Class / Patent application number | Description | Number of patent applications / Date published |
252509000 | Magnesium, alkaline earth metal, or rare earth metal compound | 14 |
20090200519 | FINE PARTICLE OF PEROVSKITE OXIDE, PARTICLE HAVING DEPOSITED PEROVSKITE OXIDE, CATALYST MATERIAL, CATALYST MATERIAL FOR OXYGEN REDUCTION, CATALYST MATERIAL FOR FUEL CELL, AND ELECTRODE FOR FUEL CELL - A catalyst for electrodes in solid-polymer fuel cells which comprises metal oxide particles themselves. It can be used as a substituent for the carbon particles having platinum deposited thereon and platinum metal particles which are presently in general use as, e.g., a catalyst for electrodes in fuel cells, and has a possibility that the amount of platinum to be used can be greatly reduced as compared with the conventional carbon particles having platinum deposited thereon, etc. | 08-13-2009 |
20100140560 | MULTICOMPONENT NANOPARTICLE MATERIALS AND PROCESS AND APPARATUS THEREFOR - Multicomponent nanoparticles materials and apparatuses and processes therefor are disclosed. In one aspect of the disclosure, separate particles generated from solution or suspension or by flame synthesis or flame spray pyrolysis, and the resultant particles are mixed in chamber prior to collection or deposition. In another aspect of the disclosure, nanoparticles are synthesized in stagnation or Bunsen flames and allowed to deposit by thermophoresis on a moving substrate. These techniques are scalable allowing mass production of multicomponent nanoparticles materials and films. The foregoing techniques can be used to prepare composites and component devices comprising one or more lithium based particles intimately mixed with carbon particles. | 06-10-2010 |
20100200816 | DIELECTRIC ELASTOMER COMPOSITION AND HIGH-FREQUENCY ELECTRONIC COMPONENT MATERIAL - It is an object of the present invention to provide a dielectric elastomer composition which has a sufficient dielectric property as a high-frequency electronic component material and to which an excellent flame retardance can be imparted as necessary in consideration of an influence on environment and the high-frequency electronic component material formed by molding the dielectric elastomer composition. The dielectric elastomer composition of the present invention comprises an elastomer to which (A) carbon black and (B) at least one powder selected from among magnesium hydroxide powder and dielectric ceramic powder is added. An average particle diameter of the carbon black is 50 to 200 nm, and 5 to 40 parts by weight thereof is added to 100 parts by weight of the elastomer. In the magnesium hydroxide powder, a content of ferric oxide is not more than 0.02 wt %. In at least one measuring condition selected from among a measuring condition (1) in which a frequency is 400 MHz and a temperature is 30° C. and a measuring condition (2) in which a frequency is 5 GHz and a temperature is 25° C., a dielectric constant is not less than three, and a dielectric dissipation factor is not more than 0.01. | 08-12-2010 |
20100320423 | DIAMOND SINTERED COMPACT HAVING HIGH ELECTRICAL CONDUCTIVITY AND PRODUCTION METHOD THEREOF - The present invention is to provide a diamond sintered compact having good conductivity together with the characteristics, such as hardness, thermal conductivity, thermal resistance, chemical stability, almost equal to those of a natural diamond. A boron-doped diamond sintered compact having good conductivity and high thermal resistance is produced by a sintering process, in which 90 to 99.9 wt. % of a boron-doped diamond powder and 0.1 to 10% wt. % of a powder comprising, one or more of carbonates including Mg, Ca, Sr or Ba, and/or one or more of composite carbonates composed by two or more of these elements, as a bonding phase component, are sintered together under Ht/HP conditions, and the bonding phase component melts and then fills into the space between the boron-doped diamond powder particles. | 12-23-2010 |
20120068124 | Process for the Production of Carbon Graphenes and other Nanomaterials - Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials such as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The reaction also produces nanomaterials from a variety of other input materials, and by varying the process parameters, the type and morphology of the carbon nanoproducts and other nanoproducts can be controlled. The reaction products include novel nanocrystals of MgO (percilase) and MgAl | 03-22-2012 |
