Class / Patent application number | Description | Number of patent applications / Date published |
257093000 | With electrical isolation means in integrated circuit structure | 77 |
20090057693 | LIGHT-EMITTING ELEMENT ARRAY AND IMAGE FORMING APPARATUS - A light-emitting element array can be manufactured without the separation of a metal reflection layer. The light-emitting element array includes a plurality of light-emitting element portions provided on a substrate, at least one space of the spaces between adjacent light-emitting element portions being electrically separated from each other, wherein the metal reflection layer is provided on the substrate and under the plurality of light-emitting element portions, and a resistive layer for electrical separation between the light-emitting element portions is provided between the plurality of light-emitting element portions and the metal reflection layer. The plurality of light-emitting element portions are divided into a plurality of blocks. Each of the blocks includes a plurality of light-emitting portions. The electrical separation between the light-emitting portions can be made as electrical separation between adjacent light-emitting element portions in adjacent and different blocks. | 03-05-2009 |
20090146159 | LIGHT-EMITTING DEVICE, METHOD OF MANUFACTURING THE LIGHT-EMITTING DEVICE AND LIQUID CRYSTAL DISPLAY HAVING THE LIGHT-EMITTING DEVICE - A light-emitting device includes a substrate on which at least one light source region is defined, the light source region having one or more sub-light source regions that are separated from one another by a gap, a plurality of electrode patterns which are respectively formed in the sub-light source regions, a plurality of light-emitting chips which are respectively connected to the electrode patterns, and a plurality of passivations which respectively cover the light-emitting chips, wherein the passivations are separated from each other by the gap. The light-emitting device is thus capable of improving the mixing of light generated by light-emitting chips and the dissipation of heat generated by light-emitting chips. | 06-11-2009 |
20090278143 | Semiconductor Light Emitting Device - A plurality of transistors are formed on a substrate in a plurality of columns. Each transistor has a first conductivity type region and second conductivity type regions provided on both sides thereof in a column direction, and has an active layer on the side of each second conductivity type region closer to the substrate. Between two columns adjacent to each other, the second conductivity type region on a first side in the column direction of each transistor arranged on a first column, the second conductivity type region on a second side in the column direction of the transistor adjacent to this transistor on the first side in the column direction and the first conductivity type region of each transistor arranged on a second column are electrically connected by a first wire. Between these two columns, the second conductivity type region on the first side in the column direction of each transistor arranged on the second column, the second conductivity type region on the second side in the column direction of the transistor adjacent to this transistor on the first side in the column direction and the first conductivity type region of each transistor arranged on the first column are electrically connected by a second wire. | 11-12-2009 |
20090302334 | Light-emitting element array - A light-emitting element array includes a conductive substrate; an adhesive layer disposed on the conductive substrate; a first epitaxial light-emitting stack layers disposed on the adhesive layer, the first epitaxial light-emitting stack layers including a first p-contact and an first n-contact, wherein the first p-contact and the first n-contact are disposed on the same side of the first epitaxial light-emitting stack layer; and a second epitaxial light-emitting stack layers disposed on the adhesive layer including a second p-contact and an second n-contact, wherein the second p-contact and the second n-contact are disposed on the opposite side of the epitaxial light-emitting stack layer; wherein the first epitaxial light-emitting stack layers and the second epitaxial light-emitting stack layers are electrically connected in anti-parallel. | 12-10-2009 |
20090315045 | INTEGRATED SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME - An integrated compound semiconductor light-emitting-device capable of emitting light as a large-area plane light source, exhibiting excellent in-plane uniformity in an emission intensity is provided. The light-emitting-device comprising a plurality of light-emitting-units formed over a substrate, wherein the light-emitting-unit has a compound semiconductor thin-film crystal layer | 12-24-2009 |
20100051977 | LIGHT EMITTING DEVICE HAVING ISOLATING INSULATIVE LAYER FOR ISOLATING LIGHT EMITTING CELLS FROM EACH OTHER AND METHOD OF FABRICATING THE SAME - Disclosed is a light emitting device having an isolating insulative layer for isolating light emitting cells from one another and a method of fabricating the same. The light emitting device comprises a substrate and a plurality of light emitting cells formed on the substrate. Each of the light emitting cells includes a lower semiconductor layer, an upper semiconductor layer positioned on one region of the lower semiconductor layer, and an active layer interposed between the lower and upper semiconductor layers. Furthermore, an isolating insulative layer is filled in regions between the plurality of light emitting cells to isolate the light emitting cells from one another. Further, wirings electrically connect the light emitting cells with one another. Each of the wirings connects the lower semiconductor layer of one light emitting cell and the upper semiconductor layer of another light emitting cell adjacent to the one light emitting cell. Accordingly, there can be provided a light emitting device wherein particles are prevented from remaining between the plurality of light emitting cells to prevent current leakage between the light emitting cells. Further, there can be provided a light emitting device wherein the regions between light emitting cells are filled with an isolating insulative layer to facilitate formation of the wirings. | 03-04-2010 |
20100059768 | Series Connected Segmented LED - A light source and method for making the same are disclosed. The light source includes a substrate, and a light emitting structure that is divided into segments. The light emitting structure includes a first layer of semiconductor material of a first conductivity type deposited on the substrate, an active layer overlying the first layer, and a second layer of semiconductor material of an opposite conductivity type from the first conductivity type overlying the active layer. A barrier divides the light emitting structure into first and second segments that are electrically isolated from one another. A serial connection electrode connects the first layer in the first segment to the second layer in the second segment. A power contact is electrically connected to the second layer in the first segment, and a second power contact electrically connected to the first layer in the second segment. | 03-11-2010 |
