Class / Patent application number | Description | Number of patent applications / Date published |
257724000 | With discrete components | 20 |
20080277782 | FLASH MEMORY CARD - A Flash memory card is disclosed comprising a substrate, a Flash memory die on top of the substrate, a controller die on top of the Flash memory die, and an interposer coupled to with the controller die and on top of the Flash memory die wherein the interposer results in substantial reduced wire bonding to the substrate. The interposer can surround or be placed side by side with the controller die. A system and method in accordance with the present invention achieves the following objectives: (1) takes advantage of as large of a Flash memory die as possible, to increase the density of the Flash card by reducing the number of wire bond pads on the substrate and enabling insertion of the largest die possible that can fit inside a given card interior boundary; (2) more efficiently stacks Flash memory dies to increase density of the Flash card; and (3) has a substantially less number of bonding wires to the substrate as possible, to improve production yield. | 11-13-2008 |
20080284003 | Semiconductor Packages And Method For Fabricating Semiconductor Packages With Discrete Components - A semiconductor package includes a substrate having contacts, and a discrete component on the substrate in electrical communication with the contacts. The package also includes a semiconductor die on the substrate in electrical communication with the contacts, and a die attach polymer attaching the die to the substrate. The die includes a recess, and the discrete component is contained in the recess encapsulated in the die attach polymer. A method for fabricating the package includes the steps of: attaching the discrete component to the substrate, placing the die attach polymer on the discrete component and the substrate, pressing the die into the die attach polymer to encapsulate the discrete component in the recess and attach the die to the substrate, and then placing the die in electrical communication with the discrete component. An electronic system includes the semiconductor package mounted to a system substrate. | 11-20-2008 |
20080284004 | SEMICONDUCTOR DEVICE, SUBSTRATE, EQUIPMENT BOARD, METHOD FOR PRODUCING SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR CHIP FOR COMMUNICATION - A semiconductor device includes a first substrate having a first surface for mounting an electronic component and a second surface substantially parallel to the first surface. The first substrate includes a first region for mounting the electronic component, a second region including a plurality of first communication units for transmitting and receiving signals to and from a second substrate, input-output circuits disposed on the first region or the second region, the input-out circuits corresponding to the first communication units, and a control circuit for controlling input to and output from the input-output circuits disposed on the first region or the second region of the first substrate. Each of the input-output circuits includes an output circuit for outputting a signal to a second communication unit of the second substrate corresponding to the first communication unit and an input unit for receiving a signal sent from the corresponding second communication unit. | 11-20-2008 |
20080290508 | SEMICONDUCTOR DEVICE, SUBSTRATE, EQUIPMENT BOARD, METHOD FOR PRODUCING SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR CHIP FOR COMMUNICATION - A semiconductor device includes a first substrate having a first surface for mounting an electronic component and a second surface substantially parallel to the first surface. The first substrate includes a first region for mounting the electronic component, a second region including a plurality of first communication units for transmitting and receiving signals to and from a second substrate, input-output circuits disposed on the first region or the second region, the input-out circuits corresponding to the first communication units, and a control circuit for controlling input to and output from the input-output circuits disposed on the first region or the second region of the first substrate. Each of the input-output circuits includes an output circuit for outputting a signal to a second communication unit of the second substrate corresponding to the first communication unit and an input unit for receiving a signal sent from the corresponding second communication unit. | 11-27-2008 |
20090065929 | MULTI-CHIP SEMICONDUCTOR DEVICE - A semiconductor device includes semiconductor chips differing in withstand voltage or in noise immunity, such as a multi-chip module. The semiconductor device includes first and second semiconductor chips mounted over a package substrate which has bonding pads arranged along the edges. The first semiconductor chip includes bonding pads for analog signals, and the second semiconductor chip includes bonding pads for high-voltage signals. The edges along which the bonding pads for analog signals are arranged and the edges along which the bonding pads for high-voltage signals are arranged are disposed along mutually different edges of the package substrate. Adjoining of electrodes or wirings for high voltage signals and those for analog signals over the package substrate can be easily avoided, and SI deterioration can be thereby restrained. | 03-12-2009 |
