Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


IN SITU CONVERSION OF SOLID TO FLUID

Subclass of:

299 - Mining or in situ disintegration of hard material

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
299003000IN SITU CONVERSION OF SOLID TO FLUID32
20080290719Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant - An in situ method of producing hydrocarbon fluids from an organic-rich rock formation is provided. The method may include heating an organic-rich rock formation, for example an oil shale formation, in situ to pyrolyze formation hydrocarbons, for example kerogen, to form a production fluid containing hydrocarbon fluids. The method may include separating the production fluid into at least a gas stream and a liquid stream, where the gas stream is a low BTU gas stream. The low BTU gas stream is then fed to a gas turbine where it is combusted and is used to generate electricity.11-27-2008
20140028076SAFETY EXPLOITATION AND APPLICATION OF FLAMMABLE ICE, HYDROGEN AND OXYGEN - A method for safety exploitation and application of flammable ice, oxygen and hydrogen, measures for safety exploitation: first, a plurality of horizontal pipes bound together in a cubic form, or olivary structure containing horizontal pipes, or a plurality of vertical pipes bound together in a cubic form are put into the flammable ice mine to prevent collapse, second, a machine formed by millions of synchronously running two-with-one motors enters the unmanned environment, third, subjecting thick coal slurry to low electric ignition gasification process, and separation and purification process, and application of hydrogen and oxygen, fourth, seven innovated machines: A, high efficient power source machine powered by flammable ice, hydrogen, or oxygen, B, innovated two-with-one motor, C, innovated the cutting machine, D, innovated beating and rotating machine, E, low temperature electric ignition and gasification machine, F, high-speed centrifugal machine, G, propeller with two-with-one motor.01-30-2014
299004000 Input and output wells 14
20090079255Harvesting hydrocarbons from coal, shale, peat and landfill seams - A method of extraction of fuels and elements from coal, shale, peat and landfill seams is described which cuts the earth with only a main shaft which could measure half a meter diameter and with auxiliary narrow drillings of, say 10 centimeter diameter, widely spaced from the shaft. The coal, shale or peat seam is heated to the highest temperature of the hydrocarbon fraction desired to be extracted and the evaporated hydrocarbons are carried out of the shaft by Nitrogen gas. To enhance the extraction rate of the evaporated hydrocarbons, tonal input from two or more organ pipes vibrates the seam structure freeing the evaporated hydrocarbons allowing their escape into the shaft. As the extraction continues requiring inclusion of a greater area of the seam structure, narrow drillings are made and Liquid Nitrogen is inserted in the drillings reaching seam levels as Nitrogen gas which seeps into the seam. A gas-impenetrable sleeve prevents the Nitrogen gas from seeping into the soil or substrate between the ground level and the seams. Further expansion of the field moves the Nitrogen sourcing to the outer circle and inserts auxiliary heaters in the narrow drillings between the outer ring and main shaft bringing more of the seam to the desired extraction temperature. Extracted evaporated hydrocarbons are cold cracked allowing the fractionation of hydrocarbons into fuel types as heating oil, kerosene, gasoline, ethers, and fuel gas, methane, argon and rare gas segments. The thermal gradient of the extraction pipe is implemented by sourcing the Nitrogen from Liquid Nitrogen and running the pipes bundled with the extraction pipe condensing its contents by hydrocarbon fractions in vessels and gas drums depending on boiling points of fractions. Water is separated from the gasoline segment and purified by separation and freezing.03-26-2009
20100066153METHODS FOR CONSTRUCTING UNDERGROUND BOREHOLE CONFIGURATIONS AND RELATED SOLUTION MINING METHODS - Disclosed are methods for solution mining of evaporite minerals, such as trona, comprising drilling an access well and at least two lateral boreholes; injecting a fluid; circulating the fluid through the lateral boreholes with a controlled fluid flow; and collecting a pregnant solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity at a temperature sufficient to maintain at least a portion of the solution in the cavity in the Wegscheiderite solid phase region; removing aqueous solution from the cavity; and recovering alkaline values from the removed aqueous solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity; removing aqueous solution from the cavity, wherein the temperature of the removed aqueous solution is at about the TWA point temperature; and recovering alkaline values from the removed aqueous solution.03-18-2010
