSHLESS DC MOTORAANM Wang; XiaoyanAACI PlanoAAST TXAACO USAAGP Wang; Xiaoyan Plano TX USAANM Deshpande; YateendraAACI BryanAAST TXAACO USAAGP Deshpande; Yateendra Bryan TX US - A method for driving a brushless direct current (DC) motor is provided. The brushless DC motor has a first phase that is coupled between a first terminal and a common node, a second phase that is coupled between a second terminal and the common node, and a third phase that is coupled between a third terminal and the common node. The first and second phases are coupled to a first supply rail and a second supply rail, respectively, such that the brushless DC motor is in a first commutation state. The first phase is then decoupled from the first supply rail so as to allow first terminal to float during a window period. A first voltage difference between the first terminal and the second terminal is compared to a second voltage difference between the third terminal and the second terminal during the window period, and the brushless DC motor is commuted to a second commutation state if the first voltage difference is approximately equal to the second voltage difference. | 01-17-2013 |
20130057185 | METHOD FOR STARTING A SYNCHRONOUS MACHINE - In a method for starting a synchronous machine, a default torque is predefined, and a rotational speed of the synchronous machine is adjusted after starting. A torque which is higher than the default torque is predefined, and the higher torque is reduced in the subsequent second step to a positive value which is less than the default torque, and is increased to the default torque in a third step. | 03-07-2013 |
20130069571 | BRUSHLESS MOTOR DRIVE DEVICE - A brushless motor drive device switches energization modes for supplying power to two phases of a three-phase brushless motor, based on an induced voltage induced in a non-energized phase. In a case in which a target duty ratio Dt, which is a duty ratio of a PWM signal according to a manipulated variable of the brushless motor becomes less than a detection limit value Dlim, which is the lower limit of a duty ratio capable of detecting an induced voltage, there is set a detection timing (1/N) for detecting an induced voltage according to the cycle of a PWM signal, and a detection time duty ratio D | 03-21-2013 |
20130106328 | INTEGRATED REGENERATIVE AC DRIVE WITH SOLID STATE PRECHARGING | 05-02-2013 |
20130106329 | CONTROL APPARATUS FOR ROTATING MACHINE | 05-02-2013 |
20130134912 | Switched Reluctance Machine Natural Transition between Current Regulation and Single Pulse Operation - A method of controlling a motor is provided. The method may monitor a plurality of operational characteristics of the motor, determine an optimum transition speed of the motor based on the operational characteristics, and engage a transition of the motor between a current regulation mode of operation and a single pulse mode of operation at the optimum transition speed. | 05-30-2013 |
20130134913 | System and Method for Aligning a Resting Rotor to a Known Position - A system and method are presented for aligning a rotor in a motor. The motor may include the rotor and a plurality of pairs of electromagnets. One or more pairs of electromagnets may be excited at a first excitation level. The one or more pairs of electromagnets may be less than all of the plurality of pairs of electromagnets. The excitation of the one or more pairs of electromagnets may be increased to a second excitation level over a first period of time. The excitation of the one or more pairs of electromagnets may be decreased to a third excitation level over a second period of time. Exciting the one or more pairs of electromagnets, increasing the excitation, and decreasing the excitation may cause the rotor to stop in a known position. | 05-30-2013 |
20130193884 | SYNCHRONOUS MACHINE STARTING DEVICE - In a synchronous machine starting device, a timing detection unit outputs a first position signal indicating a timing at which a value of an armature voltage passes a prescribed reference level. A feedback operation unit calculates an error of an estimated phase based on the estimated phase, an estimated rotational speed of a rotor, an armature voltage, and an armature current, updates the estimated phase and the estimated rotational speed based on the calculated phase error, and outputs a second position signal indicating the updated estimated phase. A frequency detection unit detects a current rotational speed of the rotor based on the first position signal, as an initial value of the estimated rotational speed. A selector circuit selects the first position signal and the second position signal in this order, and outputs a selected position signal to the power conversion control unit. | 08-01-2013 |