20090072388 | SEMICONDUCTOR DEVICE WITH INDUCTOR - One or more embodiments are directed to a semiconductor structure, comprising: a support; a semiconductor chip at least partially embedded within the support; and an inductor electrically coupled to the chip, at least a portion of the inductor overlying the support outside the lateral boundary of the chip. | 03-19-2009 |
20090079065 | SEMICONDUCTOR DEVICE INCLUDING ELECTRONIC COMPONENT COUPLED TO A BACKSIDE OF A CHIP - A semiconductor package includes a substrate, at least one chip including a first side and a backside opposite of the first side, the first side electrically coupled to the substrate, a conductive layer coupled to the backside of the at least one chip, and at least one electronic component coupled to the conductive layer and in electrical communication with the substrate. | 03-26-2009 |
20090079066 | INTEGRATED CIRCUIT PACKAGING SYSTEM WITH PASSIVE COMPONENTS - An integrated circuit packaging system comprising: fabricating a system-in-package substrate; mounting a first integrated circuit die on the system-in-package substrate; mounting a second integrated circuit die on the system-in-package substrate; and coupling a passive component over and between the first integrated circuit die and the second integrated circuit die. | 03-26-2009 |
20090121346 | Flexible Interposer for Stacking Semiconductor Chips and Connecting Same to Substrate - A semiconductor device with a first ( | 05-14-2009 |
20090152714 | Semiconductor device and method for manufacturing the same - An electronic device includes: a substrate having first and second surfaces, wherein the first surface is opposite to the second surface; a first electronic element mounted on the first surface of the substrate; a second electronic element mounted on the second surface of the substrate; and a resin mold sealing the first electronic element and the first surface of the substrate. The resin mold further seals the second electronic element on the second surface of the substrate. The second surface of the substrate has a portion, which is exposed from the resin mold. The second electronic element is not disposed on the portion of the second surface. | 06-18-2009 |
20100032828 | SEMICONDUCTOR ASSEMBLY WITH COMPONENT ATTACHED ON DIE BACK SIDE - One or more electronic components can be mounted on the back side of a semiconductor die. The components can be passive components, active components, or combinations thereof. The components can be soldered to signal routes on the back side of the die, the signal routes being attached to the die using a metallization layer or using one or more dielectric layer sections. Placing components on the back side of the die can allow for incorporation of the components without necessarily increasing the form factor of the die's package. | 02-11-2010 |
20100327433 | High Density MIM Capacitor Embedded in a Substrate - An integrated circuit package includes a decoupling capacitor. The integrated circuit package also includes a packaging substrate. The decoupling capacitor is at least partially embedded in the packaging substrate. The integrated circuit package further includes a die mounted to the packaging substrate. The die is coupled to the decoupling capacitor. The die receiving substantially instantaneous current from the decoupling capacitor. | 12-30-2010 |
20110084380 | SEMICONDUCTOR PACKAGES HAVING PASSIVE ELEMENTS MOUNTED THEREONTO - A semiconductor package onto which a plurality of passive elements is mounted. A substrate includes a first surface and a second surface. A semiconductor chip is on one of the first surface and the second surface of the substrate. A plurality of passive elements are on the substrate. The plurality of passive elements include a plurality of first passive elements and a plurality of second passive elements that are taller than the plurality of first passive elements. The plurality of first passive elements are on at least one of the first surface and the second surface, and at least two of the plurality of second passive elements are on the second surface. | 04-14-2011 |
20110101516 | Microelectronic package and method of manufacturing same - A microelectronic package includes a first substrate ( | 05-05-2011 |
