Class / Patent application number | Description | Number of patent applications / Date published |
310156110 | Magnets in shaft | 20 |
20100019597 | ROTOR FOR A PERMANENT-MAGNET ELECTRICAL MACHINE - The object of the invention is a rotor for an electrical machine excited by permanent magnets, said rotor comprising a substantially cylindrical magnetic body of the rotor fitted onto the shaft of the electrical machine and a set of permanent magnets used to create a first and a second pole alternately in the circumferential direction, excited in opposite directions. The permanent magnets are fitted into openings arranged within the rotor. The rotor comprises a body part with several segments extending to the outer circumference in the circumferential direction and an outward tapered section remaining between the segments in the radial direction of the rotor. Permanent-magnet pieces are arranged between each section and segment. | 01-28-2010 |
20100079025 | Sintered Magnet and Rotating Machine Equipped with the Same - A sintered magnet and a rotating machine equipped therewith are disclosed, which include: crystal grains of a ferromagnetic material consisting mainly of iron, and a fluoride compound or an oxyfluoride compound, containing at least one element selected from the group consisting of an alkali metal element, an alkaline earth metal element, and a rare earth element, the fluoride compound or the oxyfluoride compound being formed inside some of the crystal grains or in a part of a grain boundary part. The oxyfluoride compound or the fluoride compound contains carbon, and a grain boundary width of the ferromagnetic material is smaller than a grain boundary width of the ferromagnetic material in which the fluoride compound or the oxyfluoride compound is formed. | 04-01-2010 |
20130127283 | ROTOR OF AN ELECTRIC MOTOR AND MANUFACTURING METHOD OF SAME - A rotor of an electric motor is provided in which a cylindrical rotor core that is formed by stacked magnetic steel sheets and includes permanent magnets is crimp-fixed to a rotor shaft. The rotor core is directly fixed, in the axial direction of the rotor shaft, between a flange portion that is provided on an outer periphery of the rotor shaft and abuts against one axial end surface of the rotor core, and a crimping member that is crimp-fixed on the rotor shaft while pressure-contacting the other axial end surface of the rotor core. | 05-23-2013 |
20130270955 | ELECTROMAGNETIC MACHINE - There is provided an electromagnetic machine ( | 10-17-2013 |
20130313933 | ROTOR OF MOTOR AND FAN DRIVING MOTOR INCLUDING ROTOR - Provided are a rotor of a motor capable of attaining a high-speed rotation by appropriately dispersing a stress exerted on a flux barrier portion while reducing a leakage of magnetic flux, and a fan driving motor including the rotor. A second inner wall surface is greater than a first inner wall surface in length in a cross-section perpendicular to a rotational axis (C). A side wall surface has a flux barrier wall surface extending from each of both ends of the second inner wall surface in the cross-section perpendicular to the rotational axis (C), the flux barrier wall surface extending outward relative to the second inner wall surface in an extending direction of the second inner wall surface and more distant from an outer edge of a rotor as it goes from the second inner wall surface toward the first inner wall surface in the cross-section perpendicular to the rotational axis (C). | 11-28-2013 |
20130313934 | ROTOR OF MOTOR AND FAN DRIVING MOTOR INCLUDING ROTOR - Provided are a rotor of a motor capable of attaining a high-speed rotation by appropriately dispersing a stress exerted on a flux barrier portion while reducing a leakage of magnetic flux, and a fan driving motor including the rotor. A second inner wall surface is greater than a first inner wall surface in length in a cross-section perpendicular to a rotational axis (C). A side wall surface has a flux barrier wall surface extending from each of both ends of the second inner wall surface in the cross-section perpendicular to the rotational axis (C), the flux barrier wall surface extending outward relative to the second inner wall surface in an extending direction of the second inner wall surface and more distant from an outer edge of a rotor as it goes from the second inner wall surface toward the first inner wall surface in the cross-section perpendicular to the rotational axis (C). The permanent magnets are placed such that radially outward polarities of two or more permanent magnets adjacent in the circumferential direction of the rotor are the same in a state in which the permanent magnets are inserted into the slots, respectively. | 11-28-2013 |
20140021817 | ELECTRIC MOTOR - An electric motor has a supplementary field magnet including a supplementary magnet, a yoke serving as a magnetic path for magnetic flux produced by the supplementary magnet. The supplementary field magnet is arranged on one axial end side of the rotor with a gap. A rotor core is provided with first projections projecting toward one axial end side of the electric motor from first magnetic pole portions having a first polarity, and second projections projecting toward the one axial end side from second magnetic pole portions having a second polarity, and arranged radially inward of the first projections. The yoke includes a magnetic pole portion axially opposed to the first projections and having the first polarity, and another magnetic pole portion axially opposed to the second projections and having the second polarity such that a gap is formed between the magnetic pole portions. | 01-23-2014 |
