Class / Patent application number | Description | Number of patent applications / Date published |
251057000 | Fluid link or column actuator | 7 |
20080237511 | Pneumatic Retarder Actuator Valve - The present invention pertains to an electro-pneumatic retarder control (EPRC) valve for a pneumatic retarder that controls the speed of railroad cars in a marshaling yard. The EPRC valve has a housing that generally encloses and protects its various components. The housing has a lid that can be opened to gain access to a control panel mounted on an interior door. The control panel includes a display, keyboard and programmable logic controller or PLC module that can be adjusted to set the desired pressure levels of the retarder. The EPRC valve has a modular pressure control assembly that includes an intake and exhaust manifold, a retarder supply and return manifold and several interchangeable control lines formed by like-shaped control valves and components. A pilot air control assembly enables the PLC module to selectively open and close the control valves and lines to deliver or release pressurized air to the retarder. | 10-02-2008 |
20090039300 | Hydro-mechanical valve actuation system for split-cycle engine - A hydro-mechanical system is disclosed for actuating an outwardly opening valve of an engine, such as a crossover passage valve of a split-cycle engine. A developed embodiment includes a body having a plunger cylinder in hydraulic fluid communication with a valve cylinder. A plunger in the plunger cylinder is reciprocated to displace hydraulic fluid into the valve cylinder, the engine valve being opened by the hydraulic fluid displaced by the plunger into the valve cylinder and acting against the valve piston. A valve spring, preferably an air spring returns the engine valve to engage an outwardly facing valve seat to close a gas passage of the engine. Control valves and an energy reusing accumulator, along with valve seating control and lift brake features may also be included. | 02-12-2009 |
20100084588 | Deepwater Hydraulic Control System - A hydraulic control system and method utilizing a retrievable control pod for the actuation of subsea blowout preventer stacks are disclosed. In one embodiment, the hydraulic control system comprises a subsea hydraulic umbilical line, a lower marine riser package having a hydraulic receptacle, a hydraulic control pod having a hydraulic connector for hydraulically mating with the hydraulic receptacle, at least one pod umbilical hydraulic connector hydraulically connected through umbilical connector piping to the hydraulic control pod, and at least one lower marine riser package umbilical hydraulic connector for hydraulically mating with the pod umbilical hydraulic connector and the subsea hydraulic umbilical line. | 04-08-2010 |
20100243927 | VALVE ARRANGEMENT - A valve system for activating a piston of a piston-cylinder arrangement for a hydraulic or fluid device includes a pilot control valve including 3/2-way valve and a main valve arrangement having a first and a second main valve. The first and second main valves include 2/2-way valves, wherein in a first position the pilot-control valve is configured to move the first main valve into an open position so as to direct a path for a high pressure fluid to a space above the piston, and wherein in a second position the pilot-control valve is configured to connect the space to a low-pressure tank so as to relieve a pressure in the space above the piston via the second main valve, and wherein the pilot-control valve is configured to open the second main valve and configured to close the first main valve. | 09-30-2010 |
20130292589 | LARGE-SCALE HYDRAULIC VARIABLE-SPEED FLOATING BOX FLAP VALVE - A large-scale hydraulic variable-speed floating box flap valve includes a hinge support, a valve seat, an upper valve leaf and a lower valve leaf, the valve seat and the hinge support are both fixed on a pump station base. The upper valve leaf is hinge-connected to the hinge support through a pin shaft, and the lower valve leaf is hinge-connected to the upper valve leaf. The upper valve leaf and the lower valve leaf may contact and match the valve seat in a sealed manner through a sealing structure. The upper valve leaf is connected to the lower valve leaf through at least one hydraulic mechanism. The hydraulic mechanism has one end hinge-connected to the upper valve leaf, and the other end hinge-connected to the lower valve leaf. The impact force between the valve leaves and the valve seat is damped by the hydraulic mechanism. | 11-07-2013 |
20150034847 | VALVE AND FLUID CONTROL APPARATUS - A valve includes a lower valve housing, a diaphragm, and an upper valve housing. A top surface of a piezoelectric pump is bonded to a bottom surface of the lower valve housing. A circular hole portion is provided in a central portion of a region of the diaphragm that opposes a projecting portion of the lower valve housing. The diaphragm is bonded to the upper valve housing and the lower valve housing, and a divided interior of a valve housing configures a first lower valve chamber, a second lower valve chamber, a first upper valve chamber, and a second upper valve chamber. A groove is located in a wall portion of the upper valve housing that opposes the diaphragm in the first upper valve chamber. | 02-05-2015 |
20160123492 | FLOW CONTROL VALVE HAVING A MOTION CONVERSION DEVICE - A motion conversion device including a body, a first double-acting cylinder movable along a first axis and a second double-acting cylinder movable along a second axis angled relative to the first axis. The body includes several bores which form a closed circuit and house the first and second double-acting cylinders. Movement of the first double-acting cylinder along the first axis hydraulically or pneumatically pushes the second double-acting cylinder along the second axis. Also disclosed is a valve incorporating a motion conversion device with angled double-acting cylinders for moving a closure member between an open position and a closed position, and a method for opening and closing a valve by way of angled double-acting cylinders. | 05-05-2016 |