20100109030 | SERIES CONNECTED FLIP CHIP LEDS WITH GROWTH SUBSTRATE REMOVED - LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs. | 05-06-2010 |
20100109031 | LIGHT EMITTING ELEMENT WITH A PLURALITY OF CELLS BONDED, METHOD OF MANUFACTURING THE SAME, AND LIGHT EMITTING DEVICE USING THE SAME - The present invention relates to a light emitting element with arrayed cells, a method of manufacturing the same, and a light emitting device using the same. The present invention provides a light emitting element including a light emitting cell block with a plurality of light emitting cells connected in series or parallel on a single substrate, and a method of manufacturing the same, wherein each of the plurality of light emitting cells includes an N-type semiconductor layer and a P-type semiconductor layer, and the N-type semiconductor layer of one light emitting cell is electrically connected to the P-type semiconductor layer of another adjacent light emitting cell. Further, the present invention provides a light emitting device including a light emitting element with a plurality of light emitting cells connected in series. Accordingly, it is possible to simplify a manufacturing process of a light emitting device for illumination capable of being used with a household AC power source, to decrease a fraction defective occurring in manufacturing a light emitting device for illumination, and to mass-produce the light emitting device for illumination. Further, there is an advantage in that DC driving efficiency can be enhanced in an AC operation by installing a predetermined rectifying circuit outside the light emitting element. | 05-06-2010 |
20100207135 | LIGHT EMITTING DEVICE - A light emitting device free from void-generation at a bonding between an LED chip and a metal layer provided on a dielectric substrate. This light emitting device is also free from short-circuit between the closely arranged LED chips. This light emitting device includes a plurality of the LED chips, one dielectric substrate (sub-mount member) which is made of a dielectric substrate for holding the LED chips. The dielectric substrate is formed with a plurality of supporting platforms which respectively holds the LED chips. Each supporting platform is provided with a metal layer which is soldered to the LED chip. The supporting platforms are configured to leave a groove between the adjacent ones of the supporting platforms. Each supporting platform is provided at its side surface with a solder-leading portion made of a material having a solder-wettablity higher than that of the supporting platform. | 08-19-2010 |
20100219431 | Multi-Junction LED - A light source and method for making the same are disclosed. The light source includes a substrate and a light emitting structure that is deposited on the substrate. A barrier divides the light emitting structure into first and second segments that are electrically isolated from one another. A serial connection electrode connects the first segment in series with the second segment. A first blocking diode between the light emitting structure and the substrate prevents current from flowing between the light emitting structure and the substrate when the light emitting structure is emitting light. The barrier extends through the light emitting structure into the first blocking diode. | 09-02-2010 |
20100219432 | LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - Disclosed is a light emitting device. The light emitting device comprises a conductive substrate, an insulating layer on the conductive substrate, a plurality of light emitting device cells on the insulating layer, a connection layer electrically interconnecting the light emitting device cells, a first contact section electrically connecting the conductive substrate with at least one light emitting device cell, and a second contact section on the at least one light emitting device cell. | 09-02-2010 |
20100224890 | Light emitting diode chip with electrical insulation element - A light emitting diode chip comprising a light emitting diode and a thermally conductive substrate. The light emitting diode is on the substrate with the substrate providing a thermal path from the light emitting diode through the substrate. A mounting pad is also on a substrate and an electrically insulating layer is integral to the substrate. The insulating layer electrically insulates the mounting pad from the light emitting diode. A method for fabricating a light emitting diode chip comprises providing a thermally conductive substrate, forming an electrical insulating layer integral to the substrate and forming a mounting pad on the substrate. A light emitting diode is fabricated and mounted to the substrate, with the light emitting diode electrically insulated from the mounting pad by the electrically insulating layer. | 09-09-2010 |
20100230689 | Novel Metal Core Multi-LED SMD Package and Method of Producing the Same - A new SMD (surface mount devices) package design for efficiently removing heat from LED Chip(s) is involved in this invention. Different from the regular SMD package, which electrical isolated materials like Alumina or AlN are used, the substrate material here is metal like Copper, Aluminum and so on. Also, different from regular design, which most time only has one LED chip inside, current design will at least have two or more LED chips (or chip groups) in one package. All chips are electrical connected via metal blocks, traces or wire-bond. This type of structure is generally fabricated via chemical etching and then filled with dielectric material inside to form a strong package. Because the thermal conductivity of the metal is much higher than the ceramics, the package thermal resistance is much lower than the ceramics based package. Also, the cost of the package is much lower than ceramics package. Moreover, emitting area in one package is much larger than the current arts. | 09-16-2010 |
20100289041 | SEMICONDUCTOR LIGHT EMITTING DEVICE - Provided is a semiconductor light emitting device which includes a number of hexagon-shaped semiconductor light emitting elements formed two-dimensionally, and in which the positive electrodes and the negative electrodes are formed on its light outputting surface side lest the light outputting efficiency should decrease. A mask | 11-18-2010 |
20110024774 | DIGITAL RADIOGRAPHIC FLAT-PANEL IMAGING ARRAY WITH DUAL HEIGHT SEMICONDUCTOR AND METHOD OF MAKING SAME - A method of manufacturing an imaging array includes providing a silicon tile having a first surface and a second, opposite surface. A buried dielectric layer is formed in the silicon tile between the first and second surfaces to define a bottom silicon layer between the first surface and the dielectric layer. A separation boundary is formed in the silicon tile between the second surface and the dielectric layer to define a top silicon layer between the dielectric layer and the separation boundary and a removable silicon layer between the separation boundary and the second surface. An oxide layer is formed on the first surface of the silicon tile and the silicon tile is bonded to a glass substrate at the oxide layer. The silicon tile is separated at the separation boundary to remove the removable silicon layer, exposing the top silicon layer. Semiconductive elements are formed using the exposed top silicon layer. | 02-03-2011 |
