Class / Patent application number | Description | Number of patent applications / Date published |
315505000 | Linear accelerator (Linac) | 46 |
20080211431 | Pulse-to-Pulse-Switchable Multiple-Energy Linear Accelerators Based on Fast RF Power Switching - A method and apparatus for modulating at least one of energy and current of an electron beam in a linac for fast switching of particle beam energy on a time scale comparable with, and shorter than, the interval between linac pulses. Such modulation may be achieved by dividing, in a coupler, a radio-frequency (RF) field into field components and coherently adding these components in a phase shifting section to selectively direct the RF field to a chosen section of the linac. The phase shifting section may include at least one arm containing at least one fast switch and at least one phase changer. In specific embodiments, the phase shifting section may include an electronically controlled plasma switch and a plasma short. | 09-04-2008 |
20080303457 | Modular linac and systems to support same - Some embodiments include an accelerator waveguide to generate an accelerated radiation beam, and a housing to house to accelerator waveguide. The housing may include an interface to couple the housing to and to decouple the housing from a movable support. Some aspects include coupling a first interface of a housing to a first interface of a movable support, and uncoupling the first interface of the housing from the first interface of the movable support, wherein the housing includes an accelerator waveguide to generate an accelerated radiation beam. | 12-11-2008 |
20080315801 | Dispersion-Free Radial Transmission Lines - A dispersion-free radial transmission line preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material between the two conductors and surrounding a central channel connecting the two central holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the permeable material is varied as a function of radius, so that the characteristic impedance of the radial transmission line is held substantially constant, and pulse transmission through the radial transmission line is substantially dispersion-free. Preferably, the electromagnetically permeable material is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied from section to section as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected so that the traversal error is minimized. | 12-25-2008 |
20090261760 | H-MODE DRIFT-TUBE LINAC AND DESIGN METHOD THEREFOR - A linearity of a voltage change to a tuner insertion amount is verified for at least one of a plurality of tuners. Based on the voltage change linearity, individual voltage change data corresponding to respective insertion amounts are calculated for each of the plurality of tuners through a proportional calculation. A combination of auto-tuners and a combination of respective insertion amounts of the auto-tuners are determined using the individual voltage change data, and an adequacy of the determined combinations is verified through a direct three-dimensional electromagnetic field calculation. The combinations are determined on a condition that, when the individual voltage change data of nominated tuners are added together, respective voltage changes attributed to the nominated tuners are cancelled out to allow an entire voltage distribution to have substantially no change. | 10-22-2009 |
20090302785 | Slot resonance coupled standing wave linear particle accelerator - A slot resonance coupled, linear standing wave particle accelerator. The accelerator includes a series of resonant accelerator cavities positioned along a beam line, which are connected by resonant azimuthal slots formed in interior walls separating adjacent cavities. At least some of the slots are resonant at a frequency comparable to the resonant frequency of the cavities. The resonant slots are offset from the axis of the accelerator and have a major dimension extending in a direction transverse to the radial direction with respect to the accelerator axis. The off-axis resonant slots function to magnetically couple adjacent cavities of the accelerator while also advancing the phase difference between the standing wave in adjacent cavities by 180 degrees in addition to the 180 degree phase difference resulting from coupling of the standing wave in each cavity with the adjacent slot, such that the signals in each cavity are in phase with one another and each cavity functions as a live accelerating cavity. The resonance frequency of the slot is the comparable to the resonance frequency of the cavities, resulting in coupling of the cavities while also eliminating the need for side-cavity or other off-axis coupling cavities. | 12-10-2009 |
20100060207 | COMPACT ACCELERATOR FOR MEDICAL THERAPY - A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (˜70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator. | 03-11-2010 |
