Class / Patent application number | Description | Number of patent applications / Date published |
257688000 | With large area flexible electrodes in press contact with opposite sides of active semiconductor chip and surrounded by an insulating element, e.g., ring | 9 |
20080237827 | Integrated circuit with flexible planer leads - A microelectronic device including a microelectronic circuit and at least one planar flexible lead. These planar flexible leads are adapted to bend and flex during mechanical stress allow direct mounting of the device to a member, and withstand extreme thermal cycling, such as −197° C. to +150° C. such as encountered in space. | 10-02-2008 |
20080265392 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device having a through electrode excellent in performance as for an electrode and manufacturing stability is provided. There is provided a through electrode composed of a conductive small diameter plug and a conductive large diameter plug on a semiconductor device. A cross sectional area of the small diameter plug is made larger than a cross sectional area and a diameter of a connection plug, and is made smaller than a cross sectional area and a diameter of the large diameter plug. In addition, a protruding portion formed in such a way that the small diameter plug is projected from the silicon substrate is put into an upper face of the large diameter plug. Further, an upper face of the small diameter plug is connected to a first interconnect. | 10-30-2008 |
20090115046 | Micro-electro-mechanical system device and method for making same - According to the present invention, a method for making a micro-electro-mechanical system (MEMS) device comprises: providing a substrate with devices and interconnection formed thereon, the substrate having a to-be-etched region; depositing and patterning an etch stop layer; depositing and patterning metal and via layers to form an MEMS structure, the MEMS structure including an isolation region between MEMS parts, an isolation region exposed upwardly, and an isolation region exposed downwardly, wherein the isolation region exposed downwardly is in contact with the etch stop layer; masking the isolation region exposed upwardly, and removing the isolation region between MEMS parts; and removing the etch stop layer. | 05-07-2009 |
20090134508 | Integrated circuit with flexible planar leads - A microelectronic device including a microelectronic circuit and at least one planar flexible lead. These planar flexible leads are adapted to bend and flex during mechanical stress, allowing direct mounting of the device to a member and able withstand extreme thermal cycling between −20° C. to +80° C. encountered in terrestrial applications. Advantageously, the microelectronic device is adapted to be both weldable and solderable. The invention may comprise a solar cell diode, which is flexible and so thin that it can be affixed directly to the solar panel proximate the solar cell. | 05-28-2009 |
20100244221 | INTEGRATED CIRCUIT PACKAGING SYSTEM HAVING DUAL SIDED CONNECTION AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit packaging system includes: mounting an integrated circuit, having a device through via and a device interconnect, over a substrate with the device through via traversing the integrated circuit and the device interconnect attached to the device through via; attaching a conductive support over the substrate with the conductive support adjacent to the integrated circuit; providing a pre-formed interposer, having an interposer through via and a pre-attached interconnect, with the pre-attached interconnect attached to the interposer through via; mounting the pre-formed interposer over the integrated circuit and the conductive support with the pre-attached interconnect over the device through via; and forming an encapsulation over the substrate covering the integrated circuit, the conductive support, and partially covering the pre-formed interposer. | 09-30-2010 |
20160126211 | SEMICONDUCTOR ARRANGEMENT, METHOD FOR PRODUCING A SEMICONDUCTOR CHIP - A semiconductor assembly is described. In accordance with one example of the invention, the semiconductor assembly comprises a semiconductor body, a top main electrode arranged on a top side, a bottom main electrode arranged on an underside, and a control electrode arranged on the top side. The semiconductor assembly further includes a spring element for the pressure contacting of the control electrode with a pressure force generated by the spring element. | 05-05-2016 |
20180026005 | POWER ELECTRONIC SWITCHING DEVICE, ARRANGEMENT HEREWITH AND METHODS FOR PRODUCING THE SWITCHING DEVICE | 01-25-2018 |
257689000 | Rigid electrode portion | 2 |
20160071815 | Spacer System For A Semiconductor Switching Device - A spacer system for a semiconductor switching device which is formed as a spacer ring and a plurality of insulating elements and supporting elements are arranged in an alternating manner around a circumference of the spacer ring. The insulating element includes a recess receiving a cathode gate connector element. The supporting element includes a projection receiving a spring system for damping while assembling the switching device. The switching device includes a substrate, a cathode pole piece, an anode pole piece, strain buffer plates and a gate ring. Further connector elements, are electrically connecting the cathode pole piece and the gate ring of the semiconductor switching device to an external circuit unit. The space between the connector elements is minimised in order to reduce the gate circuit impedance, thus enabling an increased maximum turn-off current and further allowing for the use of larger semiconductor switching devices for high power applications. | 03-10-2016 |
20160118361 | INTEGRATED CIRCUIT PACKAGE STRUCTURE AND INTERFACE AND CONDUCTIVE CONNECTOR ELEMENT FOR USE WITH SAME - Consistent with the present disclosure, a conductive connector element for use with a rigid or flexible insulating substrate to electrically couple first and second electrically conductive contact surfaces is provided. The conductive connector element comprises an electrically conductive deformable material and a shape-memory alloy. The conductive connector element is sized and shaped to fit in an opening provided through the insulating substrate and the shape-memory alloy and the electrically conductive deformable material are mechanically coupled such that a thermally induced deformation of the shape-memory alloy causes a mechanical deformation of the electrically conductive deformable material and thereby aids in the electrical coupling of the first and second electrically conductive contact surfaces through the connector element when the connector element is disposed in the opening provided through the insulating substrate. IC package structures and interfaces incorporating such conductive connector elements are also provided. | 04-28-2016 |