Class / Patent application number | Description | Number of patent applications / Date published |
310156190 | With a wedge | 12 |
20110204740 | Internal Rotor for a Rotary Electric Machine with T-Shaped Magnet Wedges - A buried-magnet internal rotor ( | 08-25-2011 |
20110227441 | POLE RETENTION CONFIGURATION FOR ELECTRIC MACHINE ROTORS - A retention system in which rotor pole pieces are retained within complementarily shaped channels in a rotor hub, permanent magnets are secured between the pole pieces and within clamp members, and wedge-shaped pieces are used to apply positive locking forces along the axial length of each clamp member and of adjacent pole pieces. A curable resin preferably in disposed within gaps between the permanent magnets and the clamp members. | 09-22-2011 |
20120326548 | PERMANENT MAGNET ROTATING ELECTRICAL MACHINE - A permanent magnet rotating electrical machine includes a stator and a rotatable, approximately cylindrical rotor. The rotor includes a shaft, rotor cores, radial permanent magnets, and side plates. The shaft includes projected and depressed engagement portions. The rotor cores are separated from each other on a magnetic pole basis. The rotor cores constitute circumferentially arranged pole shoes. The radial permanent magnets are each on a circumferential side of a pole shoe among the pole shoes. Each of the radial permanent magnets is engaged with an engagement portion among the engagement portions of the shaft. The side plates are on axial ends of the rotor. The side plates support the rotor cores and the permanent magnets in a radial direction of the rotor. | 12-27-2012 |
20130069468 | PERMANENT MAGNET ROTOR - A permanent magnet rotor includes: a rotor core of a laminated structure about a rotation shaft; a plurality of permanent magnet embedment slots provided to the rotor core at equally spaced positions from the rotation shaft; and permanent magnets inserted into the respective permanent magnet embedment slots. The permanent magnet embedment slots each have a magnet storing portion and a buffer and other members storing portion continuing to the magnet storing portion. One permanent magnet is stored in the magnet storing portion and a buffer member and a pushing member used to fix the permanent magnet are stored in the buffer and other members storing portion. It thus becomes possible to provide a permanent magnet rotor capable of not only preventing damage on a permanent magnet by reducing resonance even when the magnet resonates under a vibration condition, but also enhancing mass-productivity. | 03-21-2013 |
20130241337 | Electrical Machines and Electrical Machine Rotors - Electrical machine rotors and electrical machines are disclosed. The electrical machine rotors may include a shaft, a pair of permanent magnets arranged to form a magnetic pole on the rotor, a pole iron, and a pair of opposed inter-pole irons. The pole iron may retain the pair of magnets against the inter-pole irons and relative to the shaft. The electrical machine rotors may be assembled into electrical machines that include the rotor and a stator that includes a stator iron and at least one coil. In some examples, the shaft may be hollow, nonmagnetic, fiber-reinforced, and/or fabricated at least partially from a composite material. | 09-19-2013 |
20130285499 | ROTOR MAGNET ENGAGEMENT ASSEMBLY - A rotor magnet engagement assembly includes a rotor base plate, a first magnetic interpole element, and a second magnetic interpole element. The first magnetic interpole element and the second magnetic interpole element are attached to the rotor base plate in such a manner that a gap is provided between the first magnetic interpole element and the second magnetic interpole element. The first magnetic interpole element, the second magnetic interpole element, and the rotor base plate form a recess, wherein the recess is adapted to receive a magnet in such a manner that the magnet is fixed to the rotor base plate. It is further described a method for manufacturing a rotor magnet engagement assembly, a rotor magnet arrangement, a rotor for an electromechanical transducer, and an electromechanical transducer. | 10-31-2013 |
20130307364 | SHAFT ATTACHMENT MEANS FOR HIGH EFFICIENCY PERMANENT MAGNET MACHINE WITH SEPARATED TAB POLE ROTOR - A permanent magnet motor, generator or the like that uses ceramic magnets in the rotor to concentrate the magnetic flux in the airgap. Magnet poles are formed by pole plates with tabs forming north and south poles with magnetic separators therebetween. Magnet sections are stacked axially. Connection to the shaft is made by means of a collet or other attachment method. | 11-21-2013 |
20130334923 | ROTOR FOR AN ELECTRIC MACHINE - A rotor for an electric machine has a rotor member extending circumferentially about the axis of rotation of the rotor, and a locking device in an axial end region of a guide to mount permanent magnets in the direction of the axis of rotation of the rotor. The locking device is retained on the rotor member in the radial direction and in the direction of rotation of the rotor by guides. The locking device has a movable movement element and is designed such that when the movement element is moved, the locking device is positively or non-positively connected to the rotor member. | 12-19-2013 |
20140167550 | MOTOR ROTOR AND MOTOR HAVING SAME - Disclosed are a motor rotor and a motor having same, wherein the motor rotor comprises an iron core ( | 06-19-2014 |
20150028709 | ELECTRIC ROTATING APPARATUS - According to one embodiment, there is provided an electric rotating apparatus including a permanent magnet type rotor in which wedge-shaped slots are formed on an outer circumferential portion of a rotor core along an axial direction of a rotor, and permanent magnets are fitted in the wedge-shaped slots, thereby forming a plurality of rotor magnetic poles. Nonmagnetic regions extending in the axial direction of the rotor core are formed between the plurality of rotor magnetic poles. | 01-29-2015 |
20160013690 | ROTATING ELECTRONIC MACHINE | 01-14-2016 |
20160190883 | FIXATION SYSTEM FOR A PERMANENT MAGNET ROTOR - A fixation system that is structured to secure one or more permanent magnets to a rotor core. The fixation system may include one or more retention wedges that exert an interference or press fit against the permanent magnets to secure the permanent magnets to the rotor core. At least a portion of the retention wedges may be secured within axially extending channels in the rotor core. Additionally, the permanent magnets may be separated from each other by eddy current shields, which may also be retained in position by the retention wedges. The fixation system may also include a magnet pressure or fixation sleeve that exerts a radially inwardly directed force against the magnets and is free from direct contact with the retention wedges. According to certain embodiments, the magnet pressure or fixation sleeve may be shrink fitted onto at least a portion of the rotor core and/or the permanent magnets. | 06-30-2016 |