20100060208 | Quarter-Wave-Stub Resonant Coupler - A linac system having at least two linac structures configured to operate with a resonant coupler. The linac structures and the resonant coupler resonate at the same frequency, are in close proximity, and designed for a relative phase of 0° or 180°. The coupling between the resonant coupler and the linac structures is achieved by slots between the linac structures and the resonant coupler, which allow the magnetic fields of the linac structures to interact with the magnetic field of the resonant coupler. The relative size of the slots determines the relative amplitude of the fields in the linac structures. There are three modes of oscillation, a 0 mode, wherein the linac structures and the resonant coupler are excited in phase, a π/2 mode, wherein the linac structures are excited out of phase and the resonant coupler is nominally unexcited, and the π mode, wherein the linac structures and the resonator coupler are excited out of phase. | 03-11-2010 |
20100060209 | RF ACCELERATOR METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM - The invention comprises a radio-frequency accelerator method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. An RF synthesizer provides a low voltage RF signal, that is synchronized to the period of circulation of protons in the proton beam path, to a set of integrated microcircuits, loops, and coils where the coils circumferentially enclose the proton beam path in a synchrotron. The integrated components combine to provide an accelerating voltage to the protons in the proton beam path in a size compressed and price reduced format. The integrated RF-amplifier microcircuit/accelerating coil system is operable from about 1 MHz, for a low energy proton beam, to about 15 MHz, for a high energy proton beam. | 03-11-2010 |
20100188027 | TRAVELING WAVE LINEAR ACCELERATOR COMPRISING A FREQUENCY CONTROLLER FOR INTERLEAVED MULTI-ENERGY OPERATION - An electromagnetic wave having a phase velocity and an amplitude is provided by an electromagnetic wave source to a traveling wave linear accelerator. The traveling wave linear accelerator generates a first output of electrons having a first energy by accelerating an electron beam using the electromagnetic wave. The first output of electrons can be contacted with a target to provide a first beam of x-rays. The electromagnetic wave can be modified by adjusting its amplitude and the phase velocity. The traveling wave linear accelerator then generates a second output of electrons having a second energy by accelerating an electron beam using the modified electromagnetic wave. The second output of electrons can be contacted with a target to provide a second beam of x-rays. A frequency controller can monitor the phase shift of the electromagnetic wave from the input to the output ends of the accelerator and can correct the phase shift of the electromagnetic wave based on the measured phase shift. | 07-29-2010 |
20100207553 | METHOD FOR ACCELERATING ELECTRONS IN A LINEAR ACCELERATOR AND AN ACCELERATING STRUCTURE FOR CARRYING OUT SAID METHOD - The invention relates to a method for accelerating low-injection energy electrons in a continuous standing wave linear accelerator ( | 08-19-2010 |
20100231144 | Microwave system for driving a linear accelerator - A microwave system for driving a linear accelerator is provided. The inventive microwave system employs a plurality of magnetrons, at least one pulse generator to energize the magnetrons, means for synchronizing outputs from the magnetrons, and at least one waveguide for transmitting synchronized outputs or power from the magnetrons to a linear accelerator. The linear accelerator that is driven by the inventive microwave system demonstrates increased efficiency and dependability, higher energy and power outputs, as well as, different energy outputs that can take the form of successive pulses that alternate between at least two different energy levels. | 09-16-2010 |
20100289436 | LOW-INJECTION ENERGY CONTINOUS LINEAR ELECTRON ACCELERATOR - This invention relates to continuous standing-wave linear electron accelerator ( | 11-18-2010 |
20100301782 | H-MODE DRIFT TUBE LINAC, AND METHOD OF ADJUSTING ELECTRIC FIELD DISTRIBUTION IN H-MODE DRIFT TUBE LINAC - An H-mode drift tube linac according to the present invention includes: an accelerator cavity which functions as a vacuum chamber and a resonator; drift tube electrodes for generating accelerating voltages in a charged particle transporting direction in the accelerator cavity; tuners for adjusting a distribution of electric fields generated at gaps between respective pairs of the drift tube electrodes; and antennas for measuring a variation of the distribution of the electric fields, the antennas being provided along the charged particle transporting direction in the accelerator cavity. | 12-02-2010 |
