Class / Patent application number | Description | Number of patent applications / Date published |
315173000 | Condenser in one of the supply circuits | 11 |
20090058311 | DC-DC converter and organic light emitting display using the same - A DC-DC converter and an organic light emitting display comprising: a voltage generator receiving an input voltage through an input terminal to selectively generate a first voltage and a second voltage, outputting the first voltage and the second voltage through first and second output terminals, a capacitor coupled to the output terminal; and a switch unit discharging voltage stored in the capacitor according to the control signal. | 03-05-2009 |
20130038226 | Plasma Supply Arrangement Having Quadrature Coupler - A plasma supply arrangement for supplying power to a plasma load has a quadrature coupler which has at least one capacitance and at least one inductivity and which is suitable for coupling together two HF power signals of the same frequency which are phase-shifted relative to each other by 90°, an HF power signal being supplied respectively at a first useful signal connection and at a second useful signal connection of the quadrature coupler as a useful signal, to form a coupled HF power which can be output as a useful signal at a third useful signal connection, at least one useful signal connection being configured for a first impedance. The quadrature coupler has a fourth useful signal connection which is configured for a second impedance which is higher than the first impedance, or has only three useful signal connections. | 02-14-2013 |
20130076251 | DUAL MODE ORGANIC LIGHT EMITTING DEVICE AND PIXEL CIRCUIT INCLUDING THE SAME - A dual mode organic light emitting device and a pixel circuit including the same are disclosed. The dual mode organic light emitting device includes a cathode formed over a substrate, an electron transport layer (ETL) formed over the cathode, an emission layer formed over the electron transport layer (ETL), and an anode formed over the emission layer, wherein the cathode includes a first metal selected from silver (Ag), aluminum (Al), copper (Cu), and gold (Au) and a second metal having a work function of about 4.0 eV or less, and the first metal and the second metal are present at a weight ratio of about 1:1 to about 1:100. | 03-28-2013 |
20130088157 | CONSTANT CURRENT CIRCUIT AND LIGHT EMITTING DIODE DRIVING DEVICE USING THE SAME - A constant current circuit includes a first transistor, a second transistor having the gate and the source connected to the gate and the source of the first transistor, and having the drain connected to a load, a voltage adjustment circuit section that controls the drain voltage of the first transistor, a constant current generation circuit section that supplies a constant current to the first transistor, and a detection circuit section that determines whether at least one of the first transistor and the second transistor is unable to output a current proportional to the first constant current while at least one of the first transistor and the second transistor operates in the linear region, by performing a voltage comparison between a voltage at a connecting section between the voltage adjustment circuit section and the constant current generation circuit section and a predetermined reference voltage. | 04-11-2013 |
20130169170 | LIGHT EMITTING DIODE CIRCUITRY, METHOD FOR DRIVING LIGHT EMITTING DIODE CIRCUITRY AND DISPLAY - A light emitting diode circuitry includes a first transistor, a second transistor, a third transistor, a fourth transistor, a storage capacitor, a fifth transistor, a sixth transistor and light emitting diodes. The first transistor is used for receiving a first control signal. The second transistor is used for receiving a second control signal. The third transistor is electrically coupled to the second transistor and the first transistor. The fourth transistor is used for receiving a data signal and a third control signal. The storage capacitor is electrically coupled to the second transistor. The fifth transistor is used for receiving a fourth control signal. The sixth transistor is used for receiving a fifth control signal. The light emitting diodes are coupled to the sixth transistor and a power source. | 07-04-2013 |
20130207554 | POWER SUPPLY FOR ILLUMINATION AND LUMINAIRE - According to one embodiment, a luminaire includes a light-emitting module, a first lighting circuit and a back-flow preventing circuit. The light-emitting module includes a light-emitting element and a capacitive element. The first lighting circuit is supplied with power from the first power supply and is configured to activate the light-emitting element. The back-flow preventing circuit interrupts current flowing in a direction from the capacitive element to the first lighting circuit. | 08-15-2013 |
20130234608 | IGNITION SYSTEM - A superior ignitability is realized assuredly by specifying at least either of a relation in magnitude between absolute values of a plus-side voltage and a minus-side voltage and a relation in magnitude between absolute values of a plus-side current and a minus-side current when alternating current power is introduced. An ignition system includes a spark plug, a discharging power supply which applies a voltage to a spark gap of the spark plug to thereby generate an electric spark discharge and an alternating current power supply which introduces alternating current power to an electric spark generated by the electric spark discharge to generate an alternating current plasma. | 09-12-2013 |
20130249414 | Light-Emitting Device and Driving Method Thereof - Charge corresponding to a potential difference between electrodes of an electroluminescence element is accumulated in a period in which the electroluminescence element emits light; the potential difference is detected without decrease in the luminance at the time of light emission of the electroluminescence element; and a reference potential of one electrode of the electroluminescence element is changed based on the detected potential difference, so that reduction in luminance of the electroluminescence element due to deterioration of the electroluminescence element is compensated. | 09-26-2013 |
20140049169 | ACTIVE MATRIX ORGANIC LIGHT EMITTING DIODE CIRCUIT AND OPERATING METHOD OF THE SAME - An active matrix organic light emitting diode (AMOLED) circuit and an operating method thereof are disclosed herein. The AMOLED circuit includes an organic light emitting diode, a switching circuit, a compensating circuit, a driving circuit, and a reset circuit. The compensating circuit is connected to the switching circuit and includes a first capacitor. The driving circuit is configured to be driven by the compensating circuit to provide the organic light emitting diode with a driving current. The reset circuit is connected to both ends of the first capacitor and to a control line. The reset circuit is configured to change to the voltage levels on both ends of the first capacitor according to the voltage level on the control line, such that one end of the first capacitor and a reference power supply are conducted and charges stored inside the first capacitor are released. | 02-20-2014 |
20140117863 | Strobe Device and Electric Power Supply Method Therefor - A strobe device configured to be connectable with an external power supply device to receive electric power for light emission from outside, includes: a main capacitor for storing electric charge for light emission; an internal power supply for supplying electric power to the main capacitor; and a power supply control unit configured to control supply of electric power to the main capacitor. The power supply control unit is configured to determine whether electric power is being supplied to the main capacitor from outside based on a change in a charge state of the main capacitor after a discharge of the main capacitor for light emission, and when it is determined that electric power is being supplied from outside, prevent the internal power supply from supplying electric power. | 05-01-2014 |
20160055792 | PIXEL AND ORGANIC LIGHT-EMITTING DIODE (OLED) DISPLAY - A pixel and organic light-emitting diode (OLED) display are disclosed. In one aspect, the pixel includes an organic light-emitting diode (OLED) configured to emit light based on a driving current. The OLED includes first and second electrodes. The pixel also includes a first transistor configured to generate the driving current. The first transistor includes a gate electrode, a first electrode, and a second electrode. The pixel further includes a capacitor transistor including a gate electrode configured to receive a gate turn-on voltage, a first electrode, a second electrode electrically connected to the first electrode of the first transistor. The capacitor transistor further includes a channel located between the first and second electrodes of the capacitor transistor. The channel of the capacitor transistor is configured to be activated by the gate turn-on voltage. | 02-25-2016 |