20130062575 | METAL IMIDE COMPOUNDS AS ANODE MATERIALS FOR LITHIUM BATTERIES AND GALVANIC ELEMENTS WITH A HIGH STORAGE CAPACITY - Metal imide compounds as anode materials for lithium batteries and galvanic elements with a high storage capacity. Metal imide compounds as highly capacitive anode materials for lithium batteries. The invention relates to a galvanic element, an anode material for use in a galvanic element and method for producing an active electrode material. The galvanic element contains the metal imide compounds of the general formula (I): M | 03-14-2013 |
20130119320 | ELECTROCONDUCTIVE THERMOPLASTIC RESIN - In a tumbler and the like, polypropylene pellets are blended with 1 to 5 wt. % of carbon nanotubes, 10 to 30 wt % of fly ash, 10 to 20 wt % of talc and 0.3 to 1 wt % of a modifier, the resulting blend is extruded from a screw extruder while heating the blend to a melting temperature of about 160 to 260° C., to generate a strand. This strand is cooled and cut into pellets having a predetermined length. Owing to blending with fly ash, talc and a modifier, an inexpensive lightweight electroconductive thermoplastic resin excellent in dust-proofness, heat resistance and recyclability is obtained, even if the blending amount of carbon nanotubes is small. | 05-16-2013 |
20130153831 | Cerium (IV) Salts as Effective Dopant for Carbon Nanotubes and Graphene - A process comprises combining a Ce (IV) salt dissolved in a solvent comprising water with a carbon material comprising CNT or graphene wherein the Ce (IV) salt is selected from a Ce (IV) ammonium salt of a nitrogen oxide acid, Ce (IV) ammonium salt of a sulfur oxide acid, Ce (IV) salt of a lower alkyl organo sulfur acid, or Ce (IV) salt of a lower alkane organo sulfur acid. In one embodiment the Ce (IV) salt is selected from Ce (IV) ammonium nitrate, Ce (IV) ammonium sulfate, Ce (IV) lower alkyllsulfonate, or Ce (IV) trifluoro lower alkanesulfonate. A product is produced by this process. An article of manufacture comprises this product on a substrate. | 06-20-2013 |
20130207050 | POLYAMIDE 12 COMPOSITION CONTAINING CARBON NANOTUBES - A polyamide composition contains the following components: (a) at least 40 parts by weight PA12; (b) 0.1-15 parts by weight of at least one salt with a non-metallic cation; (c) 0.1-25% by weight of at least one dispersant based on esters or amides; (d) a quantity of carbon nanotubes that produces in the moulding compound a specific surface resistance according to IEC standard 60167 of maximum 10 | 08-15-2013 |
20130299750 | COMPOSITION OF POLYAMIDES WITH LOW CONCENTRATION OF CARBOXAMIDE GROUPS AND ELECTRICALLY CONDUCTIVE CARBON - A polyamide composition comprising the following components: a) at least 40 parts by weight of a polyamide whose monomer units contain an arithmetic average of at least 7.5 carbon atoms, b) 0.1 to 15 parts by weight of at least one salt with a non-metallic cation, c) 0.1 to 25 parts by weight of at least one dispersant based on esters or amides and d) an electrically conductive carbon selected from the group of carbon black, graphite powder, carbon fibres, carbon nanotubes and/or graphene, in an amount which results in a specific surface resistance of the polymer composition to IEC 60167 of 10 | 11-14-2013 |
20130341570 | METHOD FOR DISPERSING CARBON NANOTUBES USING CHONDROITIN SULFATE CATION SALT - The present invention relates to a method for dispersing carbon nanotubes. The method may include contacting the carbon nanotubes with a solution containing chondroitin sulfate cation salt of formula (I) wherein R | 12-26-2013 |
20140166941 | MATERIAL FOR SOLID STATE SINTERED MATERIAL - A solid state sintered material is described that includes a mixed oxide of lanthanum, strontium, cobalt, iron and oxygen, and CaCO | 06-19-2014 |
20150108412 | METAL PHOSPHATE CONTAINING MANGANESE AND METHOD FOR ITS PRODUCTION - A manganese(Mn)-bearing monometal phosphate of the type Mn | 04-23-2015 |
20150357643 | ELECTRODE COMPOSITIONS COMPRISING CARBON ADDITIVES - Disclosed herein are electrode compositions comprising a homogeneous mixture comprising: a lead-containing material and a carbon additive comprising carbon black and activated carbon. A total amount of the carbon additive ranges from 0.1% to 2% by weight, relative to the total weight of the composition. The composition can have a ratio of carbon black to activated carbon ranging from 0.1:0.9 to 0.5:0.5. The activated carbon can have a d | 12-10-2015 |