20100327785 | PARTICLE ACCELERATOR AND MAGNETIC CORE ARRANGEMENT FOR A PARTICLE ACCELERATOR - A particle accelerator includes a power supply arrangement, multiple solid-state switched drive sections, a plurality of magnetic core sections and a switch control module. The drive sections are connected to the power supply arrangement for receiving electrical power therefrom, and each drive section includes a solid-state switch, electronically controllable at turn-on and turn-off, for selectively providing a drive pulse at an output of the drive section. The magnetic core sections are symmetrically arranged along a central beam axis, and each magnetic core of the sections is coupled to a respective drive section through an electrical winding connected to the output of the drive section. The switch control module is connected to the drive sections for providing control signals to control turn-on and turn-off of the solid state switches to selectively drive magnetic cores to induce an electric field for accelerating the beam of charged particles along the beam axis. | 12-30-2010 |
20110006708 | INTERLEAVING MULTI-ENERGY X-RAY ENERGY OPERATION OF A STANDING WAVE LINEAR ACCELERATOR USING ELECTRONIC SWITCHES - The disclosure relates to systems and methods for fast-switching operating of a standing wave linear accelerator (LINAC) for use in generating x-rays of at least two different energy ranges with advantageously low heating of electronic switches. In certain embodiments, the heating of electronic switches during a fast-switching operation of the LINAC can be kept advantageously low through the controlled, timed activation of multiple electronic switches located in respective side cavities of the standing wave LINAC, or through the use of a modified a side cavity that includes an electronic switch. | 01-13-2011 |
20110089871 | ACCELERATOR PACK, SPECIFICALLY FOR LINEAR ACCELERATION MODULES - An accelerator pack, specifically for linear accelerator modules cascade-connected to a proton-emitting cyclotron, specially adapted for use in cancer therapies. Such a technique is named PT. The pack displays an accelerating cavity of improved efficiency in virtue of its shape, which provides for making a portion of accelerating cavity on both faces of the pack. Furthermore, the pack also contains a coupling cavity portion. In such a manner, the volume of the accelerating cavity is increased as compared to that of the packs of the known accelerator modules. | 04-21-2011 |
20110101892 | Accelerator for Accelerating Charged Particles - An accelerator for accelerating charged particles has a plurality of delay lines ( | 05-05-2011 |
20110101893 | Accelerator for Accelerating Charged Particles and Method for Operating an Accelerator - An accelerator for accelerating charged particles has at least two delay lines having different delays, wherein the at least two delay lines have an input side into which electromagnetic waves can be conducted for producing an accelerating electric potential, wherein the input side of the delay lines is designed to reflect electromagnetic waves, and the accelerating electric potential can be produced at least partially by the waves reflected at the input side. In a method for operating an accelerator, which comprises at least two delay lines having different delays, the at least two delay lines have an input side into which electromagnetic waves can be conducted for producing an accelerating electric potential, wherein the electromagnetic waves conducted into the delay lines are reflected at the input side, and the accelerating electric potential can be produced at least partially by the waves reflected at the input side. | 05-05-2011 |
20110121763 | Linear Accelerators - We propose that during the factory testing of the linac, rather than simply confirming that the beam falls within the permissible ranges set out in the standard, the beam is in fact adjusted towards a standard signature. A new (or existing) linac could then be paired to a new linac, or to an existing linac, such as one that it is to operate alongside or one that it is to replace. Treatment plans would then be transferable between such pairs of linacs. In addition, the standard signature to which the linacs were approximated could be placed towards the centre of the permitted ranges, to produce linacs that were more reliable over the very long term. This requires a linac that has automatically adjustable parameters, so that a suitable programmed computer is able to monitor the output of the linac and adjust its operating parameters. We therefore provide a radiation source comprising a linear accelerator, beam control circuitry for the linear accelerator, an