Class / Patent application number | Description | Number of patent applications / Date published |
315506000 | Electrostatic accelerator means | 19 |
20090039804 | Voltage Division Resistor for Acceleration Tubes, Acceleration Tube, and Accelerator - To provide a voltage division resistor for acceleration tube, an acceleration tube, and an accelerator capable of reducing the cost of the acceleration tube and enhancing the operation efficiency. [MEANS FOR SOLVING PROBLEMS] An acceleration tube ( | 02-12-2009 |
20090085504 | TECHNIQUES FOR CONTROLLING A CHARGED PARTICLE BEAM - Techniques for controlling a charged particle beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle acceleration/deceleration system. The charged particle acceleration/deceleration system may comprise an accelerator column, which may comprise a plurality of electrodes. The plurality of electrodes may have apertures through which a charged particle beam may pass. The charged particle acceleration/deceleration system may also comprise a voltage grading system. The voltage grading system may comprise a first fluid reservoir and a first fluid circuit. The first fluid circuit may have conductive connectors connecting to at least one of the plurality of electrodes. The voltage grading system may further comprise fluid in the first fluid circuit. The fluid may have an electrical resistance. | 04-02-2009 |
20100289437 | ELECTROSTATIC ION ACCELERATOR ARRANGEMENT - An arrangement with radiation cooling of the anode, which avoids the need for complex additional cooling measures, is proposed for an electrostatic ion accelerator arrangement in which the thermal power loss which is not negligible occurs at the anode, which is arranged in an ionization chamber, during operation. | 11-18-2010 |
20100295485 | Device And Method For Fast Beam Current Modulation In A Particle Accelerator - The present invention relates to a circular particle accelerator capable of modulating the particle beam current exiting the circular particle accelerator. The circular particle accelerator includes: an ion source for generating the particle beam; Dee electrode and counter-Dee electrode separated from each other by gaps for accelerating the particle beam, the counter-Dee electrode being grounded; a generator capable of applying an alternating high voltage to the Dee electrode, so as it is possible to have an electric field between the gaps; means for measuring the current intensity of the particle beam exiting the circular particle accelerator. It also comprises a regulator capable of modulating the Dee electrodes voltage amplitude (V | 11-25-2010 |
20110266981 | Charged Particle Beam Generator, Charged Particle Irradiation System, Method for Operating Charged Particle Beam Generator and Method for Operating Charged Particle Irradiation System - A charged particle beam generator, a charged particle irradiation system, a method for operating the charged particle beam generator and a method for operating the charged particle irradiation system, which allow a charged particle beam to be injected into a circular accelerator at an arbitrary timing and can reduce an irradiation time and a time for a therapy, are provided while maintaining the lower limit of an operation cycle of a linear accelerator. An accelerator control device controls an operation of a synchrotron on the basis of a beam extraction request signal transmitted from a beam utilization system control device. A control device generates a timing signal notifying the linear accelerator of an injection timing of a next operation cycle of the synchrotron after completion of an extraction process performed by the synchrotron, changes an operation timing of the linear accelerator so that the operation timing of the linear accelerator matches the injection timing. | 11-03-2011 |
20120025741 | CHARGED PARTICLE ACCELERATOR - In a charged particle accelerator, voltage of several tens of kV is applied between accelerating electrodes. In such a case, electric discharge is sometimes generated between the accelerating electrodes. In the charged particle accelerator, part or entirety of the accelerating electrodes is coated with an electric discharge suppressing layer made of ceramics or alloy having a high melting point as compared with metal. When impurity fine particles are accelerated by an electric field and collide with the electrodes, the electric discharge suppressing layer made of ceramics or alloy prevents metal vapor from being easily generated from the electrodes and an ionized plasma from being easily produced, thus suppressing electric discharge between the electrodes. | 02-02-2012 |
