Class / Patent application number | Description | Number of patent applications / Date published |
267153000 | RUBBER | 17 |
20090020932 | LOAD BEARING SURFACE - An elastomeric load bearing surface with different load support characteristics in different directions. In one embodiment, the surface includes an elastomeric membrane that is oriented in only a single direction, for example, by compression or stretching. In another embodiment, the surface includes mechanical structures, such as connectors, variations in thickness and apertures, that vary the load support characteristics in different directions. In another aspect, the present invention provides a multilayer load bearing surface in which the layers cooperate to provide a controlled force/deflection profile that is variable in different regions of the surface. In one embodiment, the upper layer includes a plurality of loosely connected nodes and a lower layer having a plurality of resilient elements that separately support each node. | 01-22-2009 |
20090102106 | RESIN COIL SPRING AND METHOD OF MANUFACTURING RESIN COIL SPRING - A method of manufacturing a resin coil spring includes integrally molding a spring unit from synthetic resin, the spring unit including a coil unit having plural coil members and ring-like supports respectively arranged on two sides of the coil unit and connected to an end of each of the plural coil members, and stacking the molded spring units one on another. | 04-23-2009 |
20100025903 | SUPPLEMENTARY SPRING WITH AXIALLY EXTENDING CONTOUR ELEMENTS - A spring element with a basic geometry which is concentric along the spring axis, including at least one elastomer, the basic geometry of which is concentric about the spring axis and including constrictions and/or widenings that are axially symmetrical along the spring axis. | 02-04-2010 |
20100044939 | Minimal to non-bulging urethane compression springs - Urethane compression springs are designed to complement steel wire compression springs where such conditions as confined space, corrosion, vibration and magnetism prevent the use of conventional steel compression springs. Urethane spring material is a polyether-elastomer that reacts similarly to an incompressible fluid. As such, urethane springs bulge when compressed, requiring additional counteractive design remedies. The embodiments of this invention eliminate or minimize that bulging condition and counteractive remedies by having indentations in surfaces of the urethane spring. | 02-25-2010 |
20100133734 | VIBRATION CONTROL EQUIPMENT - In a vibration control equipment | 06-03-2010 |
20100164154 | RESILIENT STRUCTURE - A resilient structure includes an inner blocking unit, an outer blocking unit, and an elastomer unit. A pressured section is disposed on an outer surface of the inner blocking unit. A securing portion is disposed on an inner surface of the pressured section. Another pressured section is disposed on an outer surface of the outer blocking unit. Another securing portion is disposed on an inner surface of the pressured section. Pressure resisting sections are respectively disposed on an inner and an outer end of the elastomer unit. The pressure resisting sections are respectively confined by the securing portions disposed on the blocking units. A pressure-release portion is formed between the pressure resisting sections of the elastomer unit. The pressure-release portion absorbs pressure and store resilient force for elastic recovery. | 07-01-2010 |
20100176543 | Sign Pole Guard - A sign pole guard designed to encapsulate a U-channel metal sign post with a sheet of transparent, flexible material having a reflective covering to provided better visibility and an added layer of protection for individuals who may come into physical contact with the sign post itself. In addition, the sign pole guard comprises a strip of transparent, flexible material to be affixed to the edging of a metal street sign for added protection. | 07-15-2010 |
20110109028 | Elastomeric compression spring - An elastomeric compression including an elastomeric body defining a longitudinal axis and having two hollow convolutions between opposed ends of the spring. The convolutions are integrally formed and joined to each other by a connecting section. Each hollow convolution includes wall structure defining an outer surface for the spring. The wall structure of each convolution includes two angled wall sections disposed to opposed sides of the axis and which angle away from the connecting section and from each other. The outer surface of that portion of each angled wall section of each convolution adjacent to the connecting section has a projection extending outwardly from the outer surface. As such, and when the angled wall sections of one convolution collapse toward the angled wall sections of the other convolution, in response to a load being directed against the spring, the opposed projections on the convolutions contact and engage with each other thereby enhancing performance characteristics of the spring. | 05-12-2011 |
20110140326 | SUPPLEMENTARY SPRING - The invention relates to a hollow spring element of which the outer surface has at least one peripheral notch, which has at its base a notch geometry with a radius of curvature of less than 1 mm. | 06-16-2011 |