electronic control apparatus for the control circuitry arranged to adjust properties thereof, and a monitor for detecting properties of the radiation beam produced by the linear accelerator, wherein the control apparatus is adapted to retain a set of beam properties and periodically activate the accelerator, measure the current beam properties via the monitor, compare the measured beam properties to the retained beam properties, and potentially adjust the control circuitry properties to align the beam properties towards the retained beam properties. The beam properties that are measured may include at least one of beam flatness and beam width. The retained beam properties can be the properties of the beam produced by the linear accelerator when new, or the properties of a standard beam. The control apparatus is preferably arranged to send a message if the difference between the measured beam properties and the retained beam properties exceeds a threshold. It may also send a message to a remote location if the difference between the measured beam properties and the retained beam properties exceeds a second threshold. | 05-26-2011 |
20120081041 | TRAVELING WAVE LINEAR ACCELERATOR BASED X-RAY SOURCE USING PULSE WIDTH TO MODULATE PULSE-TO-PULSE DOSAGE - Provided herein are systems and methods for operating a traveling wave linear accelerator to generate stable electron beams at two or more different intensities by varying the number of electrons injected into the accelerator structure during each pulse by varying the width of the beam pulse, i.e., pulse width. | 04-05-2012 |
20120081042 | TRAVELING WAVE LINEAR ACCELERATOR BASED X-RAY SOURCE USING CURRENT TO MODULATE PULSE-TO-PULSE DOSAGE - Provided herein are systems and methods for operating a traveling wave linear accelerator to generate stable electron beams at two or more different intensities by varying the number of electrons injected into the accelerator structure during each pulse by varying the electron beam current applied to an electron gun. | 04-05-2012 |
20120086364 | PARTICLE BEAM COUPLING SYSTEM AND METHOD - Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole (RFQ). Coupling of the charged particle beam is accomplished, at least in-part, by relying on sensitivity of the RFQ to energies of the incoming charged particle beam. A portion of a charged particle beam, which has an initial energy outside a range of RFQ's acceptance energy values, is subjected to a field that modifies its energy to fall within the range of RFQ's acceptance energy values. Once the field is removed, the charged particle beam returns to the initial energy that is outside of the RFQ' range of acceptance energy values. In another configuration, a portion of a charged particle beam, which has an initial energy within the range of RFQ's acceptance energy values, is subjected to a field that modifies its energy to fall outside the range of acceptance energy values of the RFQ. | 04-12-2012 |
20120126727 | Sub-Nanosecond Beam Pulse Radio Frequency Quadrupole (RFQ) Linear Accelerator System - Sub-nanosecond single ion beam pulses are generated by means of one embodiment of the invention. In this embodiment, an ion source provides ions to a radio frequency quadrupole linear accelerator comprising electrodes. A power source is used to apply radio frequency alternating currents to the electrodes. A device is used to inject ions from the ion source to the accelerator, causing the accelerator to provide only a single sub-nanosecond output beam pulse at a time. | 05-24-2012 |
20120146553 | Blumlein Assembly with Solid State Switch - A blumlein assembly incorporating a solid-state switch is presented. In the exemplary embodiment, a semiconductor switch is placed between first and second conducting strips, with dielectric material filling in the space between the strips on either side of the switch. A third conductive strip, parallel to the other two strips, is separated from the middle one of the strips by another dielectric layer. Rather than having the switch attach directly to the dielectric material on either side, a holder or carrier structure is used, which may be formed of several pieces or of a monolithic structure. The holder is formed of a material whose dielectric constant is closer to that of the switch than the dielectric material on either side, but whose boundary with the dielectric on either side has at least a portion that extends in a non-orthogonal direction with respect to the conducting strips. The arrangement allows the structure to withstand higher electric field levels without breakdown. The exemplary switch is light activated and the holder structure also includes ferrules on either side of the holder, by which optic fibers can be optically coupled with the switch. The switch extends to either side beyond the conductive strips, so that the ferrules are not placed between these strips to again allow for the use of higher field values. | 06-14-2012 |
