Class / Patent application number | Description | Number of patent applications / Date published |
252077000 | Organic compounds of nonmetals other than C, H, and O | 45 |
20090146100 | ANTIFREEZE CONCENTRATE AND COOLANT COMPOSITIONS AND PREPARATION THEREOF - An antifreeze composition having improved thermal stability is provided. In one embodiment, the antifreeze concentrate composition comprises from 50 to 99 wt. % of a glycol-based freezing point depressant selected from the group of: alkylene glycols, glycol monoethers, glycerins, and mixtures thereof, 0.01 to 10 wt. % of at least one of a 2-ethylhexanoic acid, isononanoic acid and 3,5,5-trimethylhexanoic acid; and 0.01 to 5 wt. % of at least one of octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, neodecanoic acid, benzoic acid, 2-hydroxybenzoic acid, p-terbutylbenzoic acid, and mixtures thereof. In one embodiment, the composition is employed as a concentrate in admixture with 10 to 90 wt. % water. | 06-11-2009 |
20120061611 | HEAT TRANSFER FLUID - The present invention relates to a heat transfer fluid comprising water, glycerine, and a surfactant. The heat transfer fluid is particularly suitable for use in solar thermal collectors or ground source heat pumps. | 03-15-2012 |
20120104310 | POLYIMIDE PRECURSOR SOLUTION COMPOSITION CONTAINING FILLER, AND POLYIMIDE FILM USING SAME - There is provided a filler-containing dispersion solution exhibiting very improved filler dispersion stability by dispersing a filler in a solvent using a polyimide precursor solution composition. Furthermore, in the filler-containing dispersion solution, a tetracarboxylic dianhydride and/or its derivative is reacted with a diamine compound to prepare a filler-containing polyimide precursor solution composition, which is then used to provide a polyimide in which a filler is dispersed. | 05-03-2012 |
20120319032 | Biodegradable, Frost Proof Heat-Transfer Fluid, Use Thereof In Near-Surface Geothermal Installations, And A Concentrate For Preparing Same - Biodegradable, frost proof heat-transfer fluid, use thereof in near-surface geothermal installations, and a concentrate: subject matter of the present invention is the use of a triazole-free composition which as well as water comprises a) 9.2% to 49.5% by weight of at least one C | 12-20-2012 |
20130119302 | HEAT TRANSFER ENHANCING AGENT - An enhancing agent for increasing heat transfer efficiency is disclosed, which is an additive composed of a nano-scale powder and a micro-scale powder that is to be added into a heat-transfer fluid circulating in an heat exchange system or in a coolant circulating in a cooling system for enhancing the heat conductivity of the heat-transfer fluid or the coolant while helping the tank and the fluid passages used in those systems to maintain clean, and eventually enabling those systems to operate with improved heat dissipation effect. By adding the aforesaid enhancing agent into a cooling system of an internal-combustion engine, the heat shock inside the engine that is originated from the fuel burning in the engine can be reduced, resulting that not only the amount of green house gas emission is reduced, but also the chance of engine juddering that is generally originated from poor heat dissipation can be decreased. | 05-16-2013 |
20130119303 | MEDIUM FOR IMPROVING THE HEAT TRANSFER IN STEAM GENERATING PLANTS - The present invention relates to a medium in the form of an aqueous mixture for improving the heat transfer coefficient and use thereof in power plant technology, in particular in steam generating plants. The medium contains at least one film-forming amine (component a) with the general formula: R—(NH—(CH2)m)n—NH2/, where R is an aliphatic hydrocarbon radical with a chain length between 12 and 22 and m is an integral number between 1 and 8 and n is an integral number between 0 and 7, contained in amounts up to 15%. | 05-16-2013 |
20130284971 | NOVEL VAPOR SPACE ANTICORROSIVE COMPOSITION - The present invention refers to a vapor space anticorrosive composition comprising corrosion inhibitors, surfactants and possibly thickeners, wherein one surfactant is selected from alkylamine ethoxylates, and being useful as an engine run-in composition and as a coolant. | 10-31-2013 |
20140027668 | Use of Composition as an Antifreeze Agent - The present invention relates to the use, as an antifreeze agent, of a composition containing a polymer chosen from polyetheramines having a critical solubility temperature in water, referred to as LCST, ranging from 20 to 80° C. and also compositions, in particular of coolant type, comprising a polymer having a critical solubility temperature in water ranging from 20 to 80° C. | 01-30-2014 |