20110156327 | BUMP STOPPER AND MANUFACTURING METHOD THEREFOR - Disclosed are a bump stopper and a manufacturing method therefor which can maintain the shock-absorbing characteristics and durability performance constantly for a prolonged period of time regardless of the temperature or humidity of the usage environment, which can maintain a constant dimensional precision for a finished product, which is excellent in material yield rate and manufacturing efficiency, and which is low-cost, lightweight, recyclable, and ecological. A bump stopper ( | 06-30-2011 |
20110187035 | COMPRESSION SPRING ASSEMBLY AND METHOD - A compression spring assembly can include a compression spring core and a compression spring shell that can be assembled onto the compression spring core. The compression spring core can include a core body with an outer core wall. The compression spring shell can include a shell body having an inner shell wall. The compression spring shell can be supported on the compression spring core such that the inner shell wall extends along at least a portion of the outer core wall. A method of manufacturing a compression spring assembly is also included. | 08-04-2011 |
20110210491 | Polymer spring - A polymer spring has a hollow tubular polymer body, wherein the first end portion of the body, the second end portion of the body, and the mid-portion of the body together substantially maintain an annular cylindrical column structure throughout the length of the body from the first end portion of the body to the second end portion of the body, such that the mid-portion of the body has a substantial portion that is in direct alignment with the first end portion of the body and the second end portion of the body when the spring is compressed to eliminate or reduce the chances of the spring failing caused by the spring folding or buckling and to reduce material fatigue in the polymer spring associated with folding or buckling. | 09-01-2011 |
20130043628 | CUSHIONING ELEMENTS COMPRISING BUCKLING WALLS AND METHODS OF FORMING SUCH CUSHIONING ELEMENTS - Cushioning elements having a top cushioning surface and a bottom base surface include an elastomeric cushion member and a stabilizing material. The elastomeric cushion member includes a first plurality of interconnected buckling walls having a first mean height and a second plurality of buckling walls having a second mean height. Each buckling wall of the second plurality intersects and connects to at least two buckling walls of the first plurality. A surface of the stabilizing material on a side thereof opposite the elastomeric cushion member defines the bottom base surface of the cushioning element. The first ends of the first plurality of interconnected buckling walls and the first ends of the second plurality of buckling walls define the top cushioning surface of the cushioning element. Methods of forming cushioning elements include securing a stabilizing material to ends of the first plurality of interconnected buckling walls. | 02-21-2013 |
20130069292 | Compressible Elastomeric Spring - A compressible spring includes a substantially solid body defining a central axis and manufactured from an elastomeric material. A substantially solid abutment upstands axially on one end of the substantially solid body. There is also a lip that is disposed on a distal end of the axial abutment in a plane being substantially transverse to the central axis. An axial bore may be provided extending through the thicknesses of the body and abutment. Furthermore, a plate shape member may be provided that is mechanically secured to the substantially solid body during the forming process, wherein the abutment is passed through a central aperture in the rigid member and wherein the lip cages a thickness portion of the rigid member around the central aperture. | 03-21-2013 |
20140131931 | SPRING DEVICE - The spring device includes a part using the resilient properties of the material from which the part is made. There are at least two opposite points or areas, which are to be biased. The device includes, between the points or areas, an intermediate portion including a mesh structure resulting from the assembly of optionally rectilinear segments, at least two of which lie in separate planes, both outside of the direction of bias. During the biasing, one segment is longitudinally biased by compression and the other is longitudinally biased by pulling. | 05-15-2014 |
20140217662 | POLYMER SPRING - A polymer spring has a hollow tubular polymer body, wherein the first end portion of the body, the second end portion of the body, and the mid-portion of the body together substantially maintain an annular cylindrical column structure throughout the length of the body from the first end portion of the body to the second end portion of the body, such that the mid-portion of the body has a substantial portion that is in direct alignment with the first end portion of the body and the second end portion of the body when the spring is compressed to eliminate or reduce the chances of the spring failing caused by the spring folding or buckling and to reduce material fatigue in the polymer spring associated with folding or buckling. | 08-07-2014 |
20150069687 | Electrically Variable Suspension - A variable stiffness spring is provided that includes a dielectric diaphragm having a biaxially pre-strained film, where the dielectric diaphragm includes an out-of-plane stiffness at zero voltage, a first electrode disposed on a first side of the dielectric diaphragm and a second electrode disposed on a second side of the dielectric diaphragm, where the out-of-plain stiffness is relaxed by an applied voltage between the first electrode and the second electrode. | 03-12-2015 |