20120187872 | SYSTEM TO IMPROVE FUEL ECONOMY AND REDUCE A PLURALITY OF TOXIC GAS EMISSIONS IN A MOTORIZED VEHICLE THROUGH UTILIZING ENERGY CONTAINED IN A QUANTUM VACUUM - The present invention is a system to improve fuel economy of a vehicle with an internal combustion engine or an electric engine. The system includes a base, a primary energy absorption mechanism to attract and store energy contained in a quantum vacuum and a plurality of fasteners that are utilized to removably secure the system to the vehicle hood or the electrical engine. The system also includes a pair of hybrid ceramic magnets that are disposed within the primary energy absorption mechanism, a pair of metal plates and a linear particle accelerator that has variable field strength and is positioned within the primary energy absorption mechanism that includes a signal transmitter. | 07-26-2012 |
20120200238 | Microwave Device for Accelerating Electrons - A microwave device for accelerating electrons includes an electron gun providing an electron beam along an axis in a microwave structure for accelerating the electrons of the beam, an input for the electron beam, an output for accelerated electrons, and a series of coupled cavities along said axis, of central resonant frequency, an input for a microwave signal for excitation of the microwave structure by one of the cavities, a radiofrequency generator providing the excitation microwave signal to the acceleration microwave structure, and a central unit controlling the variation of energy of the electrons at the output of the microwave structure. The radiofrequency generator comprises a frequency control input for changing the frequency of the excitation microwave signal around the central resonant frequency, the change producing a variation of the energy of the accelerated electrons of the beam at the output of the microwave structure. | 08-09-2012 |
20120229053 | Ultra-high vacuum photoelectron linear accelerator - A photoelectron linear accelerator for producing a low emittance polarized electron beam. The linear accelerator includes a tube having a cylindrical wall, said wall being perforated to allow gas to flow to a pressure chamber containing ultra high vacuum pumps located outside the accelerator. The RF accelerator cavity comprises of two concentric cylindrical regions having different outside diameters and different lengths. | 09-13-2012 |
20120229054 | RF Cavity and Accelerator having Such an RF Cavity - An RF cavity includes a chamber, a conductive wall that encloses the chamber and has an inner side and an outer side, a switch arrangement comprising a plurality of solid-state switches arranged along a circumference of the wall around the chamber, wherein the solid-state switches are connected to the conductive wall such that RF currents are induced in the conductive wall when the switch arrangement is activated, as a result of which RF power is coupled into the chamber of the RF cavity, and a shielding device located on the outer side of the conductive wall, along a circumference of the RF cavity, the shielding device configured to increase the impedance of a propagation path of RF currents along the outer side of the wall such that the RF currents coupled into the wall are suppressed on the outer side of the wall. | 09-13-2012 |
20120235602 | Linear accelerator - The present invention provides a linear accelerator in which a rotatable conductive vane is employed to vary the electromagnetic coupling between adjacent accelerating cells. The vane is sealed off from the rest of the linear accelerator by an insulating partition, so the pressure around the vane can be higher than in the rest of the accelerator. This greatly simplifies the mechanisms which may be used to control the rotation of the vane, allowing a higher bakeout temperature in manufacture and a higher rate of rotation in use. | 09-20-2012 |
20120235603 | ACCELERATOR AND METHOD FOR ACTUATING AN ACCELERATOR - An accelerator for accelerating charged particles includes at least two RF resonators which are arranged successively in a beam propagation direction and configured to accelerate a pulse train comprising a plurality of particle bunches, each RF resonator generating an RF field, and a control apparatus for actuating the RF resonators, wherein the control apparatus is configured to set the RF fields generated by the RF resonators independently of one another during the acceleration of the pulse train, such that the plurality of particle bunches of the pulse train experience different accelerations during the acceleration of the pulse train. Further, a method for actuating an accelerator for accelerating charged particles having at least two RF resonators arranged successively in the beam propagation direction and with which a pulse train comprising a plurality of particle bunches is accelerated, includes, during the acceleration of the pulse train, independently controlling the RF fields generated by the at least two RF resonators such that the plurality of particle bunches of the pulse train experience different accelerations during the acceleration of the pulse train. | 09-20-2012 |