20140239222 | ANTIFREEZE COOLING LIQUID WITH HIGH HEAT CARRYING CAPACITY - Antifreeze cooling liquid with high heat carrying capacity | 08-28-2014 |
20140367607 | METHOD FOR FORMING A CASE FOR AN ELECTRONIC DEVICE AND MANUFACTURED CASE STRUCTURE FOR ELECTRONIC DEVICE - A method for forming a case for an electronic device and a manufactured case structure for an electronic device are provided. The method for forming a case for an electronic device comprises the following steps. Provide a plastic material. Provide a plurality of PCM microcapsules. Mix the plastic material and the plurality of PCM microcapsules so as to form a housing material. Form a case from the housing material by injection molding. The manufactured case structure for an electronic device comprises a plastic layer and a plurality of PCM microcapsules. The plurality of PCM microcapsules are dispersed in the plastic layer. | 12-18-2014 |
20150353803 | Microcapsule Heat Storage Material, Method of Producing the Same, and Use of the Same - In a microcapsule having a latent heat storage material having no vinyl group as a core material and a cross-linked polymer as a shell material, functions of the latent heat storage material is stably and efficiently expressed. | 12-10-2015 |
20150353805 | Method for Producing Microcapsule and Microcapsule - A microcapsule having a functional organic compound as a core material and a cross-linked or non-cross-linked polymer as a shell material achieves stabilization and efficiency of expression of function of the core material. Provided is a method for producing a microcapsule that is obtained by a polymerization reaction of at least one species of vinyl monomer using an O/W dispersion containing an organic compound having no vinyl group and the vinyl monomer as raw material, and has a core-shell structure in which a core is the organic compound having no vinyl group and a shell is a polymer of the vinyl monomer, including the step of emulsifying the O/W dispersion by continuously and successively passing the O/W dispersion through a plurality of net bodies that are provided along a flow path and disposed at certain intervals before the polymerization reaction. | 12-10-2015 |
20160075930 | NOVEL VAPOR SPACE ANTICORROSIVE COMPOSITION - The present invention refers to a vapor space anticorrosive composition comprising corrosion inhibitors, surfactants and possibly thickeners, wherein one surfactant is selected from alkylamine ethoxylates, and being useful as an engine run-in composition and as a coolant. | 03-17-2016 |
252780100 | Organic compounds of nonmetals other than C, H, O, and N | 32 |
20100181524 | STABILIZED HYDROCHLOROFLUOROOLEFINS AND HYDROFLUOROOLEFINS - Disclosed is a combination of hydrofluoroolefins and/or hydrochlorofluoroolefins with stabilizers wherein the stabilizers minimize the degradation of the hydrofluoroolefins and hydrochlorofluoroolefins during storage, handling and use yet allow for atmospheric degradation. The combinations exhibit low or zero ozone depletion potential and lower global warming potential making them of interest as replacements for chlorofluorocarbons and hydrfluorocarbons. The combinations of the present invention comprise hydrofluoroolefins and/or hydrochlorofluoroolefins in combination with a stabilizer or stabilizers selected from free radical scavengers, acid scavengers, oxygen scavengers, polymerization inhibitors and combinations thereof. | 07-22-2010 |
20100187469 | Heat transfer fluid - The invention pertains to a heat transfer composition comprising: at least one fluorinated ether fluid free from functional groups (fluid (H)); from 0.01 to 5% wt with respect to fluid (H) of at least one solid nano-sized additive chosen among metal, metal oxide or carbonaceous material particles, having an average particle size of less than 2 000 nm (additive (N)); and from 0.1 to 10% wt with respect to fluid (H) of at least one functional (per)fluoropolyether comprising recurring units (R1), said recurring units comprising at least one ether linkage in the main chain and at least one fluorine atom (fluoropolyoxyalkene chain) and comprising at least one functional group (functional PFPE (F)). | 07-29-2010 |