20100225154Method for Simultaneously Mining Vertically Disposed Beds - A method of solution mining vertically disposed beds of water-soluble deposits comprising a lower bed and at least one upper bed having at least one non-soluble layer disposed therebetween, said method comprising the steps of: (a) forming a channel in the lower bed; (b) drilling at least one zero radius or ultra-short radius injection pathway in the at least one upper bed; (c) manipulating at least one of the channel and the at least one injection pathway such that a fluid pathway is established between said channel and at least one injection pathway; (d) injecting a stream of solvent through the at least one injection pathway; and (e) recovering the solvent containing dissolved deposit therein via a recovery well.09-09-2010
20110080035Method and System for Solution Mining - A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant. This method extracts and recovers the desired mineral(s), recovers much of the heat in the production brine, accelerates the solution mining process since the injection fluid has been warmed, reduces salting in the production string, is relatively inexpensive to install and maintain, and does not require a source of energy for cooling the production brine such as electricity for a refrigeration system.04-07-2011
20110127825Traveling undercut solution mining systems and methods - In-situ solution mining method of an ore bed, particularly containing trona, which comprises exposing to a solvent an ore region inside a borehole drilled in the ore, and dissolving a desired solute within the exposed region to provide a liquor and create a voided ‘undercut’, such undercutting making the ore susceptible to gravitational loading and crushing. Unexposed ore falls into the undercut by gravity without breaking the ore roof resulting in exposure of fresh ore to the solvent and in preventing solvent exposure to contaminating material near the roof. The desired solute is eventually dissolved away in the entire bed from its floor up to its roof. Solvent injection may be delivered through a conduit positioned inside the borehole, and may be moved by retracting or perforating the conduit. The method may employ an advancing undercut initiated up-dip and traveling down-dip, or a retreating undercut initiated down-dip and traveling up-dip.06-02-2011
20110175428Solution Mining and a Crystallizer for Use Therein - In solution mining, holes are drilled parallel to the ground in the ore body to form a series of zigzag channels. These holes are connected to respective holes from the surface to provide a feed and delivery path and a solvent is circulated through the system so as to dissolve the ore and carry the ore to the surface. The flow of the solvent through the holes forms circular caverns at the intersection of the horizontal hole as well as meanders by eroding the holes so as to gradually extract the ore on each side of the hole. At the surface the ore is extracted in a series of crystallizers each formed by a vessel with an exterior cooling system and an internal wiping system providing shear inside the vessel. The solvent is topped up, reheated and returned to the paths to continue the process.07-21-2011
20130249272SOLUTION MINING AND A CRYSTALLIZER FOR USE THEREIN - In solution mining, holes are drilled parallel to the ground in the ore body to form a series of zigzag channels. These holes are connected to respective holes from the surface to provide a feed and delivery path and a solvent is circulated through the system so as to dissolve the ore and carry the ore to the surface. The flow of the solvent through the holes forms circular caverns at the intersection of the horizontal hole as well as meanders by eroding the holes so as to gradually extract the ore on each side of the hole. At the surface the ore is extracted in a series of crystallizers each formed by a vessel with an exterior cooling system and an internal wiping system providing shear inside the vessel. The solvent is topped up, reheated and returned to the paths to continue the process.09-26-2013
20140191561SOLUTION MINING AND A CRYSTALLIZER FOR USE THEREIN - In solution mining, holes are drilled parallel to the ground in the ore body to form a series of zigzag channels. These holes are connected to respective holes from the surface to provide a feed and delivery path and a solvent is circulated through the system so as to dissolve the ore and carry the ore to the surface. The flow of the solvent through the holes forms circular caverns at the intersection of the horizontal hole as well as meanders by eroding the holes so as to gradually extract the ore on each side of the hole. At the surface the ore is extracted in a series of crystallizers each formed by a vessel with an exterior cooling system and an internal wiping system providing shear inside the vessel. The solvent is topped up, reheated and returned to the paths to continue the process.07-10-2014
