Entries |
Document | Title | Date |
20080290288 | Measurement System and a Method - The invention provides a method and a measurement system. The method includes: providing a measurement model that includes measurement image information; locating a measurement area image area by utilizing the measurement image information; and performing at least one measurement to provide measurement result information. | 11-27-2008 |
20080308742 | IN-CHAMBER ELECTRON DETECTOR - A secondary particle detector | 12-18-2008 |
20090032723 | Charged Particle Beam Irradiation System - It is to prevent an image drift from occurring caused by a specimen being charged when observing the specimen including an insulating material. | 02-05-2009 |
20090084976 | Systems and methods for analyzing underwater, subsurface and atmospheric environments - The systems and methods described herein include, among other things, systems capable of being deployed for long periods of time in oceanic, subsurface and atmospheric environments. The systems typically include mass spectrometers to measure low molecular weight gases dissolved in the water and volatile chemicals in air and water, and can move through the ocean, subsurface and atmospheric environment to take samples over a large geographic area. Additionally, these mass spectrometer devices are small and require little power and thereby facilitate the development of sample collection devices that can be placed at a remote location and operated for a substantial period of time from an on-board power supply such as a battery or a fuel cell. Such small and lightweight mass spectrometer devices when combined with low power AUVs (Autonomous Underwater Vehicles) and other manned and un-manned vehicles, can take samples over substantial distances and for a substantial period of time. | 04-02-2009 |
20090121151 | Method and Apparatus for Simultaneous Detection and Measurement of Charged Particles at One or More Levels of Particle Flux for Analysis of Same - A charged particle detector and method are disclosed providing for simultaneous detection and measurement of charged particles at one or more levels of particle flux in a measurement cycle. The detector provides multiple and independently selectable levels of integration and/or gain in a fully addressable readout manner. | 05-14-2009 |
20090173888 | Gas field ion source, charged particle microscope, and apparatus - A gas field ion source that can simultaneously increase a conductance during rough vacuuming and reduce an extraction electrode aperture diameter from the viewpoint of the increase of ion current. The gas field ion source has a mechanism to change a conductance in vacuuming a gas molecule ionization chamber. That is, the conductance in vacuuming a gas molecule ionization chamber is changed in accordance with whether or not an ion beam is extracted from the gas molecule ionization chamber. By forming lids as parts of the members constituting the mechanism to change the conductance with a bimetal alloy, the conductance can be changed in accordance with the temperature of the gas molecule ionization chamber, for example the conductance is changed to a relatively small conductance at a relatively low temperature and to a relatively large conductance at a relatively high temperature. | 07-09-2009 |
20090206273 | APPARATUS FOR MEASURING BEAM CHARACTERISTICS AND A METHOD THEREOF - An apparatus and a method for detecting particle beam characteristics are disclosed. In one embodiment, the apparatus may have a body including a first end and second end and at least one detector between the first and second ends. The apparatus may have a transparent state where a portion of the particles entering the apparatus may pass through the apparatus. The apparatus may also have a minimum transparency state where substantially all of the particles entering the apparatus may be prevented from passing through the apparatus and detected. Different transparency state may be achieved by rotating the apparatus or the detector contained therein. With the apparatus, it is possible to detect the beam properties such as the beam intensity, angle, parallelism, and a distribution of the particles in a particle beam. | 08-20-2009 |
20090242790 | ION ENERGY ANALYZER AND METHODS OF MANUFACTURING AND OPERATING - An ion energy analyzer is described for use in diagnosing the ion energy distribution (IED) of ions incident on a radio frequency (RF) biased substrate immersed in plasma. The ion energy analyzer comprises an entrance grid exposed to the plasma, an ion selection grid disposed proximate to the entrance grid, an electron rejection grid disposed proximate to the ion selection grid, and an ion current collector disposed proximate to the electron rejection grid. The ion selection grid is coupled to an ion selection voltage source configured to positively bias the ion selection grid by an ion selection voltage, and the electron rejection grid is coupled to an electron rejection voltage source configured to negatively bias the electron rejection grid by an electron rejection voltage. Furthermore, an ion current meter is coupled to the ion current collector to measure the ion current. | 10-01-2009 |