20120280640 | LINEAR ACCELERATOR - A method for pulsed operation of a linear accelerator includes generating pulses of charged particles. The generating includes emitting particles by a particle source and accelerating the particles in an accelerator device that includes a plurality of linked cavity resonators. The accelerator device is supplied with energy by an energy supply unit. Particle energy is changed solely by varying a number of particles emitted by the particle source per pulse. | 11-08-2012 |
20120313555 | INTERLEAVING MULTI-ENERGY X-RAY ENERGY OPERATION OF A STANDING WAVE LINEAR ACCELERATOR USING ELECTRONIC SWITCHES - The disclosure relates to systems and methods for fast-switching operating of a standing wave linear accelerator (LINAC) for use in generating x-rays of at least two different energy ranges with advantageously low heating of electronic switches. In certain embodiments, the heating of electronic switches during a fast-switching operation of the LINAC can be kept advantageously low through the controlled, timed activation of multiple electronic switches located in respective side cavities of the standing wave LINAC, or through the use of a modified a side cavity that includes an electronic switch. | 12-13-2012 |
20130038248 | DRIFT-TUBE LINEAR ACCELERATOR - A drift-tube linear accelerator that passes an injected particle beam through inside a plurality of cylindrical drift-tube electrodes arranged in a cylindrical cavity in a particle beam traveling direction and accelerates the particle beam by a radio-frequency electric field generated between the plurality of cylindrical drift-tube electrodes, wherein at least part of a focusing device for focusing the particle beam is disposed inside an end drift-tube electrode that is arranged nearest the injection side of the cylindrical cavity among the plurality of cylindrical drift-tube electrodes, with the focusing device being positionally adjustable independently of the end drift-tube electrode. | 02-14-2013 |
20130063052 | INTERLEAVING MULTI-ENERGY X-RAY ENERGY OPERATION OF A STANDING WAVE LINEAR ACCELERATOR - The disclosure relates to systems and methods for interleaving operation of a standing wave linear accelerator (LINAC) for use in providing electrons of at least two different energy ranges, which can be contacted with x-ray targets to generate x-rays of at least two different energy ranges. The LINAC can be operated to output electrons at different energies by varying the power of the electromagnetic wave input to the LINAC, or by using a detunable side cavity which includes an activatable window. | 03-14-2013 |
20130181637 | High Voltage RF Opto-Electric Multiplier for Charge Particle Accelerations - Circuitry is presented for use in the pulse-forming lines of compact linear accelerators of charged particles. This presents devices that can provide high-voltage radio-frequency pulses in the range of from a few volts to megavolts for charged particle accelerators. The devices can use as input an external charge voltage and an optical pulse to create output RF pulses with a peak voltage that is increased over the input voltage. The exemplary embodiment presents a circuit of pulse forming lines for compact linear accelerator that includes an opto-switch and RF transmission lines that form a pulse shaper and a ladder-like pulse multiplier unit, with or without an output shaper. | 07-18-2013 |
20130221876 | SWITCHING ARRANGEMENT - A switching arrangement for applying voltage pulses across a load, comprising a plurality of capacitive elements (C | 08-29-2013 |
20130328506 | DRIFT TUBE LINEAR ACCELERATOR - According to the drift tube linear accelerator of the invention, its acceleration cavity is configured with a center plate and a pair of half cylindrical tubes, wherein the center plate includes a ridge, stems connecting the ridge and drift tube electrodes, and the drift tube electrodes, and wherein the acceleration cavity is configured, as seen in cross section perpendicular to a beam-acceleration center axis, whose inner diameter in X-direction that is perpendicular to a central axis in planar direction in which the stem of the center plate extends and that is passing through the beam-acceleration center axis, is longer than whose inner diameter in Y-direction parallel to the central axis in planar direction. | 12-12-2013 |