20140265520Solution Mining Using Subterranean Drilling Techniques - A method of solution mining a subterranean mineral ore deposit such as trona ore in which a borehole is drilled from a subterranean mechanically-worked mineral ore mining operation to connect a mineral ore bed to be solution mined, using subterranean drilling apparatus located proximate to the mechanically-worked mineral ore mining operation. The mineral ore bed is isolated from the mechanically-worked mineral ore mining operation by passage of the drilled borehole through an impermeable layer adjacent to the mineral ore bed to be solution mined. The mineral ore bed is then solution-mined using a mining solvent introduced into the mineral ore bed to solubilize the mineral and form a mining solution, and the resulting mining solution is withdrawn from the mineral ore bed.09-18-2014
20140354031SOLUTION MINING METHOD WITH ELONGATE SUMP - An improved solution mining method for a soluble target layer comprising a target material such as potash, wherein an elongate sump is developed within a salt layer underlying the target layer, with generally horizontal wells extending through the target layer to empty into the elongate sump, the sump capable of storing at least a portion of the salt liberated from the target layer so that an optimized proportion of target material is produced.12-04-2014
20140354032SOLUTION MINING METHOD WITH HORIZONTAL FLUID INJECTION - An improved solution mining method for a soluble target Layer such as potash, comprising injecting spent crystallizer brine unsaturated with salt generally horizontally into the top of the target layer to enable immediate target layer dissolution with waste salt accumulating in the sump while the dissolved target material is produced.12-04-2014
20150137578METHOD OF EXPLOITING POTASSIUM SALTS FROM AN UNDERGROUND DEPOSIT - The present invention pertains to a mineral exploitation method and, more specifically, to a method for extracting potassium salts from underground deposits. In the method according to the present invention, an intermediary stage is carried out between the primary mining and secondary mining stages, and in this intermediary stage sinks (05-21-2015
20150145315METHOD AND DEVICE FOR BUILDING UNDERGROUND STOREHOUSE BY DISSOLVING LIMESTONE WITH CARBON DIOXIDE - A method for building an underground storehouse by dissolving limestone with carbon dioxide, the method comprising the following steps: a.) drilling two wells extending from the ground surface (05-28-2015
20160194945UNDERGROUND COAL GASIFICATION FURNACE AND UNDERGROUND COAL GASIFICATION METHOD07-07-2016
299005000 Dissolving or chemical reaction 14
20080203809Producing Calcium Cyanide At A Mine Site Using Easily Transportable Starting Materials - The present invention is a method by which the mine can obtain a supply of calcium cyanide for use in its leaching operations. Specifically, one preferred method within the scope of the invention involves producing hydrogen cyanide directly at a mine site using formamide as a starting material. Alternative methods of producing hydrogen cyanide at the mine site using easily transportable starting materials, such as methanol and urea, are disclosed. The hydrogen cyanide is neutralized at the mine site with slaked lime (Ca(OH)08-28-2008
20090001802Extraction of Actinides From Mixtures and Ores Using Dendritic Macromolecules - A novel class of dendritic macromolecules is provided having a core, a hyperbranched structure, and a plurality of units satisfying the formula —NR01-01-2009
20090200854SOLUTION MINING AND IN SITU TREATMENT OF NAHCOLITE BEDS - A method for treating a nahcolite containing subsurface formation includes solution mining a first nahcolite bed above a hydrocarbon containing layer using a plurality of first solution mining wells. A second nahcolite bed is solution mined below the hydrocarbon containing layer using a plurality of second solution mining wells. At least one of the first solution mining wells is converted into a production well. The hydrocarbon containing layer is heated using a plurality of heaters. Formation fluid is produced from at least one converted first solution mining well.08-13-2009