20120133306 | WAVEGUIDE, IN PARTICULAR IN A DIELECTRIC-WALL ACCELERATOR - The present invention relates to waveguides, e.g., waveguides in a dielectricwall accelerator, and to methods for the manufacture thereof. For example, planar contact electronic assemblies may be integrated in a waveguide e.g., a waveguide of an accelerator cell of a dielectricwall accelerator. | 05-31-2012 |
20120146554 | A D.C. Charged Particle Accelerator, A Method of Accelerating Charged Particles Using D.C. Voltages and a High Voltage Power Supply Apparatus for use Therewith - A d. c. charged particle accelerator comprises accelerator electrodes separated by insulating spacers defining acceleration gaps between adjacent pairs of electrodes. Individually regulated gap voltages are applied across each adjacent pair of accelerator electrodes. In embodiments, the individually regulated gap voltages are generated by electrically isolated alternators mounted on a common rotor shaft driven by an electric motor. Alternating power outputs from the alternators provide inputs to individual regulated d. c. power supplies to generate the gap voltages. The power supplies are electrically isolated and have outputs connected in series across successive pairs of accelerator electrodes. The described embodiment enables an ion beam to be accelerated to high energies and high beam currents, with good accelerator stability. | 06-14-2012 |
20120146555 | D.C. Charged Particle Accelerator and A Method of Accelerating Charged Particles - A d. c. charged particle accelerator comprises accelerator electrodes separated by insulating spacers defining acceleration gaps between adjacent pairs of electrodes. Individually regulated gap voltages are applied across each adjacent pair of accelerator electrodes. In an embodiment, direct connections are provided to gap electrodes from the stage points of a multistage Cockcroft Walton type voltage multiplier circuit. The described embodiment enables an ion beam to be accelerated to high energies and high beam currents, with good accelerator stability. | 06-14-2012 |
20120161673 | PARTICLE ACCELERATOR HAVING A SWITCH ARRANGEMENT NEAR AN ACCELERATOR CELL - A particle accelerator may include at least one accelerator cell and a power supply device. The power supply device may provide electrical energy to the accelerator cell via a feed line. With electrical energy received via the feed line, the accelerator cell may generate an electric field for accelerating an electrically charged elementary particle. The power supply device may have a DC current source and a switch arrangement. The power supply device may be designed such that electrical energy provided by the DC circuit source is capacitively buffered, and upon corresponding actuation of the switch arrangement, is provided to the acceleration cell. The switch arrangement may be disposed near the acceleration cell such that the switch arrangement is exposed to ionizing radiation generated by the particle accelerator at least during operation. The DC circuit source may be connected to the switch arrangement via a first cable. | 06-28-2012 |
20120256564 | HIGH CURRENT SINGLE-ENDED DC ACCELERATOR - A single-ended DC linear accelerator for the generation of high-current, high-energy ion beams of H, D or He includes an ion source located in a high-voltage terminal for the creation of the ion beam, an analyzing magnet to purify the ion beam, an accelerating tube and DC high-voltage power supply for accelerating the ions of interest to high energies and a separate pumping tube that transports the vast majority of the neutral gas from the ion source at high-voltage towards a vacuum pump at ground potential, thereby preventing the adverse influence of increased vacuum pressure inside the accelerating tube to facilitate stable acceleration of high-current beams to high energies in single-ended DC linear accelerators. The resulting high-current accelerator for H, D or He has diverse applications, including ion beam cancer therapy, cyclotron injection, silicon cleaving, ion implantation in semiconductor devices and NRA. | 10-11-2012 |
20120313556 | DC High Voltage Source and Particle Accelerator - A DC high voltage source may include a capacitor stack having a first electrode that can be brought to a first potential, a second electrode arranged concentrically with the first electrode and which can be brought to a second potential different from the first potential, at least one intermediate electrode arranged concentrically between the first and second electrodes and which can be brought to an intermediate potential between the first and second potentials, a switching device for charging the capacitor stack, to which switching device the electrodes of the capacitor stack are connected and which is configured such that upon operation of the switching device the electrodes of the capacitor stack arranged concentrically with respect to each other can be brought to increasing potential levels, wherein the switching device comprises electron tubes, e.g., controllable electron tubes. A particle accelerator comprising such a DC high voltage source is also provided. | 12-13-2012 |