20140084815 | Layered Cluster High Voltage RF Opto-Electric Multiplier for Charged Particle Accelerators - Circuitry is presented that can provide high-voltage radio-frequency pulses in the range of from a few volts to megavolts for charged particle accelerators. Individual pulse forming sections, such as transmission line transformers (TLTs) or blumleins, are formed in clusters. The pulse forming sections of each cluster are connected in series and have transmission lines ending in a ring structure. Multiple clusters can then be arranged with their rings aligned along the axis of the accelerator. | 03-27-2014 |
20140125254 | ACCELERATING STRUCTURE - The present invention provides an accelerating structure capable of increasing a degree of vacuum at a middle part inside the accelerating structure while confining an alternating electric field to the inside. An accelerating structure | 05-08-2014 |
20140265939 | Dual Polarity Transmission Line - A dual polarity transmission line structure that can provide high-voltage pulses of very short duration, such as can be incorporated in a compact accelerator of charged particles as well as other applications, is presented. The exemplary structure has a transmission line, formed a pair of conducting strip with dielectric between them, and a pair of switches. Each of the switches is connected between one of the conducting strips and a charging section, so that when the switches are off, the capacitor plates that are respectively connected to a first and a second of the switches are charged to voltage levels above and below the level at which the first and second conductive strips are set. A pulse is then generated by turning on the switches. Multiple such structures can be stacked to provide a pulse generating system. | 09-18-2014 |
20150015167 | SELF-SHIELDED VERTICAL PROTON-LINEAR ACCELERATOR FOR PROTON-THERAPY - A linear proton accelerator includes a plurality of accelerator components arranged after one another, and a proton source and a plurality of accelerating units. The accelerator further includes a reticular support structure for supporting the accelerator components. The support structure is shaped as a prism with a polygonal cross-section, and has a plurality of side faces joining opposite ends of the prism. The support structure is arranged concentrically with respect to the accelerator components. | 01-15-2015 |
20150084550 | ELECTRON LINEAR ACCELERATOR SYSTEMS - The present disclosure discloses an electron linear accelerator system. In the present disclosure, a fast-switching dual-path microwave system is proposed, wherein, one path can be directly connected to an accelerating tube, and the other path can be input into the accelerating tube after a magnitude of the microwave power is changed by devices such as an attenuator, a power divider, a pulse compressor or even an amplifier etc., so as to achieve fast switch of the power input into the accelerator and adjust the energy output by the accelerator. | 03-26-2015 |
20150313001 | LINEAR ACCELERATOR - A linear accelerator is disclosed, having a series of interconnected cavities through at least some of which an rf signal and an electron beam are sent, comprising at least one variable coupler projecting into the a cavity of the series, a control apparatus adapted to interpret an electrical signal from the coupler and derive diagnostic information as to the electron beam therefrom, wherein the control apparatus is further adapted to vary the interaction of the at least one coupler with the rf signal in dependence on the diagnostic information. Thus, the accelerator properties can be adjusted by encouraging or inciting an Higher-Order Mode (“HOM”) having a desired effect such as bunching and/or deflecting. The coupler could be rotateable, and partially or fully retractable, to allow its influence to be adjusted and/or for it to be removed from service when not needed. Several such probes could be available, approaching the cavity from different directions or at different locations, or approaching different cavities. The coupler can be asymmetric, in order to exert an appropriate influence on the cavity and provoke a useful HOM. For example, it can be elongate with at least one directional deviation, such as a hockey stick. Generally, however, the appropriate shape for the coupler will be dependent on the shape of the cavity with which it is working and the specific HOMs that are to be excited. | 10-29-2015 |
20150359080 | Traveling wave linear accelerator with RF power flow outside of accelerating cavities - A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide. | 12-10-2015 |
20160174355 | GENERATION AND ACCELERATION OF CHARGED PARTICLES USING COMPACT DEVICES AND SYSTEMS | 06-16-2016 |
20170238408 | HIGH FREQUENCY COMPACT LOW-ENERGY LINEAR ACCELERATOR DESIGN | 08-17-2017 |