20090242791 | Two-grid ion energy analyzer and methods of manufacturing and operating - An ion energy analyzer is described for use in diagnosing the ion energy distribution (IED) of ions incident on a radio frequency (RF) biased substrate immersed in plasma. The ion energy analyzer comprises an entrance grid exposed to the plasma, an electron rejection grid disposed proximate to the entrance grid, and an ion current collector disposed proximate to the electron rejection grid. The ion current collector is coupled to an ion selection voltage source configured to positively bias the ion current collector by an ion selection voltage, and the electron rejection grid is coupled to an electron rejection voltage source configured to negatively bias the electron rejection grid by an electron rejection voltage. Furthermore, an ion current meter is coupled to the ion current collector to measure the ion current. | 10-01-2009 |
20090242792 | ELECTRON MICROSCOPY - Using, as a detector, a CCD detector having a CCD element to which a scintillator is closely fixed, a backscattered or scanning transmission image is obtained by the following method. The detector is disposed directly under an objective lens to obtain the backscattered electron image. When one point of a specimen is irradiated with an electron beam, backscattered or transmission electrons generated from the specimen collide with the scintillator to form a luminescent pattern. This pattern is detected by the CCD detector, and stored in a memory. This processing is sequentially repeated for each irradiation position to obtain all the patterns in an electron beam scanning range. Arithmetic processing is performed on each pattern to convert it into an image. Usually, image data for one pixel is calculated from one pattern. By sequentially repeating this, a backscattered or transmission electron image in the electronic beam scanning range can be obtained. | 10-01-2009 |
20090294687 | Three modes particle detector - The invention discloses a charged particle detecting apparatus for detecting positive ions, negative ions and electrons emitted from a sample, the apparatus comprising a housing, defining a chamber in its interior, which is confined by conductive walls, and has an opening to the outside of said housing; a grid for selectively attracting charged particles, wherein the grid is electrically biasable with respect to said housing and functionally aligned with said opening; a converter arrangement with a converter surface, which is electrically biasable with respect to the grid and with respect to the housing, and which is positioned such that charged particles attracted into the chamber by the grid impact on the converter surface; an electron detector, which is biasable with respect to the converter surface in such a way that electrons emitted from the converter surface impact on the electron detector. | 12-03-2009 |
20090314949 | LASER-DRIVEN DEFLECTION ARRANGEMENTS AND METHODS INVOLVING CHARGED PARTICLE BEAMS - Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle α, relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam. | 12-24-2009 |
20090314950 | LITHOGRAPHY APPARATUS AND FOCUSING METHOD FOR CHARGED PARTICLE BEAM - A lithography apparatus includes a unit irradiating a charged particle beam; first and second aperture plate members configured to shape the beam; first and second coils configured to be arranged between the unit and the first aperture plate member, to temporarily deflect the beam, to change a direction of the beam after the temporarily deflecting, and to deflect the beam to a position where the beam passes through the first aperture plate member by the changing; a lens configured to be arranged between the first and second aperture plate members and to control a focal position of the beam having passed through the first aperture plate member; and a unit configured to calculate a difference between positions of the beam on the second aperture plate member obtained by different sets of amounts of deflection at a same focal position when a combination of one of focal positions of the beam controlled by the lens and one of sets of amounts of deflection of the beam obtained by the first and second coils is changed. | 12-24-2009 |
20090321656 | VERIFYING THE ENERGY OF A PARTICLE BEAM - A method for verifying the energy of a particle beam is provided. The method includes accelerating charged particles to a predefined energy in an acceleration apparatus, forming a particle beam from the acceleration apparatus and guiding the particle beam by means of a transport apparatus, deflecting the particle beam using at least one magnet, measuring a position of the particle beam in a direction, which is ideally but not necessarily perpendicular to the beam direction, and verifying an actual energy of the particle beam using the measured position. | 12-31-2009 |
20100001203 | METHOD OF ACQUIRING OFFSET DEFLECTION AMOUNT FOR SHAPED BEAM AND LITHOGRAPHY APPARATUS - A method of acquiring an offset deflection amount for a shaped beam, includes forming reference images of first and second figures which can be shaped by first and second aperture plates placed on a lithography apparatus; forming, using design data of a mark, a reference image of the mark; forming a first convolution reference image obtained by a convolution calculation of the reference image of the mark and the reference image of the first figure and a second convolution reference image obtained by a convolution calculation of the reference image of the mark and the reference image of the second figure; respectively scanning over the mark with charged particle beams having shaped into the first and second figures by using the first and second aperture plates to acquire optical images of the first and second figures; forming a first convolution synthesis image obtained by a convolution calculation of the first convolution reference image and the optical image of the first figure and a second convolution synthesis image obtained by a convolution calculation of the second convolution reference image and the optical image of the second figure; calculating center-of-gravity positions of the first and second convolution synthesis images; and calculating an offset deflection amount for the charged particle beam having shaped into the second figure to match reference positions of the first and second figures based on the center-of-gravity positions of the first and second convolution synthesis images to output a result calculated. | 01-07-2010 |
