Class / Patent application number | Description | Number of patent applications / Date published |
310184000 | Plural field windings | 24 |
20080197740 | Modular motor or alternator assembly - A modular motor or alternator assembly which comprises an alternator or a motor having a rotor with longitudinal lobes and no windings, commutators, slip rings, magnets, or laminations. A number of modules are provided including two end bell modules, a stator and field coil module, a field coil module, and a stator module. A plurality of stator and field coil modules, field coil modules, and stator modules may be combined with the two end bell modules and a rotor to create a wide variety of motors or alternators having using combinations of standard modules. For instance, motor of various horsepowers can be created using multiple standardized modules. | 08-21-2008 |
20080224560 | Electric Machine and Manufacturing Process for Same - To provide an electric machine capable of being improved in both fabricability and reliability, and a process for manufacturing the machine. | 09-18-2008 |
20090243417 | SINGLE STAGE STARTER/GENERATOR WITH ROTOR QUADRATURE AC EXCITATION - When driven by a variable speed prime mover, a generator system provides relatively constant frequency AC power by independently controlling the main rotor flux rotational speed. The generator system includes an exciter stator that induces current in the exciter rotor windings at a desired frequency and phasing. The exciter rotor windings are electrically connected to and located in a common core as the main rotor windings to provide two-phase excitation current to the main rotor windings. The exciter stator winding is also located in a common core as the main generator stator windings. Excitation is supplied to the exciter stator from an exciter controller, which controls the frequency and phasing of the exciter excitation, based on the rotational speed and rotor position of the generator, to maintain a constant output frequency. The exciter frequency control function of the exciter controller may be eliminated when the generator system is driven by a constant speed prime mover or when a narrow band variable frequency output is required. | 10-01-2009 |
20110278979 | Electric motor comprising an inductor with a superconducting element incorporated between coils - An electric motor includes a magnetic field induction device and an induced field device, rotating relative to one another, wherein the induction device comprises a set of two conducting coils around an axis, through which currents travel in the same direction, and a central part, placed between the two coils, comprising a superconducting element placed in a plane that is inclined relative to the axis of the coils, channeling the magnetic field produced by the coils on either side of the inclined plane. | 11-17-2011 |
20120256510 | ROTARY ELECTRIC MACHINE - A rotary electric machine includes a stator that creates a rotating magnetic field, and a rotor around which a rotor winding is wound so that induced electromotive force is created by a harmonic component of the rotating magnetic field, and in which a magnetic pole is created through the induced electromotive force. The stator has an auxiliary pole that is a leading portion that leads the harmonic component from the stator to the rotor. | 10-11-2012 |
20130043759 | POLYPHASE DYNAMOELECTRIC MACHINES AND STATORS WITH PHASE WINDINGS FORMED OF DIFFERENT CONDUCTOR MATERIAL(S) - A stator for a polyphase dynamoelectric machine includes a stator core and windings positioned about the stator core. The windings include at least a first phase winding and a second phase winding. The first phase winding is formed of at least one electrical conductor material that is not present in the second phase winding. | 02-21-2013 |
20130119813 | COIL WINDING METHODS AND STRUCTURES FOR A SLOTLESS STATOR IN A MOTOR - A method for making a poly-phase field winding for a slotless stator includes: forming the first coil group by winding an insulated wire for each coil winding in a first direction around a mandrel; axially shifting along the mandrel the insulated wire from a trailing edge of each coil winding a distance substantially equal to one half of twice the number of coil groups multiplied by the number of coil windings minus one times the width of one of the completed windings to position the wires at a leading edge of each of coil winding in the second coil group; forming the second coil group by winding the insulated wire for each coil winding in the first direction; removing the mandrel from the wound coil groups; collapsing the wound coil groups to a single layer web, and wrapping the single layer web into a cylinder to form the field winding. | 05-16-2013 |
20130187509 | STATOR FOR ELECTRIC ROTATING MACHINE AND METHOD OF MANUFACTURING THE SAME - Disclosed is a method of manufacturing a stator for an electric rotating machine. The method includes the steps of: (1) forming a plurality of planar electric wires, each of the planar electric wires including a plurality of in-slot portions to be received in slots of a stator core and a plurality of turn portions to be located outside of the slots to connect the in-slot portions; (2) rolling each of the planar electric wires through plastic deformation into a spiral or circular-arc shape; (3) forming a hollow cylindrical stator coil by assembling the rolled electric wires through operations of making relative axial movement therebetween; and (4) assembling the stator core and the stator coil together to form the stator. | 07-25-2013 |