20110031436 | COMPOSITIONS COMPRISING 2,3-DICHLORO-1,1,1-TRIFLUOROPROPANE, 2-CHLORO-1,1,1-TRIFLUOROPROPENE, 2-CHLORO-1,1,1,2-TETRAFLUOROPROPANE OR 2,3,3,3-TETRAFLUOROPROPENE - Disclosed are compositions comprising HCFC-243db, HCFO-1233xf, HCFC-244db and/or HFO-1234yf and at least one additional compound. For the composition comprising 1234yf, the additional compound is selected from the group consisting of HFO-1234ze, HFO-1243zf, HCFC-243db, HCFC-244db, HFC-245cb, HFC-245fa, HCFO-1233xf, HCFO-1233zd, HCFC-253fb, HCFC-234ab, HCFC-243fa, ethylene, HFC-23, CFC-13, HFC-143a, HFC-152a, HFC-236fa, HCO-1130, HCO-1130a, HFO-1336, HCFC-133a, HCFC-254fb, HCFC-1131, HFO-1141, HCFO-1242zf, HCFO-1223xd, HCFC-233ab, HCFC-226ba, and HFC-227ca. Compositions comprising HCFC-243db, HCFO-1233xf, and/or HCFC-244db are useful in processes to make HFO-1234yf. Compositions comprising HFO-1234yf are useful, among other uses, as heat transfer compositions for use in refrigeration, air-conditioning and heat pump systems. | 02-10-2011 |
20110089366 | HYDROFLUOROOLEFIN COMPOSITIONS - The present invention relates to compositions containing hydrofluoroolefins and to the uses thereof as heat transfer fluids, blowing agents, solvents and aerosols. More particularly, the invention relates to compositions having: 10 to 90% by weight, of 2,3,3,3-tetrafluoropropene, 5 to 85% by weight of HFC-134a and 2 to 20% by weight of HFC-152a. | 04-21-2011 |
20110215273 | Hydrofluoroolefins, manufacture of hydrofluoroolefins and methods of using hydrofluoroolefins - A hydrofluoroolefin and hydrofluoroolefin isomers and a process for manufacture them comprising eliminating HF from a fluorinated precursor compound are described. The fluorinated precursor compound may be provided by fluorinating a chlorinated precursor. The fluorinated precursor compound may be a fluorinated alkane. The hydroolefines are suitable as blowing agents, heat transfer fluids, or drying agents or degreasing solvents. | 09-08-2011 |
20120193572 | BEDDING PRODUCT HAVING PHASE CHANGE MATERIAL - Embodiments herein describe a cooling cushion or bedding product and methods of making the same. In some embodiments, the cooling cushion or bedding product comprises a microencapsulated phase change material having a melting point in the range from about −30° C. to about 55° C. and a foam. In some embodiments, the microencapsulated phase change material is uniformly dispersed within the foam. Embodiments herein also describe a method of making a cooling cushion or bedding product comprising dispersing a microencapsulated phase change material into a polyol to create a polyol-PCM blend and adding an isocyanate to the polyol-PCM blend. Some embodiments describe a method of making a cooling cushion or bedding product comprising pouring polyol, microencapsulated phase change material having a melting point in the range from about −30° C. to about 55° C. and isocyanate together to form a foaming reaction. | 08-02-2012 |
20130099156 | USE OF LIQUID COMPOSITIONS COMPRISING IMIDAZOLIUM SALTS AS OPERATING MATERIALS - Use of a composition comprising | 04-25-2013 |
20130119304 | CLATHRATE HYDRATE WITH LATENT HEAT STORING CAPABILITY, PROCESS FOR PRODUCING THE SAME, AND APPARATUS THEREFOR, LATENT HEAT STORING MEDIUM, AND METHOD OF INCREASING AMOUNT OF LATENT HEAT OF CLATHRATE HYDRATE AND PROCESSING APPARATUS FOR INCREASING AMOUNT OF LATENT HEAT OF CLATHRATE HYDRATE - An apparatus for production of a clathrate hydrate with enhanced latent heat storing capability includes a gas supplier for supplying a gas to an aqueous solution containing a quaternary ammonium compound, and a cooler for cooling the aqueous solution, the apparatus producing the clathrate hydrate with enhanced latent heat storing capability including both the quaternary ammonium compound and the gas as guests by supplying the gas to the aqueous solution with the gas supplier in the stage of cooling with the cooler. | 05-16-2013 |
20130256588 | Process for producing fluorinated organic compounds - A process for fluorinating hydrocarbon compounds, which comprises:
| 10-03-2013 |
20130341556 | USE OF POLYMER DISPERSIONS AS HEAT EXCHANGE FLUIDS - Heat exchange fluids comprising an aqueous or aqueous-organic dispersion are disclosed. The dispersions have a purely or predominantly aqueous continuous liquid phase, and at least one dispersed phase comprising particles of at least one polymer. Systems for exchanging or storing heat using the heat exchange fluid are also disclosed. | 12-26-2013 |