20110062464 | LED ARRANGEMENT - An LED arrangement (light emitting diode) has a plurality of adjacent radiating LEDs that are nearly identically aligned for forming an extended area light source. The LEDs are attached to a metallic multi-film support having sandwich-like insulating intermediate layers and having at least a step-like structure with at least one step. At least one LED chip is placed on each step on a metal film and the metal layer directly above is formed of a corresponding shortening or recess for mounting an LED. | 03-17-2011 |
20110062465 | LIGHT EMITTING ELEMENT WITH A PLURALITY OF CELLS BONDED, METHOD OF MANUFACTURING THE SAME, AND LIGHT EMITTING DEVICE USING THE SAME - The present invention relates to a light emitting element with arrayed cells, a method of manufacturing the same, and a light emitting device using the same. The present invention provides a light emitting element including a light emitting cell block with a plurality of light emitting cells connected in series or parallel on a single substrate, and a method of manufacturing the same, wherein each of the plurality of light emitting cells includes an N-type semiconductor layer and a P-type semiconductor layer, and the N-type semiconductor layer of one light emitting cell is electrically connected to the P-type semiconductor layer of another adjacent light emitting cell. Further, the present invention provides a light emitting device including a light emitting element with a plurality of light emitting cells connected in series. Accordingly, it is possible to simplify a manufacturing process of a light emitting device for illumination capable of being used with a household AC power source, to decrease a fraction defective occurring in manufacturing a light emitting device for illumination, and to mass-produce the light emitting device for illumination. Further, there is an advantage in that DC driving efficiency can be enhanced in an AC operation by installing a predetermined rectifying circuit outside the light emitting element. | 03-17-2011 |
20110084294 | HIGH VOLTAGE WIRE BOND FREE LEDS - An LED chip and method of fabricating the same is disclosed that comprises a plurality of sub-LEDs, said sub-LEDs interconnected such that the voltage necessary to drive said sub-LEDs is dependent on the number of said interconnected sub-LEDs and the junction voltage of said sub-LEDs. Each of said interconnected sub-LEDs comprising an n-type semiconductor layer, a p-type semiconductor layer, and an active or quantum well region interposed between the n-type and p-type layers. The monolithic LED chip further comprising a p-electrode having a lead that is accessible from a point on a surface opposite of a primary emission surface of the monolithic LED chip, the p-electrode electrically connected to the p-type layer, and an n-electrode having a lead that is accessible from a point on the surface opposite of the primary emission surface, the n-electrode electrically connected to the n-type layer. These sub-LEDs interconnected by at least a metallization layer on the n-type and p-type layers, which is insulated so that it does not short the sub-LEDs. Further, the LED chip is capable of being electrically coupled for operation without wire bonds. | 04-14-2011 |
20110089443 | Packaging Structure of AC light-emitting diodes - A packaging structure of AC LEDs is provided, which comprises: a carrier containing a positive electrode connecting end, and a negative electrode connecting end; an AC LED module disposed on the carrier, wherein the AC LED module electrically connects to the positive electrode connecting end and the negative electrode connecting end of the carrier; and a die-bonding insulating layer disposed between the AC LED module and the carrier. | 04-21-2011 |
20110089444 | LIGHT-EMITTING ELEMENT - A light emitting element includes a carrier, a conductive connecting structure disposed on the carrier, an epitaxial stack structure including at least a first lighting stack and a second lighting stack disposed on the conductive connecting structure, an insulation section disposed between the epitaxial stack structure and the conductive connecting structure, and at least a metal line laid on the surface of the light emitting element, wherein the first light emitting stack further includes two electrodes having different polarity formed thereon; the second lighting stack is electrically connected to the conductive connecting structure at the bottom thereof and includes an electrode formed thereon. The insulation section is disposed below the first lighting stack to make the first lighting stack be insulated from the conductive connecting structure. The metal lines and the conductive connecting structure are electrically connected to each of the lighting stacks in parallel connection or series connection. | 04-21-2011 |
20110101390 | Monolithic, Optoelectronic Semiconductor Body and Method for the Production Thereof - An optoelectronic semiconductor body comprises a semiconductor layer sequence which is subdivided into at least two electrically isolated subsegments. The semiconductor layer sequence has an active layer in each subarea. Furthermore, at least three electrical contact pads are provided. A first line level makes contact with a first of the at least two subsegments and with the first contact pad. A second line level makes contact with the second of the at least two subsegments and with a second contact pad. A third line level connects the two subsegments to one another and makes contact with the third contact pad. Furthermore, the line levels are each arranged opposite a first main face, wherein the first main face is intended to emit electromagnetic radiation that is produced. | 05-05-2011 |
20110133229 | Light Emitting Diode Structure, LED Packaging Structure Using the Same and Method of Forming the Same - A light emitting diode (LED) structure and a LED packaging structure are disclosed. The LED structure includes a sub-mount, a stacked structure, an electrode, an isolation layer and a conductive thin film layer. The sub-mount has a first surface and a second surface opposite the first surface. The stacked structure has a first semiconductor layer, an active layer and a second semiconductor layer that are laminated on the first surface. The electrode is disposed apart from the stacked structure on the first surface. The isolation layer is disposed on the first surface to surround the stacked structure as well as cover the lateral sides of the active layer. The conductive thin film layer connects the electrode to the stacked structure and covers the stacked structure. | 06-09-2011 |