20130249344 | HOLLOW-CYLINDRICAL CORELESS WINDING - Exemplary embodiments relate to a hollow-cylindrical coreless winding for an electric motor. The winding includes a plurality of single coils which are distributed across the circumference of the winding, wherein each single coil includes a plurality of turns which are spirally wound around a winding axis which is perpendicular to an axis of the winding. Successive single coils overlap in a roof tile manner. The winding includes at least two phase windings, each of the phase windings consisting of several ones of the single coils. The phase windings are offset with respect to each other in the circumferential direction of the hollow-cylindrical winding, so that the single coils of a first phase winding are disposed in the circumferential direction of the hollow-cylindrical winding between the single coils of a second phase winding. Each of the phase windings is wound from a continuous wire. | 09-26-2013 |
20130300244 | DYNAMOELECTRIC MACHINE - A U phase winding, an X phase winding, a V phase winding, a Y phase winding, a W phase winding, and a Z phase winding are configured by mounting conductor wires so as to alternate repeatedly between 5π/6 short-pitch windings and 7π/6 long-pitch windings, and are mounted into the stator core in that order so as to be stacked sequentially in a radial direction so as to be offset by one slot each in a first circumferential direction. | 11-14-2013 |
20130328435 | METHOD FOR PRODUCING A STATOR WINDING OF AN ELECTRIC MACHINE, IN PARTICULAR FOR PRODUCING AN AC GENERATOR - Method for producing a stator winding ( | 12-12-2013 |
20140159536 | MAGNET WIRE WITH SHIELDED HIGH TEMPERATURE PERFLUOROPOLYMER INSULATION - An electrical submersible pumping system includes a pump assembly and a motor assembly. The motor assembly includes a plurality of stator coils and each of the plurality of stator coils comprises magnet wire. The magnet wire includes an inner insulation layer and an outer protective layer. The inner insulation layer is preferably constructed from a high-temperature, epitaxial co-crystallized perfluoropolymer that exhibits favorable resistance to elevated temperatures. The outer protective layer shields the inner insulation layer from mechanical abrasion and contaminants. | 06-12-2014 |
310185000 | Plural sets of poles | 7 |
20100026131 | BRUSHLESS ALTERNATOR WITH CLAW POLE ROTOR - It is designed for accumulator batteries charging and for electrical energy generating with rectified voltage for movable and unmovable vehicles and/or objects. | 02-04-2010 |
20110241471 | ROTOR OF ELECTRIC ROTATING MACHINE - A rotor of alternator has core layer units serially located along axial direction. Each unit has a field coil generating magnetic flux and two rotor cores receiving the flux on respective sides of the coil in axial direction. Each core has a first yoke portion located on inner side of the coil, a second yoke portion extending from the first yoke portion toward the outer side and magnetic poles extending from the second yoke portion in the axial direction. The poles of one core and the poles of the other core in each unit extend toward different axial sides and are alternately arranged in circumferential direction on the outer side of the coil. A ratio of the outer circumferential diameter of the first yoke portions to the rotational diameter of the poles is lower than 0.54. | 10-06-2011 |
20120007459 | Rotating Electric Machine for Generating a Constant Frequency AC Power Supply from a Variable Speed Primemover - Disclosed is a rotating electric machine for generating a constant frequency AC power supply from a variable speed primemover including: a stator wound with two sets of isolated polyphase windings having the same number of poles, with the polyphase windings located at about 90 degree displacement in space between them, and a rotor wound with two sets of isolated polyphase windings having the same number of poles and placed at about 90 degree displacement in space between them. The rotor has two winding terminals interconnected either internally or externally to the machine with mutually reverse phase sequence. When one set of stator winding is energized by an AC power supply of a given frequency and voltage, and the rotor shaft is rotated by an external means in the same direction as that of the rotating field of the stator. | 01-12-2012 |
20120228980 | TWO-PHASE BRUSHLESS DC MOTOR - A brushless motor includes a two-phase winding stator having 4×n winding poles and auxiliary poles provided between the winding poles, and a rotor constituted by 6×n permanent magnet rotating poles having divided angle. The two-phase brushless motor can be driven by a control device for the two-phase motor which can transform electric power and rectify electronically. The two-phase brushless DC motor can increase a permeance coefficient of the rotor, improve the efficiency and the starting of the motor, and reduce torque ripple and noise thereof. | 09-13-2012 |