20150014578 | THERMALLY CONDUCTIVE RESIN COMPOSITION AND THERMALLY CONDUCTIVE SHEET INCLUDING THE SAME - A thermally conductive resin composition containing (A1) a fluorine-based compound having one to two terminal SiH group(s), in which a content of molecules having two such groups is 60 to 100 mole %, (B1) a fluorine-based compound having one to two terminal alkenyl group(s), in which a content of molecules having two such groups is 60 to 100 mole %, (A2) a fluorine-based compound in which a content of molecules having two terminal SiH groups is 0 to 40 mole %, (B2) a fluorine-based compound in which a content of molecules having two terminal alkenyl groups is 0 to 40 mole %, and (C) a thermally conductive filler, and satisfying, in connection with the content of the fluorine-based compounds, relation of [(A1)+(B1)]/[(A2)+(B2)]=20/80 to 80/20, (A1)/(B1)=20/80 to 80/20, and (A2)/(B2)=20/80 to 80/20, as well as a thermally conductive sheet including the same are provided. | 01-15-2015 |
252780300 | Organic Si containing compounds | 20 |
20080245993 | HEAT TRANSFER SYSTEMS UTILIZING A POLYTRIMETHYLENE HOMO- OR COPOLYETHER GLYCOL BASED HEAT TRANSFER FLUID - Heat transfer systems are provided. The heat transfer systems comprise an object in contact with a heat transfer fluid comprising (a) polytrimethylene homo- or copolyether glycol where from about 50 to 100 mole percent of the repeating units are trimethylene ether units, and (b) a blending component selected from the group consisting of ethylene glycol, diethylene glycol, polyalkylene glycol copolymers of ethylene oxide and propylene oxide, vegetable oils, aromatic compounds, mineral oil, silicone fluids, and mixtures thereof. Objects in contact with a heat transfer fluid in the heat transfer systems include automotive radiators, industrial heat exchangers, heat recovery units, refrigeration units, solar panels, cooling towers, transformers, and heating radiators. | 10-09-2008 |
20090230348 | Thermally Conductive Silicone Rubber Composition - A thermally conductive silicone rubber composition comprising: (A) an organopolysiloxane with the exception of below-given components (C) and (E); (B) a thermally conductive filler; (C) a specific organopolysiloxane; (D) a curing agent; (E) a resin-like organopolysiloxane; and (F) a silane compound showing no affinity to aforementioned component (A), wherein component (E) is contained in an amount of 2 to 10 mass % per sum of components (A) and (E), and wherein said component (F) is contained in an amount sufficient for coating 1 to 70% of the entire surface of component (B) determined from the contents of component (B) and the BET specific surface area of aforementioned component (B), demonstrates good handleability and possesses appropriate thixotropicity even when it contains a large amount of thermally conductive filler and when cured is capable of forming a thermally conductive silicone rubber characterized by good adhesive properties and elongation characteristics even without the use of a reinforcing filler. | 09-17-2009 |
20090278079 | METHOD OF USING HEAT TRANSFER OIL WITH HIGH AUTO IGNITION TEMPERATURE - A method to use a heat transfer oil, comprising:
| 11-12-2009 |
20100006798 | HEAT-CONDUCTIVE SILICONE COMPOSITION - A heat-conductive silicone composition comprising (A) a silicone resin, (B) a heat-conductive filler, and (C) a volatile solvent is disposed between a heat-generating electronic part and a heat sink part. It is a grease-like composition at room temperature prior to application to the electronic or heat sink part. It becomes a non-flowable composition as the solvent volatilizes off after application, and this composition, when heated during operation of the electronic part, reduces its viscosity, softens or melts so that it may fill in between the electronic and heat sink parts. | 01-14-2010 |
20100096583 | ANTIFOAMING AGENT FOR AQUEOUS MEDIA - The invention relates to the use of a polyamide prepared from at least one diamine and at least one dicarboxylic acid in a formulation for defoaming aqueous media. The invention also relates to defoamers for aqueous media that comprise such a polyamide. | 04-22-2010 |
20100140537 | Curable Silicone Composition - A curable silicone composition comprising at least the following components: (A) an organopolysiloxane that contains epoxy groups and, preferably, has a branched molecular structure; (B) a phenolic-type curing agent such as an organosiloxane having in one molecule at least two phenolic hydroxyl groups; and (C) an acidic-anhydride type curing agent such as a methylhexahydrophthalic anhydride, as well as an arbitrary components such as (D) a curing accelerator, (E) a filler, or (F) an organic epoxy compound; is characterized by excellent handleability and reduced oil-bleeding during curing, and, when cured, forms a cured body of excellent flexibility and adhesion. | 06-10-2010 |