20100038553 | SYSTEM AND METHOD OF BEAM ENERGY IDENTIFICATION FOR SINGLE WAFER ION IMPLANTATION - The present invention involves a beam energy identification system, comprising an accelerated ion beam, wherein the accelerated ion beam is scanned in a fast scan axis within a beam scanner, wherein the beam scanner is utilized to deflect the accelerated ion beam into narrow faraday cups downstream of the scanner, wherein a difference in scanner voltage or current to position the beam into the Faraday cups is utilized to calculated the energy of ion beam. | 02-18-2010 |
20100038554 | COMPENSATION OF DOSE INHOMOGENEITY AND IMAGE DISTORTION - An improved aperture arrangement in a device for defining a pattern on a target, for use in a particle-beam exposure apparatus, by being irradiated with a beam of electrically charged particles and allowing passage of the beam only through a plurality of apertures. The device includes an aperture array having a plurality of apertures of identical shape defining the shape and relative position of beamlets permeating the apertures. A blanking device switches off the passage of selected beamlets permeating the apertures and defined by them. The apertures are arranged on the aperture array according to an arrangement deviating from a regular arrangement by small deviations, adjusting for distortions caused by the particle-beam exposure apparatus, and the size of the apertures of the aperture array differs across the aperture array in order to allow for an adjustment of the current radiated on the target through the apertures and the corresponding openings. | 02-18-2010 |
20100038555 | OPTICAL COUPLING APPARATUS FOR A DUAL COLUMN CHARGED PARTICLE BEAM TOOL FOR IMAGING AND FORMING SILICIDE IN A LOCALIZED MANNER - An optical coupling apparatus for a dual column charged particle beam tool allowing both optical imaging of an area of an integrated circuit, as well as localized heating of the integrated circuit to form silicide. In one embodiment, optical paths from a whitelight source and a laser source are coupled together by way of first and second beam splitters so that a single optical port of the dual column tool may be utilized for both imaging and heating. In another embodiment, a single laser source is employed to provide both illumination for standard microscopy-type imaging, as well as localized heating. In a third embodiment, a single laser source provides heating along with localized illumination for confocal scanning microscopy-type imaging. | 02-18-2010 |
20100059688 | Method And Software For Irradiating A Target Volume With A Particle Beam And Device Implementing Same - The present invention is related to a method for treating or irradiating a target volume with a particle beam produced by an accelerator, comprising the steps of: deflecting said particle beam with the help of scanning means in two orthogonal (X, Y) directions, thereby constituting an irradiation plane perpendicular to the direction (Z) of the beam, defining in the irradiation plane a scanning field which circumscribes the area of intersection of target volume and irradiation plane and scanning said scanning field by drawing scan lines which form a scan pattern comprising interleaved frames of triangle waves. The scan pattern is preferably continuous and represents contiguous rhombi figures. The invention is equally related to a device and a software program or sequencer implementing the method. | 03-11-2010 |
20100065753 | CHARGED PARTICLE BEAM APPARATUS - With a multi-beam type charged particle beam apparatus, and a projection charged particle beam apparatus, in the case of off-axial aberration corrector, there is the need for preparing a multitude of multipoles, and power supply sources in numbers corresponding to the number of the multipoles need be prepared. In order to solve this problem as described, a charged particle beam apparatus is provided with at least one aberration corrector wherein the number of the multipoles required in the past is decreased by about a half by disposing an electrostatic mirror in an electron optical system. | 03-18-2010 |
20100072391 | NANO-PARTICLE TRAP USING A MICROPLASMA - A system and method employing a microplasma to electrically charge nano- or micro-particles in a gas phase and, subsequently, trap the charged particles within the microplasma using the microplasma's built-in electric fields are disclosed. Confinement of the particles allows their density to be increased over time such that very low concentrations of particles can be detected, e.g., by methods such as laser scattering and/or detection of the plasma-induced charge on the particles. Preferably, charge detection methods are employed when nano-particles are to be trapped and detected. | 03-25-2010 |