20130200826 | MOTOR CONTROL APPARATUS - A motor control unit determines whether a rotor of an electric motor is in rotation or not after the motor control unit is started up but before an initial operation, based on an encoder count value after the start-up of the motor control unit. When the electric motor is stopped, the initial operation is carried out so as to learn a correction value of phase difference between the encoder count value and an actual current-supply phase. When the electric motor is still rotated due to its inertia, a motor-stop control is carried out before the initial operation in order to completely stop the rotation of the rotor. In the motor-stop control, electric power is supplied to windings of two phases at the same time. | 08-08-2013 |
20130257326 | METHOD FOR OPERATING A BRUSHLESS ELECTRIC MOTOR - A method for starting a multiphase, sensorless commutated, brushless electric motor. The method has three operating phases. A start-up phase in which the motor is operated from a standstill with specified commutation times. An acceleration phase in which the motor is accelerated up to a nominal speed, wherein the commutation times are determined on the basis of the zero crossings of the BEMF voltage of the non-energized stator phase windings. And a stationary operating phase in which the nominal speed is kept constant. The transition from the start-up phase into the acceleration phase takes place when, during the start-up phase, a predetermined number of successive zero crossings of the BEMF voltage in the expected order in the expected motor phases have been identified. The transition from the acceleration phase into the stationary phase takes place once the nominal speed has been reached. | 10-03-2013 |
20130300325 | CONTROL METHOD AND CONTROL APPARATUS FOR BRUSHLESS MOTOR - Energization to armature windings of a brushless motor in a driven state is interrupted when an energization pattern of the energization shifts to a specific energization pattern determined in advance among a plurality of energization patterns to stop the brushless motor. Also, the brushless motor that has been stopped is started by energizing the armature windings of the brushless motor in the specific energization pattern. | 11-14-2013 |
20130342142 | System And Method for Permanent Magnet Motor Control - A method of operating an electric motor is disclosed. The method includes: starting the electric motor in an open loop control mode; operating an estimator that estimates operating conditions of the electric motor; and, while the electric motor is in the open loop control mode, evaluating a first parameter of the estimator. The method further includes: in response to the evaluation of the first parameter, determining whether the estimator has converged; and in response to a determination that the estimator has not converged within a predetermined period of time after starting the electric motor, signaling a first fault condition. | 12-26-2013 |
20140055064 | Systems and Methods for Controlling Motor Speeds - Electronic circuits for controlling the speed of a motor include a receiving node coupled to receive a speed command signal representative of a desired final speed of the motor. A speed control circuit applies a selected amount of power to a motor to allow a speed of the motor to approach a predetermined final speed, where the selected amount of power provided is based on the desired final speed of the motor. A signal represents the speed of the motor and a feedback circuit uses the signal to regulate the speed of the motor by phase-locking the speed of the motor to the speed command signal once the speed of the motor falls within a predetermined threshold of the final speed. Methods for controlling the speed of a motor are also disclosed. | 02-27-2014 |
20140077734 | CONTROL SYSTEM FOR BRUSHLESS MOTOR - A motor controller is configured to perform positioning of a rotor of a brushless motor immediately when power supply is turned on, and not after actually receiving a target value related to control for the brushless motor from a main ECU, which determines the target value. The motor controller finishes or is performing the rotor positioning, when the target value is received from the main ECU. For this reason, the motor controller can start rotation control for the brushless motor in accordance with the received target value in a short period of time. | 03-20-2014 |