20110210352 | SEMICONDUCTOR LIGHT EMITTING DEVICE HAVING MULTI-CELL ARRAY, LIGHT EMITTING MODULE, AND ILLUMINATION APPARATUS - A semiconductor light emitting device includes a substrate; a plurality of light emitting cells disposed on the top surface of the substrate, the light emitting cells each having an active layer; a plurality of connection parts formed on the substrate with the light emitting cells formed thereon to connect the light emitting cells in a parallel or series-parallel configuration; and an insulation layer formed on the surface of the light emitting cell to prevent an undesired connection between the connection parts and the light emitting cell. The light emitting cells comprise at least one defective light emitting cell, and at least one of the connection parts related to the defective light emitting cell is disconnected. | 09-01-2011 |
20110215350 | LIGHT EMITTING DEVICE AND METHOD THEREOF - Disclosed are a method of fabricating a light emitting device includes the steps of: forming a plurality of compound semiconductor layers on a substrate, the substrate including a plurality of chip regions and isolation region; selectively etching the compound semiconductor layers to form a light emitting structure on each chip region and form a buffer structure on the isolation region; forming a conductive support member on the light emitting structure and the buffer structure; removing the substrate by using a laser lift off process; and dividing the conductive support member into the a plurality of chips of the chip regions, wherein the buffer structure is spaced apart from the light emitting structure. | 09-08-2011 |
20110233579 | LEADFRAME-BASED PACKAGES FOR SOLID STATE LIGHT EMITTING DEVICES AND METHODS OF FORMING LEADFRAME-BASED PACKAGES FOR SOLID STATE LIGHT EMITTING DEVICES - A modular package for a light emitting device includes a leadframe having a top surface and including a central region having a bottom surface and having a first thickness between the top surface of the leadframe and the bottom surface of the central region. The leadframe may further include an electrical lead extending away from the central region. The electrical lead has a bottom surface and has a second thickness from the top surface of the leadframe to the bottom surface of the electrical lead. The second thickness may be less than the first thickness. The package further includes a package body on the leadframe surrounding the central region and exposing the bottom surface of the central region. The package body may be at least partially provided beneath the bottom surface of the lead and adjacent the bottom surface of the central region. Methods of forming modular packages and leadframes are also disclosed. | 09-29-2011 |
20110248297 | LIGHT-EMITTING APPARATUS AND PRODUCTION METHOD THEREOF - Provided is a light-emitting apparatus which can prevent a shadow mask from contacting a light-emitting medium to suppress damage of the medium, by using a conductive layer formed on a device isolation layer as a pressing member for the shadow mask, and can attain more secure conduction between a second electrode and an auxiliary electrode. A production method of the light-emitting apparatus includes forming first electrodes and auxiliary electrodes on a substrate; forming a device isolation layer between the first electrodes and forming an opening on each of the first electrodes and the auxiliary electrodes; forming a conductive layer on the device isolation layer so as to cover the openings above the auxiliary electrodes; bringing a shadow mask into contact with the conductive layer and forming a light-emitting medium in a thickness smaller than the thickness of the conductive layer; and forming a second electrode so as to cover the light-emitting medium, the device isolation layer, and the conductive layer. | 10-13-2011 |
20110254029 | LED MODULE AND METHOD OF MANUFACTRURING THE SAME - An exemplary LED module includes a base, an anisotropic conductive film on the base, multiple LED dies on the anisotropic conductive film, multiple first electrodes between the base and the anisotropic conductive film, and multiple second electrodes on the LED dies. The LED dies are arranged in multiple rows by multiple columns. The first electrodes each are elongated and parallel to each other. The second electrodes each are elongated and parallel to each other. The LED dies of each column are connected to one of the first electrodes electrically. Each second electrode is electrically coupled to the LED dies of one row. | 10-20-2011 |
20110278608 | High Voltage Low Current Surface Emitting LED - A monolithic LED chip is disclosed comprising a plurality of junctions or sub-LEDs (“sub-LEDs”) mounted on a submount. The sub-LEDs are serially interconnected such that the voltage necessary to drive the sub-LEDs is dependent on the number of serially interconnected sub-LEDs and the junction voltage of the sub-LEDs. Methods for fabricating a monolithic LED chip are also disclosed with one method comprising providing a single junction LED on a submount and separating the single junction LED into a plurality of sub-LEDs. The sub-LEDs are then serially interconnected such that the voltage necessary to drive the sub-LEDs is dependent on the number of the serially interconnected sub-LEDs and the junction voltage of the sub-LEDs. | 11-17-2011 |
20110291131 | LIGHT EMITTING DEVICE, PLANAR LIGHT SOURCE, AND DISPLAY DEVICE - A mortar-shaped or funnel-shaped light emitting device ( | 12-01-2011 |
20120025230 | THREE-DIMENSIONAL LIGHT-EMITTING DEVICES AND METHOD FOR FABRICATING THE SAME - A three-dimensional LED structure with vertically displaced active-region includes at least two groups of vertically displaced surfaces on a non-planar substrate. The first group of surfaces are separated from the second group of surfaces by a vertical distance in the growth direction of the LED structure. The first group of surfaces are connected to the second group of surfaces by sidewalls, respectively. The sidewalls can be inclined or vertical and have a sufficient height so that a layer such as an n-type layer, an active-region, or a p-type layer in a first LED structure deposited on the first group of surfaces and a corresponding layer such as an n-type layer, an active-region, or a p-type layer in a second LED structure deposited on the second group of surfaces are separated by the sidewalls. The two groups of surfaces may be vertically displaced from each other in certain areas of an LED chip, while merge into an integral surface in other areas. A method for fabricating the three-dimensional LED structure is also provided. | 02-02-2012 |
20120025231 | SERIES CONNECTED FLIP CHIP LEDS WITH GROWTH SUBSTRATE REMOVED - LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs. | 02-02-2012 |