20100072392 | Charged particle beam profile measurement - According to an embodiment, an apparatus for measuring the uniformity of a beam of charged particles at an exposure location includes a plurality of Faraday cups, each cup including an electrometer for determining the current collected by said cup, at least one multi-channel low current scanner card electrically coupled to the electrometers, a processor electrically coupled to said at least one scanner card, computational analysis software for receiving signals from said processor and calculating beam parameters, and display software for generating a graphical representation of the beam parameters calculated by said computational analysis software. | 03-25-2010 |
20100084568 | METHOD AND SYSTEM FOR COUNTING SECONDARY PARTICLES - An apparatus for visualizing an ion beam editing operation of a sample. The apparatus comprises a charged particle beam column for producing an charged particle beam and for directing the charged particle beam onto the sample and beam rastering electronics (BRE) for controlling a movement and a dwell time of the charged particle beam. The apparatus further comprises a detector for detecting charged particles stemming from the sample as a result of the charged particle beam impinging on the sample and a multi-channel scalar (MCS) coupled to the detector and to the IBRE, and time-correlated with the BRE, the MCS for binning events detected at the detector as a function of time duration from a start event. Finally, the apparatus comprises an analysis module connected to the MCS for processing data from the MCS into a display signal, and a display module connected to the analysis module for displaying the display signal. | 04-08-2010 |
20100102246 | APPARATUS AND METHOD FOR MONITORING BEAM POSITION BY USING ELECTROOPTIC EFFECT - An apparatus and method for monitoring a beam position using an electrooptic effect are disclosed. The apparatus for measuring the position of a charged particle passing through the interior of an accelerator includes: a crystal positioned within the accelerator and allowing laser generated from a laser generating unit to pass therethrough; a polarization unit polarizing the laser that has passed through the crystal; and a measurement unit measuring the polarized state of the polarized laser to monitor the charged particle. The position of the charged particle passing through the interior of the accelerator can be more accurately measured. | 04-29-2010 |
20100108904 | METHOD AND DEVICE FOR IMPROVED ALIGNMENT OF A HIGH BRIGHTNESS CHARGED PARTICLE GUN - A charged particle gun alignment assembly for emitting a charged particle beam along an optical axis of a charged particle beam device is described. The charged particle gun alignment assembly is configured to compensate for misalignment of the charged particle beam and includes a charged particle source having an emitter with a virtual source defining a virtual source plane substantially perpendicular to the optical axis; a condenser lens for imaging the virtual source; a final beam limiting aperture adapted for shaping the charged particle beam; and a double stage deflection assembly positioned between the condenser lens and the final beam limiting aperture, wherein the working distance of the condenser lens is 15 mm or less. | 05-06-2010 |
20100133446 | ION BEAM FOCUSING LENS METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM - The invention comprises an ion beam focusing method and apparatus used as part of an ion beam injection system, which is used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. The ion beam focusing system includes two or more electrodes where one electrode of each electrode pair partially obstructs the ion beam path with conductive paths, such as a conductive mesh. In a given electrode pair, electric field lines, running between the conductive mesh of a first electrode and a second electrode, provide inward forces focusing the negative ion beam. Multiple such electrode pairs provide multiple negative ion beam focusing regions. | 06-03-2010 |
20100224789 | CHARGED PARTICLE BEAM WRITING APPARATUS AND OPTICAL AXIS DEVIATION CORRECTING METHOD FOR CHARGED PARTICLE BEAM - A charged particle beam writing apparatus includes a stage on which a target object is placed; an emitting unit configured to emit a charged particle beam to the stage side; a blocking unit arranged between the emitting unit and the stage and configured to block the charged particle beam emitted; a deflector having electrodes through which a current flows by applying a voltage and configured to deflect the charged particle beam passing between the electrodes onto the blocking unit by applying a predetermined voltage across the electrodes; an optical axis adjusting unit configured to correct optical axis deviation of the charged particle beam generated by continuously repeating irradiation (beam-ON) of the charged particle beam on a target object and blocking (beam-OFF) of the beam by applying a two-step voltage to the deflector; and a control unit configured to control the optical axis adjusting unit such that an amount of the optical axis deviation is corrected. | 09-09-2010 |
20100270475 | DRIFT MEASURING METHOD, CHARGED PARTICLE BEAM WRITING METHOD, AND CHARGED PARTICLE BEAM WRITING APPARATUS - A detector 32 measures the value of the current formed by reflected electrons generated as a result of irradiation of a reference mark on a substrate with an electron beam 54, where the reference mark is made of a material having a different reflectance than the substrate. The signal from the detector 32 is amplified by a detecting unit 33 and converted to a digital signal by an A/D conversion unit 34. A control computer 19 then performs averaging processing on the digital signal which is then used for drift compensation by a writing data correcting unit 31. | 10-28-2010 |
