Class / Patent application number | Description | Number of patent applications / Date published |
252182340 | Reactant contains nitrogen | 9 |
20080203355 | Method for Producing Salts of Hydrocyanic Acid - The present application relates to a process for preparing a solution of cyanide salts, comprising the steps of:
| 08-28-2008 |
20080237538 | Process for Preparing Lithium Amide and a Composition Obtainable by Said Process - There is provided a process for preparing a lithium amide composition in which in a first step lithium metal is brought into contact with ammonia to form lithium bronze and in a second step the lithium bronze is reacted with a 1,3-diene or an arylolefin, such as butadiene, isoprene, piperylene, dimethylbutadiene, hexadiene, styrene, methyl styrene, divinylbenzene, naphthalene or anthracene, in the presence of a solvent wherein the temperature is maintained at or below the boiling point of ammonia. Examples of solvents include pentane, cyclopentane, hexane, heptane, octane, cyclohexane, toluene, xylene, cumene, ethyl benzene, tetraline, diethyl ether, tetrahydrofuran (THF), 2-methyl-THF, tetrahydropyran, diisopropyl ether, dibutyl ether, dioxan, methyl-tert-butyl ether or glycol ether. Lithium amide compositions obtainable by said process show improved activity, particularly in reactions involving enolate formation. | 10-02-2008 |
20090039315 | AQUEOUS SOLUTIONS CONTAINING METAL CYANIDE FOR CYANIDE LEACHING FOR THE WINNING OF GOLD AND SILVER - The present invention relates to solutions comprising water and at least one metal cyanide, at least a part of the water being obtained from wastewater which occurs as depleted wastewater in a process for extracting noble metals from noble metal-containing ores by the cyanide process, the process for the preparation of solutions according to the invention and to the use of the solutions according to the invention in a process for extracting noble metals from noble metal-containing ores by the cyanide process, to a process for extracting noble metals from noble metal-containing ores by the cyanide process, wherein the solution according to the invention is used, and to the use of depleted wastewater occurring in the extraction of noble metals from noble metal-containing ores by the cyanide process to the preparation of solutions comprising water and at least one metal cyanide. | 02-12-2009 |
20090127506 | HIGH CRYSTALLINE QUALITY SYNTHETIC DIAMOND - The invention relates to a single crystal CVD diamond material, wherein the extended defect density as characterised by X-ray topography is less than 400/cm2 over an area of greater than 0.014 cm2. The invention further relates to a method for producing a CVD single crystal diamond material according to any preceding claim comprising the step of selecting a substrate on which to grow the CVD single crystal diamond, wherein the substrate has at least one of a density of extended defects as characterised by X-ray topography of less than 400/cm2 over an area greater than 0.014 cm2; an optical isotropy of less than 1×10-5 over a volume greater than 0.1 mm3; and a FWHM X-ray rocking curve width for the (004) reflection of less than 20 arc seconds. | 05-21-2009 |
20090189117 | Nitrates - A method of producing anhydrous calcium nitrate, anhydrous magnesium nitrate or mixture thereof involves removing water from a solution of calcium nitrate, magnesium nitrate or mixture thereof in a pulse combustion drier. The invention also provides a mixture of anhydrous calcium nitrate, anhydrous magnesium nitrate and the individual anhydrous nitrate salts in a sealed container. | 07-30-2009 |
20090230353 | FIBER AGGREGATE AND FABRICATING METHOD OF THE SAME - A fiber aggregate contains fine carbon fibers and fine boron nitride fibers. Desirably the boron nitride fibers form an outer layer portion of the fiber aggregate and the fine carbon fibers form a core portion of the fiber aggregate. Desirably the fine carbon fibers and the fine boron nitride fibers are twisted with each other. Desirably the fine carbon fibers are carbon nanotubes and the fine boron nitride fibers are boron nitride nanotubes. Desirably the fiber aggregate further contains boron-containing fine carbon fibers. The fine boron nitride fibers are formed by substituting carbon atoms of fine carbon fibers by boron atoms and nitrogen atoms. The fiber aggregate is fabricated by mixing a fiber aggregate that contains fine carbon fibers with boron and heating the fiber aggregate mixed with the boron in a nitrogen atmosphere to transform some of the fine carbon fibers into fine boron nitride fibers. | 09-17-2009 |
20100181530 | PROCESS FOR PREPARING NITRIC ACID WITH A CONCENTRATION IN THE RANGE FROM 50 TO 77.8% BY WEIGHT - What is proposed is a process for preparing nitric acid with a concentration in the range from 50 to 77.8% by weight by
| 07-22-2010 |
20110163264 | SYNTHESIS OF CARBON NITRIDES FROM CARBON DIOXIDE - Provided are methods of converting carbon dioxide to carbon nitrides. In a first reaction, carbon dioxide may be reacted with metal nitrides, such as Li | 07-07-2011 |
20110315920 | PROCESS FOR PREPARATION OF NANO CERAMIC-METAL MATRIX COMPOSITES AND APPARATUS THEREOF - A method to introduce ceramic particles into the liquid metal from the polymeric precursor route by in-situ process by cross-linking organic precursor into a hard polymer, this powder is crushed, and then added to the liquid melt for in-situ pyrolysis of the organic into the ceramic phase. The starting material, the organic, for the above process can be in the form of a liquid or a solid. If it is a solid it us usually dissolved into a solvent to create a liquid form. The organic is then cross linked either directly by a thermal process, by adding a catalyst, or by the well known sol-gel process into a hard polymer. It is this hard polymer which is then pyrolyzed into the high temperature ceramic material by the process outlined above. | 12-29-2011 |