Class / Patent application number | Description | Number of patent applications / Date published |
310156490 |
Radial flux path and radially positioned pole shoes
| 177 |
310156550 |
Circumferential flux path and circumferential pole shoes
| 38 |
310156640 |
Axially magnetized with pole shoes at both ends | 3 |
20090134733 | Vibration generating stepping motor - Provided is a vibration generating stepping motor, which is ensured for holding a stop position by increasing a detent torque. The pole teeth of one stator yoke of a single-phase stator yoke assembly includes two kinds of pole teeth made different in the outermost side faces in the radial direction, and the pole teeth of the other stator yoke are comprised of two kinds of pole teeth made different in the outermost side faces in the radial direction. The pole teeth of one kind of the aforementioned individual stator yokes are made to have the same shape. The pole teeth of the remaining two kinds not given the same shape are combined and arranged to increase the detent torque. | 05-28-2009 |
20090174277 | GENERATOR AND MAGNETIC FLUX CONDUCTING UNIT - The invention relates to a generator, to a magnetic flux conducting unit for a generator, and to a power generation machine comprising such a generator. In an embodiment of the invention, a generator is disclosed which comprises at least one coil assembly and at least one magnetic flux conducting unit. The magnetic flux conducting unit comprises at least one magnet, a pair of opposed magnetic flux conducting elements defining a space therebetween for receiving the coil assembly, and at least one connection portion extending between the opposed magnetic flux conducting elements. The at least is arranged relative to the opposed magnetic flux conducting elements such that the magnetic attraction forces between the elements are redacted through and balances with the connection portion. | 07-09-2009 |
20130134820 | ROTOR AND ROTARY ELECTRIC MACHINE CONTAINING THE SAME - A rotor and a rotary electric machine containing the rotor are provided. The rotor includes a shaft, a rotor core coaxially connected to the shaft, a first axial magnetic steel and a second axial magnetic steel disposed at an end surface of the rotor core, a rotor bushing, and a first magnetic isolation groove. The first axial magnetic steel has a first magnetic pole facing the rotor core. The second axial magnetic steel has a second magnetic pole facing the rotor core. The rotor bushing is disposed at a side of the first and second axial magnetic steels opposite to the rotor core. The first magnetic isolation groove is formed in the rotor core along a radius direction of the rotor core. The first magnetic isolation groove is disposed between the first axial magnetic steel and the second axial magnetic steel to isolate the first pole and the second pole. | 05-30-2013 |
310156620 |
Axially magnetized with poles shoes at one end | 2 |
20080224559 | BRUSH-LESS MOTOR AND ELECTRIC POWER STEERING DEVICE HAVING BRUSH-LESS MOTOR - A permanent magnet included in a rotor of a brush-less motor is a radial anisotropic magnet in which multi-poles are magnetized in the circumferential direction and is skew magnetized along the axial direction in such a manner that a surface to one end part of an upper side from a central part in the axial direction and a surface to an end part of a lower side from the central part are axially shifted by a predetermined angle in the circumferential direction from each other. In accordance with this skew-magnetization, coggings including irregularly varying components generated in the rotor owing to the three-dimensional shapes of coil ends provided at opposite ends of a tooth | 09-18-2008 |
20090091205 | SINGLE FIELD ROTOR MOTOR - A single field rotor motor comprising a rotor mounted for rotation with respect to a stator. The stator has a plurality of stator poles each having a coil for creating a magnetic pole force. The rotor has a plurality of circumferentially spaced salient rotor poles formed thereon, and has a first axial end and a second axial end. Magnetic means are provided for creating an unchanging, single polarity field on all of the rotor poles by inducing flux into the axial ends of the rotor. Circuit means for alternately charge said stator coils to alternate the polarity of a given stator pole to alternately attract and repel said rotor poles to produce rotation of said rotor. | 04-09-2009 |
Entries |
Document | Title | Date |