20100288939 | METHOD OF DETERMINING MAIN DEFLECTION SETTLING TIME FOR CHARGED PARTICLE BEAM WRITING, METHOD OF WRITING WITH CHARGED PARTICLE BEAM, AND APPARATUS FOR WRITING WITH CHARGED PARTICLE BEAM - An electron beam is moved a long distance along a straight line from a sub-deflection region | 11-18-2010 |
20110042578 | Ion beam monitoring arrangement - This invention relates to an ion beam monitoring arrangement for use in an ion implanter where it is desirable to monitor the flux and/or a cross-sectional profile of the ion beam used for implantation. It is often desirable to measure the flux and/or cross-sectional profile of an ion beam in an ion implanter in order to improve control of ion implantation of a semiconductor wafer or similar. The present invention describes adapting the wafer holder to allow such beam profiling to be performed. The substrate holder may be used progressively to occlude the ion beam from a downstream flux monitor or a flux monitor may be located on the wafer holder that is provided with a slit entrance aperture. | 02-24-2011 |
20110108736 | SACP Method and Particle Optical System for Performing the Method - An SACP method includes directing a beam of charged particles onto an object surface of an object using a particle optical system, and detecting intensities of particles emanating from the object. The method further includes: (a | 05-12-2011 |
20110180722 | ALIGNING CHARGED PARTICLE BEAMS - Disclosed are systems ( | 07-28-2011 |
20110186746 | PARTICLE BEAM THERAPY SYSTEM AND METHOD FOR GUIDING A BEAM OF CHARGED PARTICLES IN A PARTICLE BEAM THERAPY SYSTEM - A Particle beam therapy system including an accelerator for making a beam of charged particles available, a beam guiding unit supplying the beam to a treatment location starting from the accelerator, and at least one beam property monitor arranged along the beam path. A control unit communicates with the beam property monitor and guiding unit and determines deviations of actual properties from desired properties of the beam and transmits control signals for adapting the beam properties to the guiding unit, using said deviations. Precise beam guidance is achieved by arranging the beam property monitor on the periphery of the beam perpendicular to the beam path such that the beam properties are detected due to their direct interaction with particles of the beam in the halo region and/or indirectly by electromagnetic interaction. A method for a beam of charged particles in a particle beam therapy system is also disclosed. | 08-04-2011 |
20110240875 | PARTICLE BEAM IRRADIATION APPARATUS AND PARTICLE BEAM THERAPY SYSTEM - The objective is to eliminate the effect of the hysteresis of a scanning electromagnet so that, in the raster scanning or the hybrid scanning, there is obtained a particle beam irradiation apparatus that realizes high-accuracy beam irradiation. There are provided a scanning power source that outputs the excitation current for a scanning electromagnet and an irradiation control apparatus that controls the scanning power source; the irradiation control apparatus is provided with a scanning electromagnet command value learning generator that evaluates the result of a run-through, which is a series of irradiation operations through a command value for the excitation current outputted from the scanning power source, that updates the command value for the excitation current, when the result of the evaluation does not satisfy a predetermined condition, so as to perform the run-through, and that outputs to the scanning power source the command value for the excitation current such that its evaluation result has satisfied the predetermined condition. | 10-06-2011 |
20120068081 | ION BEAM TUNING - A beam line ion implanter includes an ion source configured to generate an ion beam, a scanner configured to scan the ion beam to produce a scanned ion beam having trajectories which diverge from a scan origin, and a focusing element having a focusing field positioned upstream of the scanner configured to focus the ion beam to a focal point at the scan origin. A method of ion beam tuning includes generating an ion beam, focusing the ion beam to a focal point positioned at a scan origin, and scanning the ion beam to produce a scanned ion beam having trajectories which diverge from the scan origin. | 03-22-2012 |
20120097861 | DECELERATION APPARATUS FOR RIBBON AND SPOT BEAMS - A deceleration apparatus capable of decelerating a short spot beam or a tall. ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions. | 04-26-2012 |
20120112091 | METHOD FOR ADJUSTING STATUS OF PARTICLE BEAMS FOR PATTERNING A SUBSTRATE AND SYSTEM USING THE SAME - This invention provides a system capable of adjusting status of one or a plurality of particle beams, the system includes a plurality of particle detectors, an estimating unit and a controller, wherein one or a plurality of particle beams are projected to a substrate. The particle detectors detect the one or the plurality of particle beams reflected from the substrate to generate one or a plurality of detector signals in response thereto. The estimating unit estimates status information of the one or the plurality of particle beams by executing a mathematical method according to the one or the plurality of detector signals. The controller adjusts or corrects status of the one or the plurality of particle beams corresponding to the substrate according to the estimated status information of the one or the plurality of particle beams. The substrate is made pattern progressively in a sequence according to a desired pattern. | 05-10-2012 |