20120056219 | BACK-TO-BACK SOLID STATE LIGHTING DEVICES AND ASSOCIATED METHODS - Solid state lights (SSLs) including a back-to-back solid state emitters (SSEs) and associated methods are disclosed herein. In various embodiments, an SSL can include a carrier substrate having a first surface and a second surface different from the first surface. First and second through substrate interconnects (TSIs) can extend from the first surface of the carrier substrate to the second surface. The SSL can further include a first and a second SSE, each having a front side and a back side opposite the front side. The back side of the first SSE faces the first surface of the carrier substrate and the first SSE is electrically coupled to the first and second TSIs. The back side of the second SSE faces the second surface of the carrier substrate and the second SSE is electrically coupled to the first and second TSIs. | 03-08-2012 |
20120086026 | Optoelectronic Semiconductor Body and Method for the Production Thereof - An optoelectronic semiconductor body comprises a substantially planar semiconductor layer sequence having a first and a second main side, which has an active layer suitable for generating electromagnetic radiation. Furthermore, the semiconductor body comprises at least one trench that severs the active layer of the semiconductor layer sequence and serves for subdividing the active of the semiconductor layer sequence into at least two electrically insulated active partial layers. A first and second connection layer arranged on a second main side serve for making contact with the active partial layers. In this case, the first and second connection layers for making contact with the at least two active partial layers are electrically conductively connected to one another in such a way that the active partial layers form a series circuit. | 04-12-2012 |
20120161174 | LIGHT-EMITTING UNIT, LIGHT-EMITTING DEVICE, AND LIGHTING DEVICE - The light-emitting unit includes a first light-emitting element and a second light-emitting element over an insulating surface. The first light-emitting element includes a first electrode, a second electrode, and a layer containing a light-emitting organic compound interposed between the first and second electrodes. An edge portion of the first electrode is covered with a first insulating partition wall. The second light-emitting element includes a third electrode, a fourth electrode, a light-emitting organic compound interposed between the third and fourth electrodes. The first and third electrodes are formed from the same layer having a property of transmitting light emitted from the light-emitting organic compound. The second and fourth electrodes are formed from the same layer. The second electrode intersects with the edge portion of the first electrode with the first partition wall interposed therebetween, whereby the second electrode and the third electrode are electrically connected to each other. | 06-28-2012 |
20120168791 | METHOD FOR PREVENTING ELECTROSTATIC BREAKDOWN, METHOD FOR MANUFACTURING ARRAY SUBSTRATE AND DISPLAY SUBSTRATE - An embodiment of the disclosed technology provides a method for preventing electrostatic breakdown during the manufacturing process of the array substrate. The method comprises: when forming a conductive pattern of a substrate, connecting conductive lines for forming the conductive pattern with a closed conductive ring on a same layer as the conductive lines in a peripheral region of the substrate, and wherein when electrostatic charges are generated over the metal line, the electrostatic charges are led to the closed conductive ring. | 07-05-2012 |
20120187431 | LIGHT EMITTING DIODES WITH LOW JUNCTION TEMPERATURE AND SOLID STATE BACKLIGHT COMPONENTS INCLUDING LIGHT EMITTING DIODES WITH LOW JUNCTION TEMPERATURE - A light emitting diode chip a support layer having a first face and a second face opposite the first face, a diode region on the first face of the support layer, and a bond pad on the second face of the support layer. The bond pad includes a gold-tin structure having a weight percentage of tin of | 07-26-2012 |
20120211783 | LIGHT-EMITTING-DIODE ARRAY WITH MICROSTRUCTURES IN GAP BETWEEN LIGHT-EMITTING-DIODES - A light-emitting-diode (LED) array includes a first LED device having a first electrode and a second LED device having a second electrode. The first LED device and the second LED device are positioned on a common substrate. At least one polymer material is between the first LED device and the second LED device. A plurality of microsctructures are in the at least one polymer material. An interconnect is formed on top of the at least one polymer material to electrically connect the first electrode and the second electrode. | 08-23-2012 |
20120228651 | LIGHT-EMITTING-DIODE ARRAY - A light-emitting-diode (LED) array includes a first LED unit having a first electrode and a second LED unit having a second electrode. The first LED unit and the second LED unit are positioned on a common substrate and are separated by a gap. Two or more polymer materials form a multi-layered structure in the gap. A first polymer material substantially fills a lower portion of the gap and at least one additional polymer material substantially fills a remainder of the gap above the first polymer material. A kinematic viscosity of the first polymer material is less than a kinematic viscosity of the at least one additional polymer material. An interconnect, positioned on top of the at least one additional polymer material, electrically connects the first electrode and the second electrode. | 09-13-2012 |
20120241783 | LED ARRAY - An LED array having N light-emitting diode units (N≧3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer. | 09-27-2012 |
20130037836 | LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - A light emitting device that includes a conductive substrate, an insulating layer on the conductive substrate, a plurality of light emitting device cells on the insulating layer, a connection layer electrically interconnecting the light emitting device cells, a first contact section electrically connecting the conductive substrate with at least one light emitting device cell, and a second contact section on the at least one light emitting device cell. | 02-14-2013 |
20130175560 | VERTICAL SOLID-STATE TRANSDUCERS AND SOLID-STATE TRANSDUCER ARRAYS HAVING BACKSIDE TERMINALS AND ASSOCIATED SYSTEMS AND METHODS - Solid-state transducers (“SSTs”) and SST arrays having backside contacts are disclosed herein. An SST in accordance with a particular embodiment can include a transducer structure having a first semiconductor material at a first side of the transducer structure, and a second semiconductor material at a second side of the transducer structure. The SST can further include a first contact at the first side and electrically coupled to the first semiconductor material, and a second contact extending from the first side to the second semiconductor material and electrically coupled to the second semiconductor material. A carrier substrate having conductive material can be bonded to the first and second contacts. | 07-11-2013 |