20140021818 | ELECTRIC MOTOR - An electric motor has a supplementary field magnet including a magnetization coil, a yoke serving as a magnetic path for magnetic flux produced by the magnetization coil, and a variable magnet. The supplementary field magnet is arranged on one axial end side of the rotor with a gap. A rotor core is provided with first projections projecting toward one axial end side of the electric motor from first magnetic pole portions, and second projections projecting toward the one axial end side from second magnetic pole portions and arranged radially inward of the first projections. The yoke includes an outer magnetic pole portion axially opposed to the first projections, and an inner magnetic pole portion axially opposed to the second projections such that an annular gap is formed between the inner magnetic pole portion and the outer magnetic pole portion. | 01-23-2014 |
20140028139 | PERMANENT MAGNET ROTOR WITH RESIN-COVERED MAGNET AND LAMINATION FOR THERMAL CONTROL - A method of forming a rotor includes placing a plurality of laminations into a stack having a plurality of longitudinally extending magnet slots, placing a plurality of permanent magnets into ones of the magnet slots, and injecting a low viscosity epoxy resin into the lamination stack, thereby substantially filling the magnet slots with a portion of the epoxy resin having a thermal conductivity greater than 0.3 Watts/(meter*degree Kelvin) and substantially filling axial spaces between adjacent ones of the laminations with a portion of the epoxy resin having a thermal conductivity less than that of the epoxy resin in the magnet spaces. | 01-30-2014 |
20140062244 | ROTOR, ROTARY ELECTRIC MACHINE PROVIDED WITH THIS ROTOR, AND ROTOR MANUFACTURING METHOD - A rotor for a rotary electric machine includes a rotor core, a permanent magnet, and a resin member. The rotor core has a magnet insertion hole. The permanent magnet is arranged in the magnet insertion hole of the rotor core. The resin member has a shape corresponding to a gap between the magnet insertion hole and the permanent magnet. The permanent magnet and the resin member are simultaneously inserted into the magnet insertion hole, and the permanent magnet is fixed in the magnet insertion hole by the resin member. | 03-06-2014 |
20140077650 | ROTOR FOR ROTATING ELECTRIC MACHINE - A rotor includes a rotor core having a plurality of pairs of magnet-receiving holes and a plurality of magnets respectively received in the magnet-receiving holes. Each pair of the magnet-receiving holes is arranged in a substantially V-shape opening radially outward and a center bridge formed between the two magnet-receiving holes of the pair. For each of the magnet-receiving holes, a protrusion is formed, at a position closer to a radially outer end than a radially inner end of the center bridge, so as to protrude from the center bridge inward of the magnet-receiving hole. Moreover, a magnetic flux barrier is formed at a radially innermost corner portion of the magnet-receiving hole and defined by a curved surface that includes three or more single-curvature surfaces having different curvatures. Among the single-curvature surfaces, the single-curvature surface which has the minimum curvature is positioned closest to the longitudinal axis of the rotor core. | 03-20-2014 |
20140091663 | PERMANENT-MAGNET TYPE ROTATING ELECTRICAL MACHINE - Magnet insertion holes for embedding a plurality of permanent magnets per pole are formed in a rotor core in a protruding shape toward a center of a rotor. A pair of flux control holes formed in a symmetrical shape with respect to a center line between magnetic poles is provided for each magnetic pole in a magnetic pole gap of the rotor core. Where d is a diameter of the respective flux control holes, m is a center-to-center distance thereof, b is a width of the magnetic pole gap, and τ is a pole pitch between magnetic poles, the flux control holes are provided so that a value of m/T obtained by standardizing the center-to-center distance m by the pole pitch τ satisfies | 04-03-2014 |
20140125182 | ROTOR FOR ROTATING ELECTRIC MACHINE - A rotor includes a rotor core having a plurality of pairs of magnet-receiving holes and a plurality of magnets respectively received in the magnet-receiving holes. Each pair of the magnet-receiving holes is arranged in a substantially V-shape that opens toward a stator side. The rotor core also has a plurality of q-axis core portions through which q-axis magnetic flux flows, a plurality of first magnetic flux barriers and a plurality of second magnetic flux barriers. Further, in the rotor core, the following dimensional relationships are satisfied: W2≧W1; and W3≧W1, where W1 is a width between centerlines L | 05-08-2014 |
20140159530 | INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR - An interior permanent magnet synchronous motor is provided. In the motor, a V-type recess is provided between adjacent permanent magnets within an outer surface of a rotor. The angle of the V-type recess ranges from 103° to 107°. | 06-12-2014 |