20100140538 | SILICONE ELASTOMER COMPOSITION AND SILICONE ELASTOMER - A silicone elastomer composition comprising: (A) an organopolysiloxane having in one molecule on average at least 0.1 silicon-bonded alkenyl groups; (B) an organopolysiloxane having in one molecule on average at least 2 silicon-bonded hydrogen atoms; (C) a platinum group metal catalyst; (D) a thermally conductive filler; (E) an organosiloxane having in one molecule alkenyl groups and silicon-bonded alkoxy groups; and (F) an alkoxysilane compound, suitable for the production of an elastomer characterized by reduced change in hardness even after thermal ageing. | 06-10-2010 |
20100213404 | Curable Silicone Composition And Cured Product Thereof - A curable silicone composition comprising: (A) a liquid organopolysiloxane having in one molecule at least two epoxy groups; (B) a compound containing groups react to the epoxy groups; (C) a thermally conductive filler; and (D) a silicone powder, preferably, an epoxy-containing silicone powder; possesses excellent handleability and workability in combination with low viscosity and that, when cured, forms a cured body of excellent elasticity, adhesiveness, and thermal conductivity. | 08-26-2010 |
20100243949 | Thermally Conductive Silicone Composition - A thermally conductive silicone composition includes 25 to 50 volume % of a silicone, 30 to 60 volume % of a first heat conducting filler, and 20 to 40 volume % of a second heat conducting filler, and 1 to 2 volume % of a third heat conducting filler. The thermally conductive silicone composition has two heat conducting fillers with different sizes dispersed therein, thus the thermal impedance can be efficiently reduced. | 09-30-2010 |
20110024675 | HEAT CONDUCTIVE CURED PRODUCT AND MAKING METHOD - A heat conductive cured product which can be handled even in a single layer or thin film form, can be readily attached to a heat-generating component or heat-dissipating member, and exhibits an appropriate tack and heat conductivity in a thin film form is provided as well as a method for preparing the same. A heat conductive cured product is prepared by applying a heat conductive composition as a thin film to a substrate which has been treated to have a silicone pressure-sensitive adhesive releasable surface, and curing the composition, the composition comprising as essential components, (a) an organopolysiloxane having alkenyl radicals, (b) a heat conductive filler, the filler containing at least 30 vol % of aluminum powder based on its total volume, (c) an organohydrogenpolysiloxane, (d) a platinum group metal catalyst, (e) a reaction regulator, and (f) a silicone resin. | 02-03-2011 |
20110248211 | HEAT-CONDUCTIVE SILICONE GREASE COMPOSITION - A heat-conductive silicone grease composition is provided comprising (A) a trialkoxysilyl-endcapped organopolysiloxane having a viscosity of 0.1-1,000 Pa·s at 25° C., (B) a specific organopolysiloxane, (C) a heat-conductive filler, and (D) a condensation catalyst. The composition is amenable to coat at the initial, thereafter increases its viscosity with moisture at room temperature rather than curing so that it remains flexible, easy to re-work, and anti-sagging, eliminates a need for cold storage and for hot application, avoids any undesired viscosity buildup, is easy to manufacture, and has good heat transfer. | 10-13-2011 |
20120007017 | HEAT DISSIPATING MATERIAL AND SEMICONDUCTOR DEVICE USING SAME - Disclosed is a heat dissipating material which is interposed between a heat-generating electronic component and a heat dissipating body. This heat dissipating material contains (A) 100 parts by weight of a silicone gel cured by an addition reaction having a penetration of not less than 100 (according to ASTM D 1403), and (B) 500-2000 parts by weight of a heat conductive filler. Also disclosed is a semiconductor device comprising a heat-generating electronic component and a heat dissipating body, wherein the heat dissipating material is interposed between the heat-generating electronic component and the heat dissipating body. | 01-12-2012 |
20120085964 | MOISTURE-THICKENING HEAT-CONDUCTIVE SILICONE GREASE COMPOSITION - A heat-conductive silicone grease composition is obtained by combining (A) a hydroxyl-endcapped organopolysiloxane, (B) a specific organopolysiloxane, (C) a silane compound having at least three hydrolyzable radicals and/or a hydrolyzate thereof, (D) a thickening catalyst, and (E) a heat-conductive filler. The composition is storable at RT, has a low initial viscosity enough to coat, and after coating, thickens with moisture at RT so that it becomes anti-sagging, remains re-workable, and has durable heat resistance. | 04-12-2012 |
