Class / Patent application number | Description | Number of patent applications / Date published |
264604000 | Applying hot isostatic fluid pressure to preform using surrounding liquid (e.g., molten glass, melted tin, etc.) or fluid pressure-transmitting deformable sheath (e.g., metal foil, etc.) | 14 |
20080203625 | Method For Producing Ultra-High Purity, Optical Quality, Glass Articles - A method for producing ultra-high purity, optical quality, glass articles is disclosed which involves: 1. compacting metaloxide or metal loidoxide to granules having a mean particle size of less than about 1 millimeter; 2. optionally fully sintering the granules to produce high purity, artificial sand; 3. casting the granulesar artificial sand by conventional techniques, such as, slip casting, to form a high density, porous, green body; 4. optionally drying and partially sintering the green body; 5. optionally fully sintering the green body under vacuum, and 6. optionally hot isostatic pressing the fully sintered green body whereby the metal oxide or metalloid oxides is a pyrogenic silicon dioxide powder with a BET surface area of 30 to 90 m2/g, a DBP index of 80 or less, a mean aggregate area of less than 25000 nm2 and a mean aggregate circumference of less than 1000 nm, wherein at least 70% of the aggregates have a circumference of less than 1300 nm or a high-purity pyrogenically prepared silicon dioxide having metal contents of less than 0.2 μg/g. | 08-28-2008 |
20090026665 | PROCESSES AND METHODS OF MAKING BORON CARBIDE - High-density components and products as well as processes for making high-density components and products are disclosed. One exemplary component, among others, includes a boron carbide component comprised of a homogeneous boron carbide powder. The component has at least a 93% relative density (RD) and a Vickers hardness of at least 2000 kg/mm | 01-29-2009 |
20100025896 | Polycrystalline Alumina Articles and Methods of Manufacture - Polycrystalline alumina and methods for manufacturing polycrystalline alumina exhibiting improved transmission in the infrared region. In one embodiment, polycrystalline alumina articles are formed by providing a powder of substantially alpha phase alumina having a grain size of up to about 1 μm, dispersing the powder in a liquid to form a slurry comprising powdered solids and liquid, removing excess of the liquid from the slurry to form a body, heating the body to provide a densified body, hot isostatically pressing the densified body under conditions to provide an article having a density of at least about 99.9% of theoretical density, and optionally annealing the article, wherein one or more of the annealing or heating are performed in an inert, dry gas. | 02-04-2010 |
20100032874 | PROCESSES AND METHODS OF MAKING BORON CARBIDE AND BORON CARBIDE COMPONENTS - High-density components and products as well as processes for making high-density components and products are disclosed. One exemplary component, among others, includes a boron carbide component comprised of a homogeneous boron carbide powder. The component has at least a 93% relative density (RD) and a Vickers hardness of at least 2000 kg/mm | 02-11-2010 |
20100065991 | METHOD FOR PRODUCING AN OBJECT AT LEAST PARTLY WITH A SILICON CARBIDE STRUCTURE FROM A BLANK OF A CARBON-CONTAINING MATERIAL - The invention relates to a method for production of an object with an at least partly silicon carbide structure from a blank of a carbon-containing material, wherein, in a first step, the object made from the carbon-containing material is produced essentially in the desired end form and/or end size, the object made from the carbon-containing material is then at least partly enveloped in a carbon-rich silicon dioxide granulate and then fired at least once in the envelope in a protective gas atmosphere such that the silicon dioxide granulate gives off gas containing silicon carbide which diffuses into the object and the carbon-containing material is completely or partly converted into silicon carbide. The invention further relates to a method for producing an object with an at least partly silicon carbide structure from a blank made from a carbon-containing material or a porous silicon carbide in which the pre-made object is infiltrated with a precursor sol containing silicon and carbon and fired at least once in a protective gas atmosphere at a firing temperature for carrying out a carbothermal reduction, wherein the infiltrated precursor sol gives off a gas containing silicon carbide which converts the material of the object partly or completely into silicon carbide. | 03-18-2010 |