20120126137 | ION IMPLANTATION METHOD AND ION IMPLANTER - An ion implantation method and an ion implanter with a beam profiler are proposed in this invention. The method comprises setting scan conditions, detecting the ion beam profile, calculating the dose profile according to the detected ion beam profile and scan conditions, determining the displacement for ion implantation and implanting ions on a wafer surface. The ion implanter used the beam profiler to detect the ion beam profile, calculate dose profile and determine the displacement and used the displacement in ion implantation for optimizing, wherein the beam profiler comprises a body with ion channel and detection unit behind the ion channel in the body for beam profile detection. The beam profiler may be a 1-dimensional, 2-dimensional or angle beam profiler. | 05-24-2012 |
20120126138 | CHARGED PARTICLE BEAM DRAWING APPARATUS AND ARTICLE MANUFACTURING METHOD USING SAME - The drawing apparatus of the present inventions includes a detector having a size for which the detector can simultaneously detect two adjacent charged particle beams among a plurality of charged particle beams, and configured to detect an intensity of a charged particle beam incident thereon. A controller is configured to perform a control of a position of the detector and a control of a blanking deflector array such that one of two adjacent charged particle beams is in a blanking state and the other is in a non-blanking state on the detector that is moved, and each of the plurality of charged particle beams becomes in a blanking state and a non-blanking state sequentially, to cause the detector to perform an output in parallel with the control, and to inspect a defect in each blanking deflector in the blanking deflector array based on the output. | 05-24-2012 |
20120161030 | PARTICLE BEAM IRRADIATION APPARATUS, PARTICLE BEAM THERAPY SYSTEM, AND DATA DISPLAY PROGRAM - A particle beam irradiation apparatus There is provided a data processing apparatus that displays on a display unit a measured irradiation position value and an irradiation position value error, which is the error of the measured irradiation position relevant value related to the irradiation position of charged particle beam with respect to a desired irradiation position value related to a desired irradiation position, so that the measured irradiation position relevant value and the irradiation position relevant value error correspond to each other. The data processing apparatus displays a desired value display figure indicating a desired irradiation position relevant value at the coordinates of the desired irradiation position value and a measured value display figure at display coordinates, which are coordinates obtained by adding the desired irradiation position value to the coordinates acquired by arithmetically operating an irradiation position value error with deformation coefficients, and displays a line that connects the measured value display figure with the desired value display figure. | 06-28-2012 |
20120187307 | CHARGED PARTICLE BEAM WRITING APPARATUS AND CHARGED PARTICLE BEAM WRITING METHOD - A charged particle beam writing apparatus includes a plurality of tracking calculation units to calculate a deflection amount of the charged particle beam in regard to a movable substrate, a switching unit for each of a plurality of virtual small regions of the substrate, to input an end signal indicating completion of charged particle beam emission to a respective small region, and to switch from output of one of the tracking calculation units to output of another of the tracking calculation units, and a deflector, while a substrate is moving, to deflect the charged particle beam to an n-th small region, based on an output from one of the tracking calculation units before switching and to deflect the charged particle beam to an (n+1)th small region based on an output from another of tracking calculation units after switching the plurality of tracking calculation units. | 07-26-2012 |
20120193551 | APPARATUS SYSTEMS AND METHODS OF SENSING CHEMICAL BIO-CHEMICAL AND RADIOLOGICAL AGENTS USING ELECTROPHORETIC DISPLAYS - Caesium-137 irradiates electronic paper. An incoming gamma-ray from the Cs-137 interacts with a particle inside a micro-container by generating a recoil electron and/or a hole. Because the recoil electron physically leaves the particle, the particle is charged depending on the dose from the radiation source. And, the charge of the particles change, which results in a movement of the particles within the micro-container. After refreshing the electronic paper, a visible difference in the gray-scale can be seen. Thus, the visible difference in the gray-scale is an effect caused by the irradiation of the electronic paper, showing sensitivity to high energy radiation--thus, non-optimized electronic paper is sensitive to high energy radiation and can be used as a radiation dosimeter. In addition, electronic paper can be used for sensing chemical and bio-chemical agents, as well as detecting high energy radiation. | 08-02-2012 |
20120199758 | GAS FIELD IONIZATION ION SOURCE AND ION BEAM DEVICE - Provided is a gas field ionization ion source capable of emitting heavy ions with high brightness which are suitable for processing a sample. The gas field ionization ion source according to the present invention includes a temperature controller individually controlling the temperature of the tip end of an emitter electrode ( | 08-09-2012 |