20120119137 | THERMALLY CONDUCTIVE SILICONE GREASE COMPOSITION - A thermally conductive silicone grease composition comprising:
| 05-17-2012 |
20130092870 | COOLANT COMPOSITION FOR FUEL CELL - A coolant composition for a fuel cell, including (a) an alkylene glycol, (b) deionized water, and (c) a compound containing a trimethylsilyl group. The compound containing a trimethylsilyl group of the composition of the present invention prevents the oxidation of the alkylene glycol, and thus the generation of an acid is 700 ppm or less. Additionally, the compound prevent the oxidation of the alkylene glycol, thereby inhibiting the generation of an ionic material, and thus the rate of change of electrical conductivity (conductivity after oxidation/initial conductivity) can be maintained to be 40 times or less. Therefore, the coolant composition for a fuel cell of the present invention can be used as a coolant for a cooling system of a fuel cell driving device with an electrical conductivity of 40 μs/cm or less even without being frozen in the winter. | 04-18-2013 |
20130099157 | COOLANT FORMULATIONS - The technology of this invention relates to an aqueous heat transfer solution exhibiting enhanced stability as well as thermal conductivity. The solution comprises silicon oxide nanoparticles, to which a freezing point depressant may potentially be added. The solution provides protection against forms of corrosion for use in applications where cooling is critical. The invention also covers the use of a concentrate as well as the dilution made from the concentrate. | 04-25-2013 |
20130221268 | THERMALLY-CONDUCTIVE PASTE - A thermally-conductive paste comprises a carrier, at least one graphene platelet, and a plurality of packing materials. The graphene platelets and the packing materials are dispersed in the carrier. At least a portion of the packing materials contact the surface of the graphene platelet. The graphene platelet has a very high thermal conductivity coefficient and a characteristic 2D structure and thus can provide continuous and long-distance thermal conduction paths for the thermally-conductive paste. Thereby is greatly improved the thermal conduction performance of the thermally-conductive paste. | 08-29-2013 |
20140231702 | Cobalt Containing Hydrosilylation Catalysts and Compositions Containing the Catalysts - A composition contains (A) a hydrosilylation reaction catalyst and (B) an aliphatically unsaturated compound having an average, per molecule, of one or more aliphatically unsaturated organic groups capable of undergoing hydrosilylation reaction. The composition is capable of reacting via hydrosilylation reaction to form a reaction product, such as a silane, a gum, a gel, a rubber, or a resin. Ingredient (A) contains a metal-ligand complex that can be prepared by a method including reacting a metal precursor and a ligand. | 08-21-2014 |
20140231703 | Molybdenum Containing Hydrosilylation Reaction Catalysts and Compositions Containing the Catalysts - A composition contains (A) a hydrosilylation reaction catalyst and (B) an aliphatically unsaturated compound having an average, per molecule, of one or more aliphatically unsaturated organic groups capable of undergoing hydrosilylation reaction. The composition ′ capable of reacting via hydrosilylation reaction to form a reaction product, such as a silane, a gum, a gel, a rubber, or a resin. Ingredient (A) contains a metal-ligand complex that can be prepared by a method including reacting a metal precursor and a ligand. | 08-21-2014 |
20150315448 | HEATING MEDIUM COMPOSITION FOR SOLAR THERMAL POWER GENERATION SYSTEM - A heating medium composition for solar thermal power generation system, the heating medium composition including a silane coupling agent represented by formula (1) shown below and a heating medium containing diphenyl ether: (1) wherein each of OR | 11-05-2015 |
252780500 | Organic P containing compounds | 1 |
20090289215 | ANTIFREEZE COOLANT COMPOSITION HAVING HIGH HEAT-OXIDATION RESISTANCE - The present invention relates to an antifreeze coolant composition, and particularly to an antifreeze coolant composition comprising mercaptobenzothiazole as a heat-oxidation resistant agent, alkylbenzoate as a heat-oxidation resistant enhancer and dinonylnaphthalene sulfate as an anti-settling agent. | 11-26-2009 |