20120319624 | DC High Voltage Source and Particle Accelerator - A DC high voltage source may include: (a) a capacitor stack having a first electrode which can be brought to a first potential, a second electrode concentric with the first electrode and which can be brought to a second potential different from the first potential, and a plurality of intermediate electrodes concentric with respect to each other and concentrically between the first and second electrodes and which can be brought to a sequence of increasing potential levels between the first and second potentials, and (b) a switching device to which the electrodes of the capacitor stack are connected and which is configured such that, during operation of the switching device, the electrodes of the capacitor stack can be brought to the increasing potential levels, wherein the distance of the electrodes of the capacitor stack decreases toward the central electrode. An accelerator comprising such a DC high voltage source is also provided. | 12-20-2012 |
20130033201 | CHARGED PARTICLE ACCELERATOR AND CHARGED PARTICLE ACCELERATION METHOD - A cascade of accelerating electrode tubes (LA# | 02-07-2013 |
20130106316 | RESISTIVE FOIL EDGE GRADING FOR ACCELERATOR AND OTHER HIGH VOLTAGE STRUCTURES | 05-02-2013 |
20130127376 | Accelerator for Two Particle Beams for Producing a Collision - An accelerator for accelerating two beams of charged particles and for producing a collision of the beams includes: an apparatus for producing an electrostatic potential field such that the two beams are acceleratable or deceleratable by the electrostatic field, a reaction zone for collision of the charged particles; first and second acceleration distances for the first and second beams, each acceleration distance directed towards the reaction zone, wherein the reaction zone is arranged geometrically with respect to the potential field and to the acceleration distances such that the particles of the beams are acceleratable towards the reaction zone along the first and second acceleration distances and, after interaction in the reaction zone and passage through the reaction zone, are deceleratable in the potential field, such that energy used by the potential field apparatus for accelerating the beams towards the reaction zone can be at least partially recovered by the deceleration. | 05-23-2013 |
20140049193 | Accelerator Having Acceleration Channels Formed Between Covalently Bonded Chips - An accelerator assembly includes a first chip and a second chip. An acceleration channel is formed into a surface of a first side of the first chip. The first side of the first chip is covalently bonded to a first side of the second chip such that the channel is a tubular void between the first and second chips. The channel has a tubular inside sidewall surface, substantially no portion of which is a metal surface. The channel has length-to-width ratio greater than five, and a channel width less than one micron. There are many substantially identical channels that extend in parallel between the first and second chips. In one specific example, the assembly is part of a Direct Write On Wafer (DWOW) printing system. The DWOW printing system is useful in semiconductor processing in that it can direct write an image onto a 300 mm diameter wafer in one minute. | 02-20-2014 |
20140265940 | DIAMAGNETIC COMPOSITE MATERIAL STRUCTURE FOR REDUCING UNDESIRED ELECTROMAGNETIC INTERFERENCE AND EDDY CURRENTS IN DIELECTRIC WALL ACCELERATORS AND OTHER DEVICES - The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field. | 09-18-2014 |
20160073488 | DIELECTRIC WALL ACCELERATOR UTILIZING DIAMOND OR DIAMOND LIKE CARBON - Provided are a plurality of embodiments, including, but not limited to, a device for generating efficient low and high average power output Gamma Rays via relativistic particle bombardment of element targets using an efficient particle injector and accelerator at low and high average power levels suitable for element transmutation and power generation with an option for efficient remediation of radioisotope release into any environment. The devices utilize diamond or diamond-like carbon materials and active cooling for improved performance. | 03-10-2016 |