20090009022 | Rotary Electrical Machine Including Pole Pieces And Permanent Magnets - The present invention relates to a rotary electrical machine comprising:
| 01-08-2009 |
20090167103 | PERMANENT MAGNET ASSEMBLY AND METHOD OF MANUFACTURING SAME - A permanent magnet rotor assembly includes a rotor and a plurality of permanent magnet pole assemblies positioned against the rotor. Each of the permanent magnet pole assemblies includes a magnetic block and an encapsulating member that completely encapsulates the magnetic block. | 07-02-2009 |
20110062813 | Permanent Magnet Electric Rotating Machine and Electromotive Vehicle Using Permanent Magnet Electric Rotating Machine - A magnetic gap is provided between a permanent magnet of a rotor and an auxiliary magnet pole portion which is arranged adjacent to the permanent magnet in a peripheral direction. A gradual change in a magnetic flux density distribution of a surface of the rotor is obtained and a cogging torque and a torque pulsation are restrained. By obtaining a reluctance torque according to the auxiliary magnetic pole, a permanent magnet electric rotating machine in which the cogging torque and the torque pulsation are restrained can be obtained and further an electromotive vehicle having the permanent magnet electric rotating machine can be provided. | 03-17-2011 |
20110285238 | DOUBLE-STATOR MOTOR - In a double-stator motor has a rotary shaft, an annular rotor is coupled with a rotary shaft. First and second three-phase stators are arranged inside and outside to the rotor in the radial direction and formed to generate first and second rotating magnetic fields in response to three-phase currents, respectively. The rotor has an even number of segment poles made of soft magnetic material and arranged mutually separately at positions of the rotor. The positions are equally distanced apart from the rotary shaft in the radial direction and in the circumferential direction. Each of the first and second three-phase stators has magnetic poles which are the same in the number of poles as the segment poles and the magnetic poles are positioned such that magnetomotive forces from the magnetic poles are faced to each other between the magnetic poles of the first and second three-phase stators. | 11-24-2011 |
20120139380 | MOTOR SYSTEM - In a motor system, a motor includes a rotor and a stator. The rotor includes magnet poles and consequent poles. The stator includes a stator core and a stator coil that is comprised of first and second m-phase coils. The number of slots of the stator core provided per circumferentially-adjacent pair of the magnet and consequent poles is equal to 4 m. The phase windings of the first m-phase coil are alternately arranged with those of the second m-phase coil in a circumferential direction of the stator core. An inverter energizes the first and second m-phase coils to cause them to respectively create first and second spatial magnetic fluxes. Variation in a resultant spatial magnetic flux, which is the resultant of the first and second spatial magnetic fluxes, is less than variations in the first and second spatial magnetic fluxes in a circumferential direction of the rotor. | 06-07-2012 |
20120206008 | Method for Manufacturing an Inner Rotor for a Rotary Electric Machine - A method for manufacturing an inner rotor for a rotary electric machine, the rotor comprising a plurality of pole pieces surrounding a shaft, each pole piece being made from a stack of metal sheets ( | 08-16-2012 |
20120248918 | ROTOR FOR ELECTRIC ROTATING MACHINE AND METHOD OF MANUFACTURING THE SAME - A rotor includes a rotor core comprised of steel sheets that are laminated in the axial direction of the rotor core and a rotating component configured to rotate together with the rotor core. Each of the steel sheets has a positioning portion for circumferentially positioning the steel sheet with respect to the rotating component and is formed of a rolled steel material. For each of the steel sheets, the direction of rolling of the steel sheet is circumferentially offset from both imaginary lines X and Y by predetermined angles. Each of the steel sheets is shaped so that the circumferential position of the positioning portion thereof remains unchanged when the steel sheet is front-back inverted about the imaginary line X. When viewed along the axial direction, at least one of the steel sheets is front-back inverted with respect to and thus forms a mirror image of the other steel sheets. | 10-04-2012 |