20110156246 | Semiconductor Package and Method for Making the Same - The present invention relates to a semiconductor package and a method for making the same. The semiconductor package includes a substrate, a first capacitor, a first protective layer, a first metal layer and a second protective layer. The substrate has at least one via structure. The first capacitor is disposed on a first surface of the substrate. The first protective layer encapsulates the first capacitor. The first metal layer is disposed on the first protective layer, and includes a first inductor. The second protective layer encapsulates the first inductor. Whereby, the first inductor, the first capacitor and the via structure are integrated into the semiconductor package, so that the size of the product is reduced. | 06-30-2011 |
20110156247 | Semiconductor Package and Method for Making the Same - The present invention relates to a semiconductor package and a method for making the same. The semiconductor package comprises a substrate, a first metal layer, a first dielectric layer, a first upper electrode, a first protective layer, a second metal layer and a second protective layer. The substrate has at least one via structure. The first metal layer is disposed on a first surface of the substrate, and comprises a first lower electrode. The first dielectric layer is disposed on the first lower electrode. The first upper electrode is disposed on the first dielectric layer, and the first upper electrode, the first dielectric layer and the first lower electrode form a first capacitor. The first protective layer encapsulates the first capacitor. The second metal layer is disposed on the first protective layer, and comprises a first inductor. The second protective layer encapsulates the first inductor. Whereby, the first inductor, the first capacitor and the via structure are integrated into the semiconductor package, so that the size of the product is reduced. | 06-30-2011 |
20110227212 | SEMICONDUCTOR DEVICE PACKAGE AND METHOD OF FABRICATING THE SAME - A semiconductor device package and a method of fabricating the same are disclosed. The semiconductor device package includes a first substrate, a second substrate, two active chips, a bridge chip and a connection structure. The first substrate has a first surface facing a second surface of the second substrate. The active chips are disposed on and electrically connected to the first surface, and spaced apart from each other by an interval, wherein the active chips respectively have a first active surface. The bridge chip is mechanically and electrically connected to the second surface, and has a second active surface partially overlapped with the first active surfaces of the active chips, such that the bridge chip is used for providing a proximity communication between the active chips. The connection structure is disposed between the first surface and the second surface for combining the first substrate and the second substrate. | 09-22-2011 |
20150325534 | SEMICONDUCTOR PACKAGE FOR RADIO COMMUNICATION AND METHOD OF MANUFACTURING THE SAME - A semiconductor package for radio communication may include a substrate, and a plurality of electronic devices mounted on both surfaces of the substrate. The electronic devices running on the same frequency band among the plurality of electronic devices may be separately mounted on the both surfaces of the substrate. A method of manufacturing a semiconductor package for radio communication may include preparing a substrate, mounting at least one or more electronic devices on an upper surface of the substrate, and mounting at least one or more electronic devices on a lower surface of the substrate. The electronic devices of the same frequency band among the electronic devices may be separately mounted on the upper and lower surfaces of the substrate. | 11-12-2015 |
20160111395 | METHOD OF FORMING A CHIP ASSEMBLY AND CHIP ASSEMBLY - A method of forming a chip assembly may include forming a plurality of cavities in a carrier; The method may further include arranging a die attach liquid in each of the cavities; arranging a plurality of chips on the die attach liquid, each chip comprising a rear side metallization and a rear side interconnect material disposed over the rear side metallization, wherein the rear side interconnect material faces the carrier; evaporating the die attach liquid; and after the evaporating the die attach liquid, fixing the plurality of chips to the carrier. | 04-21-2016 |
20220139850 | Embedded Resistor-Capacitor Film for Fan Out Wafer Level Packaging - A panel type fan-out wafer level package with embedded film type capacitors and resistors is described. The package comprises a silicon die at a bottom of the package wherein a top side and lateral sides of the silicon die are encapsulated in a molding compound, at least one redistribution layer connected to the silicon die through copper posts contacting a top side of the silicon die, at least one embedded capacitor material (ECM) sheet laminated onto the package, and at least one embedded resistor-conductor material (RCM) sheet laminated onto the package wherein the at least one redistribution layer, capacitors in the at least one ECM, and resistors in the at least one RCM are electrically interconnected. | 05-05-2022 |