20110101574 | METHOD OF FORMING AN ARTICLE FROM NON-MELT PROCESSIBLE POLYMERS AND ARTICLES FORMED THEREBY - A method of preparing an article includes compressing a polymeric material to form a body and hot isostatic pressing (HIP) the body in an inert atmosphere at a pressure of at least 3 ksi without an encapsulant. The body may optionally be sintered prior to hot isostatic pressing (HIP). The body may have a porosity of not greater than 8% prior to hot isostatic pressing (HIP). The polymer material may be a non-melt processible polymer. | 05-05-2011 |
20110175263 | GLASS ENCAPSULATED HOT ISOSTATIC PRESSED SILICON CARBIDE - A method of forming a silicon carbide sintered body includes mixing silicon carbide powder with a boron additive and carbon to form a green mixture and shaping the green mixture into a green body, and coating the green body with boron nitride. The method further includes glass encapsulating the green body and hot isostatic pressing the glass encapsulated green body at a temperature in a range of between about 1900° C. and about 2400° C. for a time period in a range of between about one hour and about three hours, to thereby form a silicon carbide sintered body having a density at least 97% of the theoretical density of silicon carbide. | 07-21-2011 |
20110215510 | METHOD FOR PRODUCTION OF AN ACID PROOF, SEEMLESS PRESSURE VESSEL - The invention relates to a method for production of a cylindrical acid proof, seamless pressure vessel having hemispherical top and bottom by powder moulding in an HIP (Hot Isostatic Pressing) process. Sheet metal moulds are produced constituting an internal shell, lower part of an external shell, upper part of an external shell with filling spout with corresponding top and bottom. Distance pins decide the wall thickness and are mounted outward from the internal shell which is led down into the lower part of external shell whereafter shell part with filling spout closes the volume between the internal and external shells which is then filled with powder through the filling spout. The pressure vessel is placed in an HIP-process container for vacuuming, sealing, supply of high-pressure inert gas such as argon, at high temperature such as 1000° C., for processing together with the distance pins to a compact and homogenous material. | 09-08-2011 |
20110227259 | METHODS OF FORMING SINTERED BORON CARBIDE - A method of forming a sintered boron carbide body includes washing boron carbide powder with essentially pure water at an elevated temperature to generate low oxygen boron carbide powder, mixing a sintering aid and a pressing aid with the low oxygen boron carbide powder to form a green mixture, and shaping the green mixture into a green boron carbide body. The method can include mixing titanium carbide powder having an average particle diameter in a range of between about 5 nm and about 100 nm with the low oxygen boron carbide powder. The method can further include sintering the green boron carbide body, and hot isostatic pressing the sintered body, to a density greater than about 98.5% of the theoretical density (TD) of boron carbide. Alternatively, the method can include sintering the shaped boron carbide green body at a temperature greater than about 2,200° C., to thereby form a eutectic liquid solid solution of B | 09-22-2011 |
20120153547 | CERAMIC PARTICULATE MATERIAL AND PROCESSES FOR FORMING SAME - Processes for forming ceramic particulate material. The ceramic particulate material includes alumina particles, the particles having a specific surface area (SSA) not less than 15 m | 06-21-2012 |
20130234374 | HIGH STRENGTH, FINE GRAINED SPINEL FOR WINDOW APPLICATIONS, METHODS OF MANUFACTURE THEREOF AND ARTICLES COMPRISING THE SAME - Disclosed herein is a spinel article. The article includes a spinel material, wherein the spinel material has a monomodal grain size distribution with average grain sizes of less than or equal to about 15 micrometers, and a biaxial flexural strength of greater than or equal to about 300 megapascals when measured by a ring-on-ring flexural test as per ASTM Standard C1499-08. Disclosed herein too is a method for manufacturing a spinel article, including calcining a spinel powder; milling the powder in a milling medium; granulating the powder; screening the powder to a mesh size of about 40 to about 200 mesh; pressing the powder to form an article; burning out organics from the article; sintering the article; and hot isostatically pressing the article. | 09-12-2013 |
20130256957 | TRANSLUCENT ALUMINA AND METHOD FOR PRODUCING TRANSLUCENT ALUMINA - A translucent alumina has an alumina content of 99.98% by mass or more and a density of 3.97 g/cm | 10-03-2013 |
20150061199 | CARBON MATERIAL AND METHOD FOR PRODUCING SAME | 03-05-2015 |
20160204505 | METHOD FOR PRODUCING INFRARED ZnS DOMES | 07-14-2016 |