20140184011 | Stator for Rotating Electrical Machine and Rotating Electrical Machine - A stator for a rotating electrical machine includes a stator core including a plurality of slots arrayed in a circumferential direction and a stator winding formed of a conductor having a rectangular cross section and an insulation coating. The stator winding is configured to be inserted in the slot. The stator winding includes a first, a second, and a third phase windings constituted by connecting a plurality of segment coils formed in an approximate U-shape. The stator winding also includes a first neutral wire formed of a single continuous conductor extending across a first slot and a second slot, and configured to connect the first phase winding and the second phase winding. The stator winding further includes a second neutral wire pulled out from a third slot and configured to connect the third phase winding and the first neutral wire. | 07-03-2014 |
20140292134 | ROTATING ELECTRICAL MACHINE - This rotating electrical machine has a rotor, stator core, field windings for multiple poles, and armature windings for the multiple poles. The rotor is rotatably supported about a shaft. Convex-shaped multiple salient pole sections are formed on the outer circumference of the rotor while arranged in the circumferential direction. The stator core is provided along the outer circumference of the rotor with an air gap from the rotor. Convex-shaped multiple teeth are formed on the inner circumference of the stator core while arranged in the circumferential direction. The field windings for the multiple poles are wound around each of the multiple teeth while insulated from the field windings. | 10-02-2014 |
20160380497 | MOTOR HAVING FIGURE 8-SHAPED LINKED COILS AND METHOD FOR MANUFACTURING THE SAME - In a motor, the number of slots 6N divided by the number of pole pairs P (2N>P) of a rotor is an irreducible fraction, when a quotient obtained by dividing 6N by 2P is denoted by X, 2N coils per phase are arranged in the slots of the stator, one and another one of the coils connected in series thereto are arranged overlapping in one center slot while sharing one side with aligned current directions, opposite sides of the two coils not sharing the slot are each arranged in other ones of the slots at a distance by X from the center slot, so that the two coils are arranged while being linked in a | 12-29-2016 |
310186000 | Interpole, compensating or neutralizing poles | 1 |
20090189473 | BRUSHLESS MOTOR SYSTEM FOR A VEHICLE FUEL PUMP - A rotor for a brushless motor is resistant to degradation in alternative fuels and has desirable magnetic properties. A stator for a brushless DC motor includes coils wound both clockwise and counterclockwise around teeth of a back iron. Pairs of the coils are electrically connected in parallel. | 07-30-2009 |
310187000 | Slotted or divided pole | 4 |
20100066193 | STATOR OF ELECTRIC ROTATING MACHINE AND WINDING METHOD THEREOF - In a stator of an electric rotating machine such as a motor, there is provided with laminated 24 yoke pieces that form a yoke of circular shape when assembled and the yoke pieces are made rotatable relative to each other. Similarly laminated 24 teeth are each connected to each of the yoke pieces and a winding is wound on the teeth. In the stator, the teeth radially protrude inward in the yoke when the yoke pieces are assembled as the yoke such that some gap between adjacent teeth can be widened than others. Specifically, each of the yoke pieces has a first plate bored with a hole and a second plate formed with a projection and the plurality of the yoke pieces are rotatably connected through the holes and the projections to enable some gaps to be widened than others | 03-18-2010 |
20120161567 | STATOR FOR ELECTRIC ROTATING MACHINE AND METHOD OF MANUFACTURING THE SAME - A stator includes a stator core and a stator coil formed of electric conductor segments. Each of the electric conductor segments has a pair of in-slot portions, a first end portion, and a pair of second end portions. The in-slot portions are respectively received in corresponding two slots of the stator core. The first end portion extends, on one axial side of the stator core, to connect the in-slot portions. The second end portions extend respectively from the in-slot portions on the other axial side of the stator core. Each of the second end portions includes an oblique part and a distal part. The oblique part extends obliquely with respect to an axial end face of the stator core. Corresponding pairs of the distal parts of the electric conductor segments are joined by welding. The oblique parts of the electric conductor segments have a higher hardness than the in-slot portions. | 06-28-2012 |
20140042862 | Stator and Rotating Electric Machine - A stator includes: a stator core with N pieces of slots ranging along an axial direction, which are formed side-by-side along a circumferential direction; and a stator winding installed in the slots at the stator winding. The stator winding includes a plurality of winding groups, each made up with N pieces of lap-wound coils each formed by winding a conductor wire a plurality of times. The winding groups are disposed in a plurality of layers set side-by-side along a radial direction at the stator core. One coil side at each of the lap-wound coils is inserted in a specific slot on an inner side along the radial direction in a specific layer and another coil side of the lap-wound coil is inserted in another slot on an outer side along the radial direction in the specific layer. | 02-13-2014 |
20140091666 | Direct Drive Segmented Generator - The present invention relates an electrical machine comprising a plurality of stator segments;each segment has a plurality of electrical phase windings embedded in stator slots in a phase sequence, wherein the phase of the first slot of a segment is different from the phase of the first slot of an adjacent segment. | 04-03-2014 |