Class / Patent application number | Description | Number of patent applications / Date published |
257674000 | With means for controlling lead tension | 6 |
20090146277 | SEMICONDUCTOR DEVICE - A semiconductor device includes: a semiconductor module case; a metal terminal externally extending from within the case; a semiconductor element disposed within the case and electrically connected to the metal terminal; and a printed wiring board having a wiring pattern formed on a surface thereof, the printed wiring board being connected to the semiconductor element through the metal terminal; wherein the external portion of the metal terminal includes a joining portion and a resilient portion, the joining portion being in surface contact with an external surface of the case, the resilient portion facing and being spaced from the joining portion; wherein the printed wiring board is inserted between the joining portion and the resilient portion; and wherein the wiring pattern on the printed wiring board is pressure-welded to the joining portion. | 06-11-2009 |
20120086112 | Multi-Component Electronic System Having Leadframe with Support-Free Cantilever Leads | 04-12-2012 |
20120280375 | SEMICONDUCTOR PACKAGE AND RADIATION LEAD FRAME - In a package wherein a lead part coupled to a semiconductor element by wire bonding, an element retention member to retain the semiconductor element on the top face side and radiate heat on the bottom face side, and an insulative partition part to partition the lead part from the element retention member with an insulative resin appear, a creeping route ranging from the top face to retain the semiconductor element to a package bottom face on a boundary plane between the element retention member and an insulative partition part includes a bent route having a plurality of turns. Consequently, it is possible to inhibit an encapsulation resin to seal a region retaining the semiconductor element from exuding toward the bottom face side of the package. | 11-08-2012 |
20130168840 | SEMICONDUCTOR INTEGRATED DEVICE WITH MECHANICALLY DECOUPLED ACTIVE AREA AND RELATED MANUFACTURING PROCESS - A semiconductor integrated device is provided with: a die having a body of semiconductor material with a front surface, and an active area arranged at the front surface; and a package having a support element carrying the die at a back surface of the body, and a coating material covering the die. The body includes a mechanical decoupling region, which mechanically decouples the active area from mechanical stresses induced by the package; the mechanical decoupling region is a trench arrangement within the body, which releases the active area from an external frame of the body, designed to absorb the mechanical stresses induced by the package. | 07-04-2013 |
20140110827 | PRESSED-CONTACT TYPE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A pressed-contact type semiconductor device includes a power semiconductor element, on an upper surface of which at least a first electrode is formed and on a lower surface of which at least a second electrode is formed, lead frames which face the first electrode and the second electrode of the power semiconductor element respectively, and a clip which applies a pressure to the lead frames while the power semiconductor element is sandwiched by the lead frames, wherein a metallic porous plating part is formed on a surface which faces the first electrode or the second electrode, the surface being a surface of at least one of the lead frames. | 04-24-2014 |
20140264797 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - The method includes the steps of: providing a lead frame, including providing a concaved part in an upper face of a joint part of a die-pad-support lead of a lead frame for setting down a die pad and a tie-bar; bonding a semiconductor chip to a first principal face of the die pad via an adhesive-member layer; then, setting the lead frame between first and second molding dies having first and second cavities respectively so that the first and second cavities are opposed to each other, and the second principal face of the die pad faces toward the second cavity; and forming first and second resin sealed bodies on the sides of the first and second principal faces of the die pad respectively by resin sealing with the first and second molding dies clamping the tie-bar and a part of the lead frame surrounding the tie-bar. | 09-18-2014 |