20140175930 | PERMANENT MAGNET EMBEDDED TYPE ROTATING ELECTRICAL MACHINE - A permanent magnet embedded type rotating electrical machine includes a rotor and a stator. The rotor includes a rotor core formed by a plurality of stacked and laminated magnetic steel plates and permanent magnets. Each magnetic steel plate has a plurality of magnet holes, connecting portions and sectional areas. The sectional area is surrounded by lines extending between the opposite ends of the magnet hole and between a rotation center of the rotor and the respective ends of the magnet hole. The connecting portion is provided only inside of the sectional area and is a joining portion at which any two adjacent magnetic steel plates are joined or a fastening hole in which a fastening member is inserted. The connecting portions include both the joining portion and the fastening hole. The connecting portion provided in the sectional area is at least one of the joining portion and the fastening hole. | 06-26-2014 |
20140184006 | ROTOR ASSEMBLING METHOD FOR ELECTRIC TURBO-CHARGER AND ROTOR ASSEMBLED BY THE SAME - A rotor assembling method for a turbo-charger may include washing and preparing components of a rotor having a connector, a permanent magnet, end caps, a retention ring, and a center pipe, inserting the connector into the permanent magnet, thermally inserting one or more end caps into the connector by cooling the connector and heating the one or more end caps under a first high-temperature condition for a first predetermined time to form a permanent magnet assembly, thermally inserting the permanent magnet assembly into the retention ring by cooling the permanent magnet assembly and heating the retention ring under a second high-temperature condition for a second predetermined time to form a rotor assembly, thermally inserting the center pipe into the rotor assembly by heating the rotor assembly under a third high-temperature condition for a third predetermined time to form a rotor assembling body, and post processing the rotor assembling body. | 07-03-2014 |
20140232230 | PERMANENT MAGNET EMBEDDED MOTOR AND COMPRESSOR, BLOWER, AND REFRIGERATING AND AIR CONDITIONING APPARATUS USING PERMANENT MAGNET EMBEDDED MOTOR - A permanent magnet embedded motor includes a rotor and permanent magnets. The outer circumferential surface of the rotor is formed by divided outer circumferential surfaces divided at equal angle intervals in a circumferential direction corresponding to permanent magnets. The divided outer circumferential surface is formed by a first curved surface, a radial direction distance of which from a rotor axis is maximized in a circumferential direction center of divided outer circumferential surface and second curved surfaces formed from the circumferential direction both ends to the circumferential direction center and crossing the first curved surface. The second curved surfaces are formed by arcuate surfaces each having the rotor axis as a central axis. A distance between both ends of the first curved surface is smaller than the width of a permanent magnet in a direction orthogonal to a radial direction in the circumferential direction center. | 08-21-2014 |
20150069874 | ROTATING ELECTRIC MACHINE ROTOR - A void group made up of plural voids is formed on an outer circumferential side of a longitudinal end portion of a permanent magnet provided in a rotating electric machine rotor. The void group includes a first void and a second void row where plural second voids are formed at predetermined intervals at a position further radially outwards than the first void. A rib is formed between a pair of adjacent second voids of the second void row. End portions of the first void respectively overlap the pair of adjacent second voids. An imaginary line that extends along the center of the rib passes through at least part of the first void. A magnetic pole center-side end portion of the void group extends from the outer circumferential surface of the permanent magnet towards an outer circumferential surface of a rotor core. | 03-12-2015 |
20150364959 | AN INTERIOR PERMANENT MAGNET MOTOR - An interior permanent magnet motor includes: a rotor; a stator; and a plurality of permanent magnets respectively inserted into a plurality of magnet insertion holes formed in a rotor core, the rotor core being formed by laminating a plurality of magnetic steel sheets, the magnetic steel sheets including first magnetic steel sheets each not having a magnet stopper in the magnet insertion hole, and second magnetic steel sheets each having magnet stoppers at both end portions of the magnet insertion hole, the rotor core including a laminate of the magnetic steel sheets in a lamination mode in which, when H | 12-17-2015 |
20160380492 | ROTARY ELECTRIC MACHINE - A contour line on the outer circumferential side of each magnet hole in the first layer is formed to be an arc passing through a total of three intersections, i.e., an intersection of a d axis and a reference magnetic flux line which is a magnetic flux line as a reference positioned inward by a predetermined number of magnetic flux lines from the outer circumferential edge of a rotor core, and intersections of: the reference magnetic flux line; and sides at the circumferential ends of the magnet hole which are positioned inward by a bridge dimension from the outer circumferential edge of the rotor core. Thus, a rotary electric machine that enables maximum utilization of reluctance torque and magnet torque and suppression of torque ripple can be obtained with simple processing and low cost. | 12-29-2016 |