Class / Patent application number | Description | Number of patent applications / Date published |
257516000 | With passive component (e.g., resistor, capacitor, etc.) | 20 |
20090250784 | Structure and method for elimination of process-related defects in poly/metal plate capacitors - An integrated circuit includes silicon layer ( | 10-08-2009 |
20090256234 | SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME - A semiconductor device is configured that a high-withstand voltage semiconductor device and logic circuits are integrated on a single chip and that a high-withstand voltage high-potential island including the high-potential-side logic circuit is separated using multiple partition walls enclosing therearound. The semiconductor device is provided with a multi-trench separation region having a level shift wire region that is used to connect the high-potential-side logic circuit to the high-potential-side electrode of the high-withstand voltage semiconductor device. | 10-15-2009 |
20090267177 | SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device includes a semiconductor substrate including a semiconductor region surrounded with an element isolation region, a first insulating film formed on the semiconductor region, a pair of resistance elements located at the semiconductor region, each resistance element including a first conductive film formed on the first insulating film, a second insulating film formed on the first conductive film and a second conductive film formed on the second insulating film, a pair of first contact plugs formed on one of the resistance elements and arranged along a first direction relative to the semiconductor region, and a pair of second contact plugs formed on the other resistance element and arranged along the first direction. A first width of the resistance element is a second direction which is perpendicular to the first direction is smaller than half of a second width of the semiconductor region in the second direction. | 10-29-2009 |
20100006976 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - This invention provides a semiconductor device having a capacitor with reduced deterioration of dielectric constant and reduced leakage between upper and lower electrodes and a manufacturing method of such a semiconductor device. A capacity structure is configured by sequentially stacking a lower electrode, a capacitive insulation film, and an upper electrode on wiring or a contact plug. The capacity structure is of a thin-film capacitor structure having, at the interface between the lower electrode and the capacitive insulation film, a thin metal film having insulating properties and exhibiting a high dielectric constant. | 01-14-2010 |
20100019344 | NOVEL POLY RESISTOR AND POLY EFUSE DESIGN FOR REPLACEMENT GATE TECHNOLOGY - A semiconductor device and method for fabricating a semiconductor device is disclosed. The semiconductor device comprises a semiconductor substrate; an active region of the substrate, wherein the active region includes at least one transistor; and a passive region of the substrate, wherein the passive region includes at least one resistive structure disposed on an isolation region, the at least one resistive structure in a lower plane than the at least one transistor | 01-28-2010 |
20100230779 | TRENCH GENERATED DEVICE STRUCTURES AND DESIGN STRUCTURES FOR RADIOFREQUENCY AND BICMOS INTEGRATED CIRCUITS - Trench-generated device structures fabricated using a semiconductor-on-insulator (SOI) wafer, design structures embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, as well as methods for fabricating trench-generated device structures. The device structure includes a trench extending through the semiconductor and insulator layers of the SOI wafer and into the underlying semiconductor substrate, and a first doped region in the semiconductor substrate. The doped region, which extends about the trench, has a second conductivity type opposite to the first conductivity type. The device structure further includes a first contact extending from the top surface through the semiconductor and insulator layers to a portion of the semiconductor substrate outside of the doped region, and a second contact extending from the top surface through the semiconductor and insulator layers to the doped region in the semiconductor substrate. | 09-16-2010 |
20110121425 | SEMICONDUCTOR DEVICE WITH IMPROVED ESD PROTECTION - The present invention relates to a semiconductor device, comprising a semiconductor substrate ( | 05-26-2011 |
20110127635 | Integrated BEOL Thin Film Resistor - In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers. | 06-02-2011 |
20110298085 | SHALLOW TRENCH ISOLATION AREA HAVING BURIED CAPACITOR - A semiconductor chip includes a substrate including a surface, an active transistor region and a substrate contact region formed on the substrate, a shallow trench isolation (STI) area formed in the surface and disposed at least partially between the active transistor region and the substrate contact region, and at least one capacitor at least partially buried in the STI area. | 12-08-2011 |
20120061795 | Through-Substrate Via Waveguides - A device includes a semiconductor substrate of a first conductivity type, wherein the semiconductor substrate comprises a first surface and a second surface opposite the first surface. A through-substrate via (TSV) extends from the first surface to the second surface of the semiconductor substrate. A well region of a second conductivity type opposite the first conductivity type encircles the TSV, and extends from the first surface to the second surface of the semiconductor substrate. | 03-15-2012 |
20120235274 | SEMICONDUCTOR STRUCTURE HAVING AN INTEGRATED DOUBLE-WALL CAPACITOR FOR EMBEDDED DYNAMIC RANDOM ACCESS MEMORY (EDRAM) AND METHOD TO FORM THE SAME - Semiconductor structures having integrated double-wall capacitors for eDRAM and methods to form the same are described. For example, an embedded double-wall capacitor includes a trench disposed in a first dielectric layer disposed above a substrate. The trench has a bottom and sidewalls. A U-shaped metal plate is disposed at the bottom of the trench, spaced apart from the sidewalls. A second dielectric layer is disposed on and conformal with the sidewalls of the trench and the U-shaped metal plate. A top metal plate layer is disposed on and conformal with the second dielectric layer. | 09-20-2012 |
20120267753 | INTEGRATED CIRCUIT DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided is a integrated circuit device and a method for fabricating the same. The integrated circuit device includes a semiconductor substrate having a dielectric layer disposed over the semiconductor substrate and a passive element disposed over the dielectric layer. The integrated circuit further includes an isolation matrix structure, underlying the passive element, wherein the isolation matrix structure includes a plurality of trench regions each being formed through the dielectric layer and extending into the semiconductor substrate, the plurality of trench regions further including an insulating material and a void area. | 10-25-2012 |