20130214308 | SEMICONDUCTOR LIGHT EMITTING DEVICE, LIGHT EMITTING MODULE, AND ILLUMINATION APPARATUS - A semiconductor light emitting device includes a substrate, a semiconductor laminate having a base semiconductor layer, a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially formed on the substrate and divided by an isolation region to provide a plurality of light emitting cells, an intermediate separation layer interposed between the base semiconductor layer and the first conductivity-type semiconductor layer, a plurality of first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively, of the plurality of light emitting cells, and a wiring unit connecting the first and second electrodes of different light emitting cells. | 08-22-2013 |
20130221386 | ISLANDED CARRIER FOR LIGHT EMITTING DEVICE - A low-cost conductive carrier element provides structural support to a light emitting device (LED) die, as well as electrical and thermal coupling to the LED die. A lead-frame is provided that includes at least one carrier element, the carrier element being partitioned to form distinguishable conductive regions to which the LED die is attached. When the carrier element is separated from the frame, the conductive regions are electrically isolated from each other. A dielectric may be placed between the conductive regions of the carrier element. | 08-29-2013 |
20130292718 | LIGHT-EMITTING DIODE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting diode (LED) structure and a method for manufacturing the same. The LED structure comprises an insulating substrate, a plurality of LED chips and a plurality of interconnection layers. Each LED chip comprises a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer stacked in sequence on a surface of the insulating substrate. Each LED chip includes a mesa structure, an exposed portion of the first conductivity type semiconductor layer adjacent to the mesa structure, and a first isolation trench. The first isolation trench is disposed in the mesa structure. The interconnection layers respectively connect neighboring two of the LED chips. | 11-07-2013 |
20130292719 | LIGHT-EMITTING DIODE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting diode (LED) structure includes an insulation substrate; LED chips each includes an epitaxial layer having a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer stacked on the insulation substrate, and comprises a mesa structure and an exposed portion of the first conductivity type semiconductor layer adjacent to each other, and a first isolation trench within the mesa structure; interconnection layers connect the LED chips; electrode pads respectively connected to exposed portions of the semiconductor layers; a reflective insulating layer covering the interconnection layers, the mesa structures and the electrode pads, and having penetration holes respectively exposing a portion of the electrode pads; and bonding pads located on a portion of the reflective insulating layer and connected to the electrode pads through the penetrating holes. A method of manufacturing the LED structure. | 11-07-2013 |
20140034976 | LIGHT-EMITTING DIODE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - A light-emitting diode (LED) structure and a method for manufacturing the same. The LED structure includes an insulation substrate, a plurality of LED chips and a plurality of interconnection layers. Each LED chip includes an epitaxial layer and a dielectric layer stacked on a surface of the insulation substrate in sequence. Each LED chip is formed with a first conductivity type contact hole and a second conductivity type contact hole penetrating the dielectric layer, and a first isolation trench disposed in the epitaxial layer and between the second conductivity type contact hole of the LED chip and the first conductivity type contact hole of the neighboring LED chip. Each interconnection layer extends from the second conductivity type contact hole of each LED chip to the first conductivity type contact hole of the neighboring LED chip by passing over the first isolation trench to electrically connect the LED chips. | 02-06-2014 |
20140034977 | LIGHT-EMITTING DIODE ARRAY - The application provides a light-emitting diode array, including: a first light-emitting diode including a first area; a second area; a first isolation path between the first area and the second area, and the first isolation path including an electrode isolation layer; and an electrode contact layer covering the first area; a second light-emitting diode including a semiconductor stack layer; and a second electrical bonding pad on the semiconductor stack layer; and a second isolation path between the first light-emitting diode and the second light-emitting diode, wherein the second isolation path includes an electrical connecting structure electrically connected to the first light-emitting diode and the second light-emitting diode. | 02-06-2014 |
20140054631 | LED ARRAY - An LED array having N light-emitting diode units (N≧3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer. | 02-27-2014 |
20140070245 | HIGH VOLTAGE MONOLITHIC LED CHIP - Monolithic LED chips are disclosed comprising a plurality of active regions on a submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another with at least some of the active regions having a space between adjacent ones of the active regions that is 10 percent or less of the width of one or more of the active regions. The space is substantially not visible when the LED chip is emitting, such that the LED chips emits light similar to a filament. | 03-13-2014 |
20140145222 | LED Array - An LED array includes: a first LED unit having a first active layer and a first side; a second LED unit having a second active layer and a second side facing the first side; a trench separating the first LED unit from the second LED unit; and a light-guiding structure formed between the first LED unit and the second LED unite for guiding the light emitted by the first active layer and the second active layer away from the LED array. | 05-29-2014 |
20140167080 | LIGHT EMITTING DEVICE - A light emitting device includes a substrate, light emitting units, an insulation layer, a current distribution layer and a reflective layer. The substrate has an upper surface. The light emitting units are disposed on the upper surface and include at least one first light emitting diode (LED) and at least one second LED. A first side wall of the first LED is adjacent to a second side wall of the second LED so as to define a concave portion exposing a portion of the upper surface. The insulation layer at least covers the first side wall and the second side wall. The current distribution layer covers the concave portion and at least covers a portion of the second LED. The reflective layer covers the current distribution layer and is electrically connected to the first LED and the second LED. | 06-19-2014 |