20130038165 | MOTOR STRUCTURE - A motor structure including a stator assembly having a stator core and a winding and a rotor assembly embedded therein having a rotor core and a permanent magnet. The stator core includes a yoke and a plurality of teeth protruding inwards from the yoke. Two adjacent teeth form a wire embedding slot and the winding is placed inside the wire embedding slot and winds around the teeth. The rotor core includes an annular ring having a central axial pore and a plurality of magnetic induction blocks protruding outwards from an outer side of the annular ring. Two adjacent magnetic induction blocks form a radial recess for mounting the permanent magnet. The section of an outer side surface of the magnetic induction blocks is a circular-arc line. The outer side surface employs a point with a distance deviating from the center of the central axial pore as a center of circle. | 02-14-2013 |
20130207501 | ROTARY ELECTRIC MACHINE - A rotary electric machine includes a rotor core in which first magnetic pole portions having permanent magnets and second magnetic pole portions having no permanent magnets are alternately arranged in a circumferential direction. Each of the second magnetic pole portions has at least one notch provided near the permanent magnet adjacent thereto. | 08-15-2013 |
20140049131 | ELECTRICAL MACHINE WITH MAGNETIC FLUX INTENSIFIER - An electrical machine has a stator-rotor configuration in which the rotor has at least two poles. The poles are configured to rotate in an angle and to electromagnetically interact with one or more teeth that is a part of a stator adjoined in a fixed position to the electrical machine. The configuration forms a gap in the lateral direction between the poles and the teeth. At least one of the poles is formed of a permanent magnet material and a magnetic flux intensifier is arranged relative to at least one of the poles and one of the teeth. The magnetic flux intensifier is configured to concentrate the magnetic field lines between a pole and the teeth. | 02-20-2014 |
20140084734 | Rotating Electrical Machine, Method for Manufacturing Magnetic Pole Piece - The present invention, in a rotating electrical machine having a configuration in which a plurality of magnetic pole pieces is attached along outer perimeters of the rotating axis, provides a structure of rotating electrical machine with small cogging torque by providing a skew in magnetic pole pieces. The rotating electrical machine according to the present invention comprises a plurality of magnetic pole pieces disposed with a skew angle and a cylindrical attachment ring for attaching the magnetic pole pieces, wherein an engaging portion provided at outer perimeters of the attachment ring and an engaging portion included in the magnetic pole pieces are both extended along the rotating axis. | 03-27-2014 |
20140103773 | ELECTRICAL ROTOR AND STATOR STRUCTURE - An electrical rotor and stator structure includes at least one stator, at least one rotor and multiple outward pillar structures. The at least one stator includes multiple first magnetic members. Each first magnetic member has a first surface. The at least one rotor is able to be rotated pivotally relative to the at least one stator. The at least one rotor includes multiple second magnetic members. Each second magnetic member has a second surface facing and opposite to the first surface. The multiple outward pillar structures are installed on the second surfaces and the first surfaces. | 04-17-2014 |
20140117804 | Synchronous Motor - A synchronous motor includes a stator with a stator winding, and a rotor on which magnetic poles made of permanent-magnetic material are formed, each pole having a cambered outer contour, especially an outer contour cambered radially outwards, in particular, 2×p individual poles being salient in the circumferential direction, p being the number of pole pairs. | 05-01-2014 |
20140159531 | DRIVE MOTOR OF ECO-FRIENDLY VEHICLE AND ROTOR STRUCTURE OF THE DRIVE MOTOR - A drive motor that is used as a power source of an eco-friendly vehicle and a rotor structure of the drive motor, wherein the drive motor includes a rotor that has a rotation axis and a plurality of permanent magnets embedded within a rotor core. Each of the permanent magnets are divided into an even number of divided magnets. In addition, the drive motor includes a stator that has a plurality of cores in which teeth for winding coils are formed and a plurality of slots that are interposed among the plurality of cores. An electric steel sheet is filled between the divided magnets of each of the permanent magnets of the rotor. | 06-12-2014 |