20140111127 | Sensorless Dynamic Driving Method and System for Single Phase Alternating Current Permanent Magnet Motor - A sensorless driving method for a single phase alternating current permanent magnet motor is described. The method comprises a starting drive mode and a stable drive mode. The starting drive mode comprises inputting a first current to drive a rotor to rotate to a stable position, the first current comprising a pulse current flowing in a first direction for a first predetermined starting time interval and a constant current flowing in a second direction contrary to the first direction for a second predetermined time interval, terminating the first current, determining generation of a back electromotive force, detecting a first zero crossing point of the back electromotive force, inputting a second current for a first charge time interval, waiting for a first post-charge time interval, detecting a second zero crossing point to define a previous half period between the first zero crossing point and the second crossing point, inputting the second current for a second charge time interval, waiting for a second post-charge time interval, and detecting speed of the rotor to compare the speed to a predetermined value. The second current flows in a direction in which the back electromotive force is generated. | 04-24-2014 |
20140117894 | METHOD FOR STARTING AN ELECTRIC MOTOR - A method for starting an electric motor, the motor having a main machine, exciter, and permanent magnet generator (PMG), each having a stator and a rotor, with each rotor mounted to a common shaft, the method comprising starting the main machine in an asynchronous mode by applying a starting current to the stator of the main machine to induce a damper current in a damper winding of the main rotor to generate a starting torque that initiates the rotation of the common shaft, and then running the main machine in synchronous mode by supplying running current from the exciter rotor to the main machine rotor. | 05-01-2014 |
20140117895 | APPARATUS FOR GENERATING MOTOR DRIVING CONTROL SIGNAL - There is provided an apparatus for generating a motor driving control signal, the apparatus including: an oscillating unit generating an oscillating signal having a preset duty ratio; a selecting unit including a first switch switching a first path connected between the oscillating unit and an output terminal and a second switch complementarily operated with respect to the first switch and switching a second path connected to the first path in parallel; and a duty adjusting unit installed on the second path between the second switch and the output terminal, adjusting a duty ratio of the oscillating signal according to a rotation speed signal of a motor, and outputting the signal having the adjusted duty ratio as a driving control signal through the output terminal. | 05-01-2014 |
20140117896 | APPARATUS AND METHOD FOR MOTOR DRIVING CONTROL AND MOTOR USING THE SAME - There are provided an apparatus and method for motor driving control, and a motor using the same. The motor driving control apparatus according to an embodiment of the present invention includes a driving circuit unit providing an initial driving control signal of a motor; a current detection unit detecting initial driving current generated by the initial driving control signal; and a control unit determining that back-electro motive force is generated when the initial driving current decreases to a preset critical value or below and controlling the motor to be normally driven. | 05-01-2014 |
20140152211 | MOTOR DRIVING CONTROL APPARATUS AND METHOD, AND MOTOR USING THE SAME - There are provided a motor driving control apparatus and method, and a motor using the same. The motor driving control apparatus includes: an inverter unit applying a driving current to a motor apparatus according to a driving control signal; a back-electromotive force detecting unit detecting back-electromotive force generated by driving of the motor apparatus; a driving current change unit reflecting a level of the back-electromotive force to determine a resistance value and reflecting the resistance value in the driving current; and a controlling unit performing a control operation to change the driving control signal using the driving current in which the resistance value is reflected and the back-electromotive force. | 06-05-2014 |
20140152212 | METHOD FOR SMOOTH MOTOR STARTUP - A method of conducting smooth motor startup is provided and includes operating a motor in an open loop control scheme at startup, operating the motor in a closed loop sensorless control scheme at a time after startup and transitioning between the open loop control scheme and the closed loop control scheme by reducing a difference between an estimated rotor angle of the motor and a commanded ramping angle of the motor. | 06-05-2014 |
20140159623 | MOTOR DRIVING APPARATUS AND METHOD - There are provided a motor driving apparatus and method capable of driving a motor at an optimal driving frequency at which back-electromotive force is generated by sweeping a driving frequency by a preset unit frequency interval during initial driving of the motor, the motor driving apparatus including: a frequency signal generating unit providing a frequency signal of which a frequency is set by a preset unit frequency interval; a driving signal generating unit generating a driving signal based on the frequency signal from the frequency signal generating unit; and a driving unit driving a motor according to the driving signal from the driving signal generating unit. | 06-12-2014 |