20140217435 | Light Emitting Diodes with Low Junction Temperature and Solid State Backlight Components Including Light Emitting Diodes with Low Junction Temperature - A light emitting diode chip a support layer having a first face and a second face opposite the first face, a diode region on the first face of the support layer, and a bond pad on the second face of the support layer. The bond pad includes a gold-tin structure having a weight percentage of tin of 50% or more. The light emitting diode chip may include a plurality of active regions that are connected in electrical series on the light emitting diode chip. | 08-07-2014 |
20140374783 | Optical Device Integrated with Driving Circuit and Power Supply Circuit, Method for Manufacturing Optical Device Substrate Used Therein, and Substrate Thereof - The present invention relates to an optical device integrated with a driving circuit and a power supply circuit, a method for manufacturing an optical device substrate used therein, and a substrate thereof, which are capable of reducing the overall size and facilitating the handling and management thereof by mounting a plurality of optical elements, driving circuits thereof, and power supply circuits thereof on a single substrate for an optical device having a vertical insulating layer. The objective of the present invention is to provide the optical device integrated with the driving circuit and the power supply circuit, the method for manufacturing the optical device substrate used therein, and the substrate thereof which are capable of reducing the overall size and facilitating the handling and the management thereof by mounting the plurality of optical elements, the driving circuits thereof, and the power supply circuits thereof on the single substrate for the optical device having the vertical insulating layer. | 12-25-2014 |
20150034981 | CHIP COMPONENT - [Problem] There is a need for a chip component which has excellent mountability, which can accommodate multiple types of requested values with a common basic design, and which has improved geometric accuracy and micromachining accuracy. | 02-05-2015 |
20150144974 | Vertical Type AC-LED Device and Manufacturing Method Thereof - The present invention discloses a vertical AC LED element and fabrication method thereof, wherein the vertical AC LED element comprises a conductive substrate ( | 05-28-2015 |
20150325621 | LIGHT-EMITTING DIODE WITH A PLURALITY OF LIGHT-EMITTING ELEMENTS AND METHOD FOR MANUFACTURING SAME - Disclosed are a light-emitting diode with a plurality of light-emitting elements and a method for manufacturing the same. The light-emitting diode includes: a plurality of light-emitting elements arranged on a substrate; a separation groove for separating adjacent light-emitting elements; an insulation material for filling at least a part of the separation; an electrical line for electrically connecting two adjacent light-emitting elements; and an insulation layer for insulating the electrical line from the side of the light-emitting elements. Each of the light-emitting elements includes a first conduction type semiconductor layer, an activation layer, and a second conduction type semiconductor layer, wherein the first conduction type semiconductor layer has an exposed upper surface obtained by removing the second conduction type semiconductor layer and the activation layer, the exposed upper surface being adjacent to the separation groove, and the electrical line being positioned upon the top of the insulation material. The separation groove is filled with the insulation material so as to prevent cutting of the electrical line and to increase the light-emitting area. | 11-12-2015 |
20150333241 | OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optoelectronic device including a substrate having a first site, a second side opposite to the first side, and an outer boundary; a light emitting unit formed on the first side; a first electrode electrically connected to the light emitting unit; a second electrode electrically connected to the light emitting unit; and a heat dissipation pad formed between the first electrode and the second electrode and electrically insulated from the light emitting unit. | 11-19-2015 |
20150340404 | DISPLAY PANEL - A method of manufacturing a display panel includes forming a pixel-defining layer on a substrate, disposing a mask on the pixel-defining layer on a first region of the substrate, and forming a first emission layer, and disposing the mask on the pixel-defining layer on a second region of the substrate, and forming a second emission layer. | 11-26-2015 |
20150380621 | LIGHT-EMITTING DIODE MODULE HAVING LIGHT-EMITTING DIODE JOINED THROUGH SOLDER PASTE AND LIGHT-EMITTING DIODE - Disclosed are a light emitting diode and a light emitting diode module. The light emitting diode module includes a printed circuit board and a light emitting diode joined thereto through a solder paste. The light emitting diode includes a first electrode pad electrically connected to a first conductive type semiconductor layer and a second electrode pad connected to a second conductive type semiconductor layer, wherein each of the first electrode pad and the second electrode pad includes at least five pairs of Ti/Ni layers or at least five pairs of Ti/Cr layers and the uppermost layer of Au. Thus a metal element such as Sn in the solder paste is prevented from diffusion so as to provide a reliable light emitting diode module. | 12-31-2015 |
20160043295 | ISLANDED CARRIER FOR LIGHT EMITTING DEVICE - A low-cost conductive carrier element provides structural support to a light emitting device (LED) die, as well as electrical and thermal coupling to the LED die. A lead-frame is provided that includes at least one carrier element, the carrier element being partitioned to form distinguishable conductive regions to which the LED die is attached. When the carrier element is separated from the frame, the conductive regions are electrically isolated from each other. A dielectric may be placed between the conductive regions of the carrier element. | 02-11-2016 |
20160049442 | Light-Emitting Structure - A light-emitting structure, comprising a substrate; a first unit and a second unit, separately formed on the substrate; a trench between the first unit and the second unit; and an electrical connection, electrically connecting the first unit and the second unit and comprising a bridging portion and a joining portion extending from the bridging portion, wherein the bridging portion is wider than the joining portion and the bridging portion is configured to cover the trench, and the joining portion is configured to cover first unit and the second unit. | 02-18-2016 |
20160093787 | LIGHT EMITTING DIODE ARRAY CONSTRUCTIONS AND PACKAGES - Light emitting diode packages as disclosed herein comprise a monolithic chip including at least a first and a second light emitting diode (LED) that are electrically coupled in series, wherein the first and the second LEDs each include at least one electrical terminal configured to be electrically coupled to a power source. The monolithic chip is mounted onto a connection substrate having first and second landing pads formed from metallic material and electrically isolated from each other. The monolithic chip is mounted to the connection substrate such that the electrical terminal of the first LED is electrically connected to the first landing pad and the electrical terminal of the second LED is electrically connected to the second landing pad. In an example, the monolithic chip includes a third and a fourth LED electrically coupled to each other in series, and electrically coupled to the first and second LEDs in parallel. | 03-31-2016 |