20120267754 | Method of Fabricating Isolated Capacitors and Structure Thereof - A structure and method is provided for fabricating isolated capacitors. The method includes simultaneously forming a plurality of deep trenches and one or more isolation trenches surrounding a group or array of the plurality of deep trenches through a SOI and doped poly layer, to an underlying insulator layer. The method further includes lining the plurality of deep trenches and one or more isolation trenches with an insulator material. The method further includes filling the plurality of deep trenches and one or more isolation trenches with a conductive material on the insulator material. The deep trenches form deep trench capacitors and the one or more isolation trenches form one or more isolation plates that isolate at least one group or array of the deep trench capacitors from another group or array of the deep trench capacitors. | 10-25-2012 |
20130043555 | ELECTROSTATIC DISCHARGE (ESD) PROTECTION ELEMENT AND ESD CIRCUIT THEREOF - An ESD protection circuit connected between an I/O pad and an internal circuit is disclosed. The ESD protection circuit includes a P type ESD protection element which has a first P type doped region and a first N type doped region. The covered shape of the first P type doped region is a polygon having at least eight edges, wherein the polygon is bilateral symmetry, and the first N type doped region is disposed to encompass said first P type doped region. During an ESD event, the first P type doped region of the P type ESD protection element receives an ESD current and uniformly drains it away. | 02-21-2013 |
20140091426 | Capacitor and Method for Making Same - A system-on-chip (SOC) device comprises a first capacitor in a first region, a second capacitor in a second region, and may further comprise a third capacitor in a third region, and any additional number of capacitors in additional regions. The capacitors may be of different shapes and sizes. A region may comprise more than one capacitor. Each capacitor in a region has a top electrode, a bottom electrode, and a capacitor insulator. The top electrodes of all the capacitors are formed in a common process, while the bottom electrodes of all the capacitors are formed in a common process. The capacitor insulator may have different number of sub-layers, formed with different materials or different thickness. The capacitors may be formed in an inter-layer dielectric layer or in an inter-metal dielectric layer. The regions may be a mixed signal region, an analog region, a radio frequency region, a dynamic random access memory region, and so forth. | 04-03-2014 |
20140110818 | RANDOM ACCESS MEMORY DEVICE AND MANUFACTURING METHOD FOR NODES THEREOF - A manufacturing method for the nodes of the RAM device, includes the steps as follows: forming a STI layer on a substrate to divide the substrate into several active areas; sequentially forming a first insulating layer and a hard mask layer on the substrate; etching the first insulating layer to form a first hole for exposing the STI layer and partial of the active areas; filling a conductive material in the first hole to form a conductor; forming a protective layer on the top surface of the conductor, wherein each protective layer has an opening aligning the STI layer; etching the conductor from the opening until the STI layer to form a second hole for exposing the STI layer, wherein each conductor is divided into two nodes by the second hole arranged therebetween; and forming a second insulating layer in the second hole for electrically isolating the nodes. | 04-24-2014 |
20140210039 | METHOD OF FABRICATING ISOLATED CAPACITORS AND STRUCTURE THEREOF - A structure and method is provided for fabricating isolated capacitors. The method includes simultaneously forming a plurality of deep trenches and one or more isolation trenches surrounding a group or array of the plurality of deep trenches through a SOI and doped poly layer, to an underlying insulator layer. The method further includes lining the plurality of deep trenches and one or more isolation trenches with an insulator material. The method further includes filling the plurality of deep trenches and one or more isolation trenches with a conductive material on the insulator material. The deep trenches form deep trench capacitors and the one or more isolation trenches form one or more isolation plates that isolate at least one group or array of the deep trench capacitors from another group or array of the deep trench capacitors. | 07-31-2014 |
20140239437 | SEMICONDUCTOR DEVICE - According to one embodiment, the semiconductor device with element isolation by DTI has a layer of the first electroconductive type formed on a substrate. The semiconductor layer of the second electroconductive type is formed on the embedding layer. The first DTI has the following structure: a trench is formed from the surface of the semiconductor layer through the first layer into the substrate and surrounds the semiconductor layer, and an insulator is formed in the trench. The second DTI is formed around the periphery of the semiconductor layer. The first electrode is connected to the first region of the semiconductor layer divided by the first DTI. The second electrode is connected to the second region of the semiconductor layer divided as mentioned previously. The first region and the second region form electrode plates and the first DTI forms the dielectric, to thereby form a capacitor. | 08-28-2014 |
20140264727 | SEMICONDUCTOR DEVICES AND METHODS OF MANUFACTURING THE SAME - A semiconductor device includes a substrate with an active pattern, the active pattern having a first extension portion extending in a first direction substantially parallel to a top surface of the substrate, a second extension portion extending from a first end of the first extension portion in a third direction oriented obliquely to the first direction, a third extension portion extending from a second end of the first extension portion in a direction opposed to the third direction, a first projection portion protruding from the second extension portion in a direction opposed to the first direction, the first projection portion being spaced apart from the first extension portion, and a second projection portion protruding from the third extension portion in the first direction, the second projection portion being spaced apart from the first extension portion. | 09-18-2014 |
20150041949 | Shallow Trench Isolation Area Having Buried Capacitor - A semiconductor chip includes a substrate including a surface, an active transistor region and a substrate contact region formed on the substrate, a shallow trench isolation (STI) area formed in the surface and disposed at least partially between the active transistor region and the substrate contact region, and at least one capacitor at least partially buried in the STI area. | 02-12-2015 |