20140176030 | MOTOR DRIVE APPARATUS - A motor drive apparatus comprises: a position signal generation portion that generates a position signal corresponding to a rotor position of a brushless DC motor; and a logic portion that when starting the brushless DC motor, disposes a non-energizing period immediately after starting forced commutation at a phase switchover timing corresponding to a predetermined forced commutation frequency and performs energizing control of the brushless DC motor such that usual commutation is started at a phase switchover timing corresponding to the position signal that is generated during an inertial rotation of the rotor. | 06-26-2014 |
20140210391 | SENSORLESS MOTOR CONTROL - An electric motor control system includes a power inverter and control circuitry configured to control the power inverter either according to a target voltage in a voltage-based control mode or according to a target current in a current-based control mode. A controller is operable to switch operation of the control circuitry between the voltage-based control mode and the current-based control mode. The controller may be configured to operate the control circuitry in the current-based control mode at lower motor operating speeds where stator current margin is of greater significance, and to operate the control circuitry in the voltage-based control mode at higher motor operating speeds where stator voltage margin is of greater significance. | 07-31-2014 |
20140285127 | APPARATUS AND METHOD FOR INITIALLY DRIVING A SENSORLESS BLDC MOTOR - Provided is a sensorless BLDC motor apparatus for providing a drive current allowing the rotor of the BLDC motor to be aligned in a predetermined direction during an initial position setting section (or for a first period of time), and providing a drive current allowing a frequency thereof to be varied at predetermined time intervals so as to accelerate the rotational speed of the BLDC motor during an open loop section (or for a second period of time), and a method using the same. | 09-25-2014 |
20140340008 | Electronic Circuit and Method for Adjusting Start-up Characteristics of Drive Signals Applied to an Electric Motor - A motor control circuit and associated techniques can drive an electric motor in a start-up mode of operation followed by a normal mode of operation. The motor control circuit and techniques can receive a selection signal provided by a user that can select one of a plurality of sets of parameter values that determine characteristics of drive signals applied to the motor during the start-up mode of operation. The motor control circuit and associated techniques can synchronize operation between the start-up mode of operation and the normal mode of operation. | 11-20-2014 |
20140340009 | Electronic Circuit and Method For Synchronizing Electric Motor Drive Signals Between a Start-up Mode of Operation and a Normal Mode of Operation - A motor control circuit and associated techniques can drive an electric motor in a start-up mode of operation followed by a normal mode of operation. The motor control circuit and techniques can receive a selection signal provided by a user that can select one of a plurality of sets of parameter values that determine characteristics of drive signals applied to the motor during the start-up mode of operation. The motor control circuit and associated techniques can synchronize operation between the start-up mode of operation and the normal mode of operation. | 11-20-2014 |
20150042251 | DRIVING DEVICE OF MULTI-PHASE MOTOR, DRIVING METHOD, COOLING DEVICE, AND ELECTRONIC APPARATUS - A driving device of a multi-phase motor having a plurality of coils is provided. The driving device includes a back electromotive force (BEMF) detecting comparator connected to one of the plurality of coils to compare BEMF generated in one end of the one of the plurality of coils with a midpoint voltage of the plurality of coils and generate a BEMF detection signal, when the multi-phase motor starts to be driven; and an initial state detecting unit configured to detect a rotation state of the multi-phase motor based on the BEMF detection signal and a hall detection signal. | 02-12-2015 |