20140300234 | ROTARY ELECTRIC MACHINE ROTOR POLE CONFIGURATION - A rotor for a rotary electric machine, the rotor including first and second pole pieces each having a respective magnetic hub arranged for rotation about an axis along which they are spaced. Pluralities of magnetic first and second pole fingers are spaced from each other and extend between the hubs. Each pole finger has a proximal end connected to its respective hub, and an axially opposite distal end. The first and second pole fingers circumferentially alternate about the axis, and each pole finger has a respective radially inner surface defining a cavity that extends axially from the distal end to a cavity terminus. Relative to each pole finger, at a respective axial position between the distal end and the cavity terminus the radial distance between the axis and the radially inner surface is substantially greater inside of the cavity than outside of the cavity. | 10-09-2014 |
20140300235 | ROTOR OF MOTOR AND MOTOR COMPRISING ROTOR - A rotor of a motor comprises a plurality of magnetic-pole sections including: a plurality of slots which are formed inside of a rotor core; and permanent magnets, at least one of which is inserted into each of the plurality of slots; wherein each of the magnetic-pole sections is formed to correspond to the at least one permanent magnet; and wherein the rotor core includes hollow portions formed by cutting portions of the rotor core which portions are between the magnetic-pole sections which are adjacent in the circumferential direction of the rotor core and are different in polarity such that portions of circumferential end portions of the permanent magnet are exposed, and extending portions each of which is formed in a position corresponding to the hollow portions and extends radially outward from a center portion of the rotor core. | 10-09-2014 |
20140368075 | PERMANENT MAGNET SYNCHRONOUS MACHINES WITH MAGNETIC FLUX REGULATION - An electrical machine has a permanent magnet component and a winding armature. The permanent magnet component is spaced apart for the winding armature. The winding armature includes a field excitation winding operative connected to the permanent magnet component. The field excitation winding is configured to selectively intensify and de-intensify the magnetic field of the permanent magnet for control of magnetic flux in the electrical machine. | 12-18-2014 |
20150028710 | ROTOR FOR ROTATING ELECTRIC MACHINE, ROTATING ELECTRIC MACHINE, AND METHOD FOR MANUFACTURING ROTOR FOR ROTATING ELECTRIC MACHINE - Provided is a rotor for a rotating electric machine which includes: an N pole integrally-stacked core in which a plurality of stacked tooth portions that contact with N pole side portions of adjacent ones of first permanent magnets are integrated with each other; and an S pole integrally-stacked core in which a plurality of stacked tooth portions that contact with S pole side portions of adjacent ones of the first permanent magnets are integrated with each other, and in which the N pole integrally-stacked core and the S pole integrally-stacked core are disposed around a rotation shaft having a non-magnetic outer circumferential surface so as to dispose the first permanent magnets and a gap therebetween. | 01-29-2015 |
20150108868 | TORQUE RIPPLE REDUCTION IN ELECTRIC MACHINES - An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machine is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator. | 04-23-2015 |
20160087495 | ROTARY ELECTRIC MACHINE USING PERMANENT MAGNET - A permanent magnet type rotary electric machine has a stator, a rotor which is rotatably provided inside the stator, and permanent magnets arranged in a rotor core of the rotor. An angle θ between a straight line connecting the center of the rotor to a middle position between two permanent magnets arranged in the V shape, and a straight line connecting the center of the rotor to an outer circumferential top of one of the permanent magnets has the relation: 0.65<Θ(=θ/(180/P))<0.80 in which P is the number of poles in the rotor. When a rear depth of a slot of the stator core is D, and a burying depth of the permanent magnet in the radial direction of the rotor core is t, D/t=A has the relation: 0.8 | 03-24-2016 |
20160204662 | BRUSHLESS ELECTRIC MOTOR WITH AN OUTER ROTOR | 07-14-2016 |