20160104744 | LED ARRAY - An LED array having N light-emitting diode units (N≧3) comprises a permanent substrate, a bonding layer on the permanent substrate, a second conductive layer on the bonding layer, a second isolation layer on the second conductive layer, a crossover metal layer on the second isolation layer, a first isolation layer on the crossover metal layer, a conductive connecting layer on the first isolation layer, an epitaxial structure on the conductive connecting layer, and a first electrode layer on the epitaxial structure. The light-emitting diode units are electrically connected with each other by the crossover metal layer. | 04-14-2016 |
20160111480 | MOTHER SUBSTRATE FOR PRODUCING DISPLAY DEVICE - A method for producing a display device includes forming a resin film on a substrate, forming a plurality of light emitting elements above the resin film, forming a plurality of first grooves in a surface of the resin film, the plurality of first grooves enclosing the plurality of light emitting elements individually in a multiple-fold manner, cutting the substrate at a position overlapping any one of the plurality of first grooves other than the first groove closest to one of the plurality of light emitting elements, and peeling off the substrate from the resin layer. | 04-21-2016 |
20160126222 | LIGHT-EMITTING DIODE LIGHTING DEVICE - A light-emitting diode (LED) lighting device includes a substrate, a first bottom electrode, a bottom transparent isolation layer, a first vertical LED, a second vertical LED, a first top transparent electrode, and a second top transparent electrode. The first bottom electrode is disposed on the substrate and is reflective. The first vertical LED and the second vertical LED are disposed on the first bottom electrode. The bottom transparent isolation layer covers the substrate and the first bottom electrode and exposes the first vertical LED and the second vertical LED. The first top transparent electrode is electrically connected to the first vertical LED. The second top transparent electrode is electrically connected to the second vertical LED. The first top transparent electrode, the second top transparent electrode, and the first bottom electrode cooperate to electrically connect the first vertical LED and the second vertical LED in series. | 05-05-2016 |
20160126424 | LIGHT-EMITTING DIODE LIGHTING DEVICE - A light-emitting diode (LED) lighting device includes a substrate, a first bottom electrode, a second bottom electrode, a first bottom transparent isolation layer, a second bottom transparent isolation layer, a first vertical LED, a second vertical LED, and a top transparent electrode. The substrate has a first recess and a second recess therein. The first bottom electrode and the second bottom electrode are respectively disposed in the first recess and the second recess and are reflective. The first vertical LED is disposed in the first recess and on the first bottom electrode. The second vertical LED is disposed in the second recess and on the second bottom electrode. The first bottom transparent isolation layer and the second bottom transparent isolation layer are respectively disposed in the first recess and the second recess. The top transparent electrode electrically connects the first vertical LED and the second bottom electrode. | 05-05-2016 |
20160141331 | LIGHT-EMITTING DIODE - A light-emitting diode is provided. The light-emitting diode comprises: a first light-emitting structure, comprising: a first area; a second area; a first isolation path having an electrode isolation layer between the first area and the second area; an electrode contact layer covering the first area; and an electrical connecting structure covering the second area; wherein each of the first area and the second area sequentially comprises a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, and the electrode contact layer covers a sidewall of the first area. | 05-19-2016 |
20160163765 | WEARABLE DISPLAY - A conformable electronic device and methods for forming such devices are described. Embodiments of a conformable electronic device may include a silicon substrate having a thickness of 50 μm or less. An array of LEDs that are electrically coupled to a controller chip may be formed on a surface of the silicon substrate. In an embodiment, a top passivation layer is formed over the array of LEDs, the one or more controller chips, and the top surface of the silicon substrate. An embodiment also includes a bottom passivation layer formed on a bottom surface of the silicon substrate. | 06-09-2016 |
20160163941 | WAFER-LEVEL LIGHT EMITTING DIODE PACKAGE AND METHOD OF FABRICATING THE SAME - Exemplary embodiments of the present invention provide a wafer-level light emitting diode (LED) package and a method of fabricating the same. The LED package includes a semiconductor stack including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; a plurality of contact holes arranged in the second conductive type semiconductor layer and the active layer, the contact holes exposing the first conductive type semiconductor layer; a first bump arranged on a first side of the semiconductor stack, the first bump being electrically connected to the first conductive type semiconductor layer via the plurality of contact holes; a second bump arranged on the first side of the semiconductor stack, the second bump being electrically connected to the second conductive type semiconductor layer; and a protective insulation layer covering a sidewall of the semiconductor stack. | 06-09-2016 |
20160172342 | LIGHT-EMITTING DEVICE | 06-16-2016 |
20160190389 | DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - A display device and a method of manufacturing the same are disclosed. In one aspect, the display device includes a substrate including a separation area and a plurality of pixel formed over the substrate. The separation area is formed between adjacent pixels, and a plurality of through holes are respectively defined by a plurality of surrounding inner surfaces of the separation area, and wherein each of the inner surfaces passes through the substrate. The display device also includes an encapsulation layer formed over the substrate and covering the inner surfaces of the separation area. | 06-30-2016 |
20160204316 | SEMICONDUCTOR OPTOELECTRONIC DEVICE WITH AN INSULATIVE PROTECTION LAYER AND THE MANUFACTURING METHOD THEREOF | 07-14-2016 |
20160204323 | Optical Device and Method for Manufacturing Same | 07-14-2016 |
20170236865 | LIGHT EMITTING DIODE HAVING A PLURALITY OF LIGHT EMITTING UNITS | 08-17-2017 |
20170237026 | LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF | 08-17-2017 |
20190148040 | METHOD OF MANUFACTURING A CHIP COMPONENT | 05-16-2019 |