Class / Patent application number | Description | Number of patent applications / Date published |
252620520 | Flaw detection or magnetic clutch | 6 |
20090057602 | NON-SETTLING GLYCOL BASED MAGNETORHEOLOGICAL FLUIDS - A magnetorheological fluid comprising magnetic-responsive particles, a thickener, an ionic thixotropic additive, and a carrier fluid wherein the carrier fluid comprises a glycol-water mixture comprising at least 50 percent by weight of a glycol compound. The thickener is preferably fumed silica and the ionic thixotropic additive is preferably one of sodium nitrite, sodium chloride, sodium acetate, and sodium benzoate. | 03-05-2009 |
20090289214 | MAGNETORHEOLOGICAL FORMULATION - Magnetorheological formulations, processes for preparing the same and uses therefor, the formulations comprising: (a) an ionic liquid comprising anions and cations, and (b) dispersed magnetizable particles having a mean diameter of 0.1 to 500 μm; wherein the ionic liquid comprises one or more salts selected from the group consisting of 1-butyl-3-methyl-imidazolium methylsulfate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-ethyl-3-methyl-imidazolium thiocyanate, 1-butyl-3-methylimidazolium thiocyanate, 1-ethyl-3-methyl-imidazolium acetate, 1-butyl-3-methylimidazolium acetate, 1-ethyl-3-methylpyridinium ethylsulfate, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-methyl-3-octylimidazolium tetrafluoroborate, 1-methyl-3-octylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium hexafluorophosphate, methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy)ethylsulfate and mixtures thereof. | 11-26-2009 |
20100078586 | MAGNETORHEOLOGICAL LIQUID - A magnetorheological formulation which comprises at least one base oil, at least one magnetizable particle, a at least one dispersant and a at least one thixotropic agent is described. | 04-01-2010 |
20100224820 | MAGNETORHEOLOGICAL COMPOSITIONS INCLUDING NONMAGNETIC MATERIAL - A magnetorheological composition includes a mixture of a carrier medium and a particle component disposed in the carrier medium. The particle component includes a magnetic material and a nonmagnetic material. The nonmagnetic material is present in the particle component in an amount of from about 5 to about 95 parts by volume based on 100 parts by volume of the particle component. The particle component is present in the magnetorheological composition in an amount of from about 20 to about 80 parts by volume based on 100 parts by volume of the magnetorheological composition. The magnetorheological composition has an on-state yield stress at magnetic saturation of from about 0.1 to about 100 kPa. | 09-09-2010 |
20110121223 | MAGNETORHEOLOGICAL FLUIDS AND METHODS OF MAKING AND USING THE SAME - One embodiment includes a magnetorheological fluid having an on-state yield stress when a magnetic field is applied thereto and comprising a carrier fluid and magnetizable particles suspended in the carrier fluid, and wherein the suspension of the magnetizable particles in the carrier fluid remains essentially homogenous indefinitely in the absence of the magnetic field, and wherein the on-state yield stress of the magnetorheological fluid is greater than or equal to that of poly(alpha)olefin fluid containing the same concentration of magnetizable particles, and wherein the off-state viscosity of the magnetorheological fluid is between about 0.4 and about 12 Pascal-seconds at 40° C. | 05-26-2011 |
20120168669 | COMPOSITE NANOPARTICLES AND METHODS FOR MAKING THE SAME - A composite nanoparticle, for example a nanoparticle containing one or a plurality of cores embedded in another material. A composite nanoparticle can be formed by a one step process that includes: ejecting material from a bulk target material using physical energy source, with the bulk target material disposed in a liquid. Composite nanoparticles are formed by cooling at least a portion of the ejected material in the liquid. The composite fine particles may then be collected from the liquid. A product that includes composite fine particles may be formed with laser ablation, and ultrashort laser ablation may be utilized so as to preserve composite nanoparticle stoichiometry. For applications of the composite fine particles, optical properties and/or magnetic properties may be exploited for various applications. | 07-05-2012 |