20150061556 | METHOD OF CONTROLLING AN ELECTRICAL MACHINE - A method of controlling an electrical machine. The electrical machine includes a stator having a core and a plurality of windings, and a rotor disposed adjacent to the stator to interact with the stator. The method includes configuring an amplitude value and frequency values of a three-phase alternating current (AC) voltage startup signal having an amplitude and a frequency, providing the three-phase alternating current (AC) voltage startup signal to the plurality of windings, and altering the frequency of the three-phase AC voltage startup signal according to a preprogrammed frequency ramp function defined by the frequency values. The method further includes discontinuing the three-phase AC voltage startup signal after the frequency ramp function has completed, and switching to a back electromotive force (BEMF) control mode after discontinuing the three-phase AC voltage startup signal. | 03-05-2015 |
20150069941 | Three-Phase Synchronous Motor Drive Device - A three-phase synchronous motor drive device includes: a three-phase inverter | 03-12-2015 |
20150084557 | MOTOR DRIVING CONTROL DEVICE AND CONTROL METHOD OF MOTOR DRIVING CONTROL DEVICE - There is provided a motor driving control device including a state determining unit which determines whether a motor can perform a slow start operation based on a rotating state and a driving state of the motor, a control unit which generates command information corresponding to a speed at which the motor is to be rotated, based on a determination result of the state determining unit, and a motor driving unit which outputs a driving signal corresponding to the command information generated by the control unit to the motor so as to drive the motor. When it is determined that the motor can perform the slow start operation, the control unit generates the command information such that the motor performs the slow start operation. | 03-26-2015 |
20150130377 | DRIVE CONTROL APPARATUS AND FUEL PUMP USING THE SAME - A microcomputer operates as a positioning part positions a rotor at a control start position, which is a position of the rotor relative to a stator to be able to start controlling driving of a brushless motor, by supplying a current to a winding set a number of times “n” (n is an integer equal to two or more) before starting to control driving of the brushless motor. The microcomputer, operating as the positioning part, controls electric power supplied to the winding set so that the rotor rotates in the same direction at each of “n” times of power supply to the winding set, that is, at each of “n−1” times of switchovers of power supply to the winding set. | 05-14-2015 |
20150349685 | SYSTEM AND METHOD FOR STARTING AN ELECTRIC MOTOR - A system and method for starting electric motors. A controller attempts to start a motor without applying a brake to the rotor. If the motor fails to start, the controller applies a strength of braking and then again attempts to start the motor. If the motor still fails to start, the controller iteratively increases the strength of braking and attempts to start the motor until a maximum strength of braking and/or a maximum number of attempts to start the motor is reached. Alternatively, a sensing system first determines whether the rotor is rotating. If the rotor is rotating, the sensing system determines the speed of rotation, the controller determines a strength of braking that will halt the rotation based on the speed of rotation, applies that strength of braking to halt the rotation of the rotor, and then attempts to start the motor. | 12-03-2015 |
20150381088 | CONTROL METHOD FOR STARTING A SYNCHRONOUS ELECTRIC MOTOR - A control method used in a control unit of a power converter, connected by three output phases to a synchronous electric motor, the method being used for starting the motor and including a first step for determining the voltages to be applied to the output phases depending on a reference current, a second step for determining a frequency to be applied to the stator depending on a stator frequency, a step for application of the first step and the second step for a given duration, so as to allow the rotor of the synchronous electric motor to rotate at the stator frequency applied. The method is particularly effective for an architecture including a transformer and a sinus filter between the power converter and the electric motor. | 12-31-2015 |
20160006374 | SYSTEM AND METHOD FOR COLD START OF VEHICLE - A system and method for a cold start of a vehicle are provided. The method includes setting a target electrical angle by adding a setting angle to a previously stored initial electrical angle of a driving motor and applying an electric current value that corresponds to the set target electrical angle to the driving motor. | 01-07-2016 |
20160043666 | DRIVE CIRCUIT FOR A PERMANENT MAGNET MOTOR - A drive circuit for an electric motor having a wound stator and a permanent magnet rotor, includes a controllable bidirectional AC switch connected in series with a stator winding between two terminals for connecting to an AC power supply. First and second position sensors detect the position of magnetic poles of the rotor. A voltage regulating circuit is connected between the two terminals and the controllable bidirectional AC switch and configured to supply power to the first sensor during the positive cycle and to the second position sensor during the negative cycle of the AC power supply such that the controllable bidirectional AC switch is switched between a conductive state and a non-conductive state in a preset manner, thus enabling the stator to rotate the rotor in only one predetermined direction during start-up. | 02-11-2016 |