20120228516 | CHARGED PARTICLE BEAM DRAWING APPARATUS AND ARTICLE MANUFACTURING METHOD USING SAME - The charged particle beam drawing apparatus of the present invention is a charged particle beam drawing apparatus that renders a pattern on a substrate using a charged particle beam and includes a detector that detects charge amount depending on the irradiation of the charged particle beam; first and second deflectors that are arranged along the direction of the irradiation of the charged particle beam and are capable of deflecting the charged particle beam; and a controller that controls the first and second deflectors, wherein the controller transmits a signal, which is used for switching the irradiation/nonirradiation of the charged particle beam to the detector, to the first and second deflectors at a predetermined timing, and adjusts the operation timing of the first and second deflectors based on the output of the detector depending on the signal. | 09-13-2012 |
20120235054 | ELECTRON BEAM IRRADIATION APPARATUS AND ELECTRON BEAM DRAWING APPARATUS - According to one embodiment, an electron beam irradiation apparatus comprises an objective lens configured to irradiate a specimen surface with an electron beam, an electron detector which is provided between the objective lens and the specimen surface and which is configured to detect reflected electrons or secondary electrons emitted from the specimen surface, and an antireflection mechanism which is provided between the electron detector and the specimen surface. The antireflection mechanism has a plurality of holes following spiral trajectories of reflected electrons or secondary electrons emitted from the specimen surface and is configured to prevent the reflected electrons or secondary electrons from being re-reflected toward the specimen surface and to direct a part of the reflected electrons or secondary electrons to the electron detector. | 09-20-2012 |
20120248327 | Method and Arrangement for the Adjustment of Characteristics of a Beam Bundle of High-Energy Radiation Emitted from a Plasma - The invention is related to the adjustment of characteristics of a beam bundle of high-energy radiation emitted from a plasma, particularly for applications in semiconductor lithography. For acquiring and adjusting characteristics of a beam bundle of high-energy radiation emitted from a plasma and focused by means of collector optics, an intensity distribution of the radiation is acquired over the cross section of a convergent beam bundle in a measuring plane perpendicular to the optical axis in front of an intermediate focus of the collector optics, and intensity values are recorded in defined sectors for a quantity of reception regions of a measuring device which are aligned with different radii concentric to the optical axis, and measured quantities and control variables are determined from a comparison of the intensity values of different sectors for aligning the collector optics. | 10-04-2012 |
20120280137 | ION IMPLANTING SYSTEM - An ion implanting system includes an ion beam generator, a mass separation device, a holder device and a first detector. The ion beam generator is configured for generating a first ion beam. The mass separation device is configured for isolating a second ion beam comprising required ions from the first ion beam. The holder device is configured for holding a least one substrate. The holder device and the first detector reciprocate relative to the second ion beam along a first direction to make the substrate and the first detector pass across a projection region of the second ion beam, wherein the first detector is configured for obtaining relevant parameters of the second ion beam. The above-mentioned system is able to obtain the relevant parameters of the ion beam during ion implantation so that the system may immediately adjust the fabrication parameters to obtain better effect of ion implantation. | 11-08-2012 |
20120286170 | DUAL PASS SCANNING - A method for exposing a wafer using a plurality of charged particle beamlets. The method comprises identifying non-functional beamlets among the beamlets, allocating a first subset of the beamlets for exposing a first portion of the wafer, the first subset excluding the identified non-functional beamlets, performing a first scan for exposing the first portion of the wafer using the first subset of the beamlets, allocating a second subset of the beamlets for exposing a second portion of the wafer, the second subset also excluding the identified non-functional beamlets, and performing a second scan for exposing the second portion of the wafer using the second subset of the beamlets, wherein the first and second portions of the wafer do not overlap and together comprise the complete area of the wafer to be exposed. | 11-15-2012 |
20120305797 | METHOD AND PARTICLE BEAM DEVICE FOR FOCUSING A PARTICLE BEAM - A system is provided for focusing a particle beam onto an irradiation position on a surface of an object and for imaging and/or processing the surface. The described system is based on the consideration that the focusing of a particle beam generated in the particle beam device onto the surface of an object is intended to be effected in a manner dependent on the height profile of the surface. Accordingly, parameters for setting the focusing in a manner dependent on the height profile of the surface should be chosen. During scanning of the particle beam over the surface of the object, the focusing for each scanning point is set using the parameters in such a way that the best possible focusing can be achieved. In order to achieve this, the described system provides for taking account of the height profile of the surface of the object when choosing the parameters. | 12-06-2012 |