20090309408Method and system for solution mining - A relatively warm mineral deposit is solution mined by injecting fluid through a well drilled into the deposit and dissolving the mineral to form a production brine. Warm production brine is cooled at the surface using a heat exchanger as a crystallizer to precipitate the mineral in the exchanger and form a slurry. Crystals of the mineral in the slurry are recovered in a separation plant leaving a relatively cool, dilute or depleted brine, which is conveyed through the heat exchanger for cooling the production brine and then injected into the mineral deposit to dissolve more mineral thereby providing a continuous process. A pipe-in-pipe heat exchanger is preferably used and in a manner so that the heat exchanger also serves as a primary means for conveying the production fluid and/or slurry from the well to the separation plant. This method extracts and recovers the desired mineral(s), recovers much of the heat in the production brine, accelerates the solution mining process since the injection fluid has been warmed, reduces salting in the production string, is relatively inexpensive to install and maintain, and does not require a source of energy for cooling the production brine such as electricity for a refrigeration system.12-17-2009
20090315388Mining method for co-extraction of non-combustible ore and mine methane - Mining method for co-extraction of non-combustible ore and mine methane A method for co-extracting non-combustible ore (e.g., trona) and methane from an underground formation comprising at least one methane-bearing layer and a non-combustible ore bed having a rock roof, comprising: 12-24-2009
20100264720METHOD FOR PRODUCING A LIGNITE PRODUCT - A method for producing a lignite product comprising the steps of (a) digging lignite from a lignite seam, (b) grinding the lignite, (c) forming a slurry comprising the lignite, (d) transporting the slurry to a locus for drying, and (e) drying the slurry to form a lignite product, wherein steps (a) to (c) are carried out using a mobile device.10-21-2010
20110298270IN SITU ORE LEACHING USING FREEZE BARRIERS - A method is provided herein for performing a leaching process on a substrate (12-08-2011
20120043800METHOD AND APPARATUS FOR CREATING A PLANAR CAVERN - Methods and apparatuses for producing a planar cavern are provided. The planar cavern is formed by first creating a continuous bore that extends through a subsurface resource deposit. The continuous bore can be formed by connecting first and second bores at a point within the subsurface resource deposit. After the continuous bore has been formed, a sawing assembly is placed within the continuous bore. The sawing assembly is then moved, in a continuous or in a reciprocating fashion, within the continuous bore. As the sawing assembly is moved, it is maintained under tension, to create a planar cavern. By thus exposing a large area of the resource deposit, a relatively large amount of the resource deposit can be dissolved in a solvent introduced to the planar cavern per unit time. Saturated solution can then be pumped from the planar cavern, and the resource recovered from the saturated solution by evaporation.02-23-2012
20120043801METHOD AND APPARATUS FOR CREATING A PLANAR CAVERN - Methods and apparatuses for producing a planar cavern are provided. The planar cavern is formed by first creating a continuous bore that extends through a subsurface resource deposit. The drill head used to create the bore can be steered in response to information about the concentration of the resource in the strata through which the drill head is passing, in order to keep the bore within resource deposit. The continuous bore can be formed by connecting first and second bores at a point within the subsurface resource deposit. After the continuous bore has been formed, a sawing assembly is placed within the continuous bore. The sawing assembly is then moved, in a continuous or in a reciprocating fashion, within the continuous bore. As the sawing assembly is moved, it is maintained under tension, to create a planar cavern. By thus exposing a large area of the resource deposit, a relatively large amount of the resource deposit can be dissolved in a solvent introduced to the planar cavern per unit time. Saturated solution can then be pumped from the planar cavern, and the resource recovered from the saturated solution by evaporation.02-23-2012
20130154338"LIQUID COLLECTION PROCESS WITH LIQUID GUIDING HOLES FOR IN-SITU LEACHING AN ORE BODY TO EXTRACT RARE EARTH ELEMENTS" - A liquid collection process with liquid guiding holes for in-situ leaching an ore body to extract rare earth elements, including: 1) multiple liquid collection channels are provided in an ore body; 2) liquid guiding holes are arranged near the bottom and on both sides of the channels, and these holes and the channels jointly constitute a multi-channel mother liquid drainage and collection control network; 3) a blocking wall is provided in the channels, a front lower part of the wall is connected to a channel outlet by a conduit controlled with a ball valve switch at the outlet; 4) a multi-channel mother liquid collection network of liquid collection engineering control system is finally formed through the alternate operation of pressure release and increase. The process reduces the loss rate of mother liquid, reduces environmental pollution, and improves the recovery rate of rare earth elements.06-20-2013