20160043673 | MOTOR DRIVE DEVICE - A motor drive device having drive controller to control a motor for driving an electric vehicle wheel depending on position of magnetic poles using angle detection value sensed by a motor angle sensor; motor angle estimator to estimate an angle of a motor rotor without a rotation sensor; sensor malfunction determiner to determine malfunction of the sensor; sensor switcher to cause the controller to control using an estimation value of the rotor angle estimated by the estimator instead of the angle detection value sensed by the sensor once the determiner determines that the sensor malfunctions; and start-up rotor angle calculator to calculate an angle of the rotor from a counter electromotive voltage of the motor and to cause the controller to control using the calculated angle, when the motor is started up after stop of the motor in a state where the sensor is determined as malfunctioning by the determiner. | 02-11-2016 |
20160043674 | MOTOR DRIVING APPARATUS AND METHOD - A motor driving apparatus may include an inverter unit applying a starting voltage to a plurality of coils of a motor apparatus, a detection unit detecting currents generated by the starting voltage in the plurality of respective coils, and a controlling unit determining inductive rising times of the currents by the starting voltage in the plurality of respective coils using the detected currents and determining a position of a rotor using lengths of the inductive rising times. | 02-11-2016 |
20160056740 | TRANSITION SCHEME FOR POSITION SENSORLESS CONTROL OF AC MOTOR DRIVES - Motor drive control apparatus and methods are presented for sensorless control of a driven motor using open loop current regulated control during low-speed operation and an EMF-based position observer for position estimation during higher speed operation, with zero feedback speed during low-speed open-loop operation and feedback speed estimated by the EMF-based observer during high-speed operation and with velocity mode control over the full speed range and mode control hysteresis for smooth transitions between open loop and EMF-based observer control. | 02-25-2016 |
20160126876 | DIVIDED PHASE AC SYNCHRONOUS MOTOR CONTROLLER - A circuit includes phase windings, a power switch circuit comprising at least one power switch at a midpoint of the phase windings, a direct current (DC) supply circuit at the midpoint of the phase windings, and one or more non-collapsing DC power supply components to prevent the DC power supply from collapsing when the at least one power switch is on and conducting during one or more portions of a cycle. The one or more non-collapsing DC power supply components each may include one or more of a tap from one of the phase windings electrically connected to the DC power supply, a secondary phase coil winding connected to the DC power supply to power the power supply, one or more resistors between the one of the phase windings and the power switch circuit, one or more Zener diodes between one of the phase windings and the power switch circuit, and/or an electrical component to create a voltage drop between one of the phase windings and the power switch circuit to prevent the power supply from collapsing when the at least one power switch in the power switch circuit is on and conducting. | 05-05-2016 |
20160156295 | MOTOR DRIVE CONTROLLER AND METHOD FOR DETECTING ROTATION STATE | 06-02-2016 |
20160164438 | MOTOR CONTROL APPARATUS AND OPERATION METHOD FOR THE SAME - Provided are a motor control apparatus controlling a motor including a stator and progressing or retreating a screw so that pressure is formed in a piston provided in a brake for braking a vehicle, and an operation method thereof and the motor control apparatus includes: the motor including a rotor with a permanent magnet and a coil forming an electromagnetic field; an encoder outputting an encoder pulse and a reference pulse to correspond to rotation of the motor; and an electronic control unit controlling the motor based on the encoder pulse and the reference pulse of the encoder, wherein the location of the rotor is determined based on the encoder pulse and the reference pulse input from the encoder when the motor rotates by forcibly rotating the motor to control the motor when the motor starts, thereby starting the motor when the hall sensor is abnormal or even though the hall sensor is not provided by controlling the motor. | 06-09-2016 |