20130200681LIQUID COLLECTION PROCESS WITH SECONDARY CHANNELS FOR IN-SITU LEACHING AN ORE BODY TO EXTRACT RARE EARTH ELEMENTS - A liquid collection process with secondary channels for in-situ leaching an ore body to extract rare earth elements, including: 1) multiple liquid collection channels are provided in an ore body; 2) secondary channels are provided on both sides of the liquid collection channels, and all of the channels jointly constitute a multi-channel mother liquid drainage and collection control network; 3) a blocking wall is provided in the liquid collection channels, the front lower part of the wall is connected to a channel outlet by a conduit which is controlled with a ball valve switch at the outlet; 4) in the measurement and production, a multi-channel mother liquid collection network of liquid collection engineering control system is finally formed through the alternate operation of pressure release and increase; 5) the rare earth recovery rate is finally improved by adjusting the non-mineral liquid and the loss ratio of the mother liquid.08-08-2013
20160115774Traveling undercut solution mining systems and methods - In-situ solution mining method of an ore bed, particularly containing trona, which comprises exposing to a solvent an ore region inside a borehole drilled in the ore, and dissolving a desired solute within the exposed region to provide a liquor and create a voided ‘undercut’, such undercutting making the ore susceptible to gravitational loading and crushing. Unexposed ore falls into the undercut by gravity without breaking the ore roof resulting in exposure of fresh ore to the solvent and in preventing solvent exposure to contaminating material near the roof. The desired solute is eventually dissolved away in the entire bed from its floor up to its roof. Solvent injection may be delivered through a conduit positioned inside the borehole, and may be moved by retracting or perforating the conduit. The method may employ an advancing undercut initiated up-dip and traveling down-dip, or a retreating undercut initiated down-dip and traveling up-dip.04-28-2016
20160123128GAS INJECTION APPARATUS WITH CONTROLLABLE GAS INJECTION POINT, GAS INJECTION PROCESS, AND GASIFICATION METHOD - A gas injection apparatus with a controllable gas injection point, a gas injection process, and a gasification method. The gas injection apparatus comprises a directional well channel, where a continuous oil pipe is provided in the directional well channel. The continuous oil pipe is connected to an oxygen/oxygen-rich gas pipeline. An annular gap between the continuous oil pipe and the directional well channel is connected to an auxiliary gasification agent pipeline and a vapor pipeline. A gas injection wellhead is provided at the start end of the continuous oil pipe, and a nozzle is provided at the tail end. In the present invention, based on directional drilling and continuous oil pipe technologies, the movement of a gas injection point is implemented by using a manner of combining directional drilling and a continuous oil pipe; meanwhile, by using a principle of controlling reverse combustion by adjusting a gasification agent injection parameter, the movement of a working surface position and a combustion speed of a flame are regulated, so as to achieve the objective of ignition and gasification for reverse combustion of an underground coal layer.05-05-2016
20160138379SOLUTION MINING UNDER AN INERT GAS - This method includes providing an cased borehole located within a salt bed, injecting an aqueous liquid into the cased borehole at a first pressure, in order to expose the salt bed to the aqueous liquid, thereby dissolving at least a portion of the salt bed and forming a brine solution within an underground storage volume, withdrawing at least a portion of the brine solution from the underground storage volume, and injecting an inert gas into the cased borehole at a second pressure, in order to provide an inert blanket within the underground storage volume, wherein the second pressure that is greater than the first pressure but less than the maximum allowable pressure of the cavern.05-19-2016
299006000 Melted material recovered 2
20160251950UNDERGROUND GASIFICATION IGNITION METHOD09-01-2016
20160251959METHOD FOR LIFTING OF MAGMATIC LAVA TO THE SURFACE09-01-2016

Patent applications in all subclasses IN SITU CONVERSION OF SOLID TO FLUID

Website © 2025 Advameg, Inc.