20120305798 | CHARGED PARTICLE MULTI-BEAMLET APPARATUS - The invention relates to a method and a device for manipulation of one or more charged particle beams of a plurality of charged particle beamlets in a charged particle multi-beamlet apparatus. The manipulator device comprises a planar substrate comprising an array of through openings in the plane of the substrate, each of these through openings is arranged for passing the at least one charged particle beamlet there through, wherein each of the through openings is provided with one or more electrodes arranged around the through opening, and a electronic control circuit for providing control signals to the one or more electrodes of each through opening, wherein the electronic control circuit is arranged for providing the one or more electrodes of each individual through opening with an at least substantially analog adjustable voltage. | 12-06-2012 |
20130026388 | CHARGED PARTICLE IRRADIATION DEVICE AND METHOD - A charged particle irradiation device ( | 01-31-2013 |
20130037724 | CHARGED PARTICLE BEAM DRAWING APPARATUS AND CHARGED PARTICLE BEAM DRAWING METHOD - A charged particle beam drawing apparatus of an embodiment includes: a drawing unit to perform drawing on a workpiece on a stage by using a charged particle beam; multiple marks located on the stage and having different heights; an irradiation position detector to, when any of the marks is irradiated with the charged particle beam, detect an irradiation position of the charged particle beam on a mark surface of the mark; a drift-amount calculation unit to calculate a drift amount of the charged particle beam on the mark surface by using the irradiation position; a drift-amount processing unit to obtain a drift amount on a workpiece surface by using the drift amounts on at least two of the mark surfaces; and a drawing controller to correct an is irradiation position of the charged particle beam by using the drift amount on the workpiece surface. | 02-14-2013 |
20130075623 | MULTI-ION BEAM IMPLANTATION APPARATUS AND METHOD - An multi-ion beam implantation apparatus and method are disclosed. An exemplary apparatus includes an ion beam source that emits at least two ion beams; an ion beam analyzer; and a multi-ion beam angle incidence control system. The ion beam analyzer and the multi-ion beam angle incidence control system are configured to direct the emitted at least two ion beams to a wafer. | 03-28-2013 |
20130075624 | Beam Monitoring Device, Method, And System - A beam monitoring device, method, and system is disclosed. An exemplary beam monitoring device includes a one dimensional (1D) profiler. The 1D profiler includes a Faraday having an insulation material and a conductive material. The beam monitoring device further includes a two dimensional (2D) profiler. The 2D profiler includes a plurality of Faraday having an insulation material and a conductive material. The beam monitoring device further includes a control arm. The control arm is operable to facilitate movement of the beam monitoring device in a longitudinal direction and to facilitate rotation of the beam monitoring device about an axis. | 03-28-2013 |
20130082188 | PARTICLE BEAM SYSTEM AND METHOD FOR OPERATING THE SAME - A method of operating a particle beam system includes determining a deflection amount and a deflection time of a beam deflection module connected to a data network. The method also includes determining an un-blank time of a beam blanking module connected to the data network, and determining a blank time of the beam blanking module connected to the data network. The method further includes generating a data structure which includes plural data records, wherein each data record includes a command representing an instruction for at least one of the modules, and a command time representing a time at which the instruction is to be sent to the data network. In addition, the method includes sorting the records of the data structure by command time, and generating a set of digital commands based on the data structure. Moreover, the method includes sending the digital commands of the set to the network in an order corresponding to an order of the sorted records. | 04-04-2013 |
20130240752 | METHODS AND SYSTEMS FOR DETECTING OR COLLECTING PARTICLES - Methods and systems for detecting and/or collecting particles are disclosed. At least some of the particles are electrically charged by a charger ( | 09-19-2013 |
20130320228 | CONTAMINATION REDUCTION ELECTRODE FOR PARTICLE DETECTOR - A charged particle detector arrangement is described. The detector arrangement includes a detection element and a collector electrode configured to collect charged particles released from the detection element upon impact of signal charged particles. | 12-05-2013 |
20130327953 | PARTICLE DETECTION SYSTEM - This invention provides a design to process a large range of detection beam current at low noise with a single detector. With such a design, the detection system can generate up to 10 | 12-12-2013 |
20140001373 | METHOD FOR SETTING A POSITION OF A CARRIER ELEMENT IN A PARTICLE BEAM DEVICE | 01-02-2014 |
20140034844 | NON-RADIOACTIVE ION SOURCE USING HIGH ENERGY ELECTRONS - A system and method for producing a continuous or pulsed source of high energy electrons at or near atmospheric pressure is disclosed. High energy electrons are used to ionize analyte molecules in ambient air through collisions with reactant ions. The device includes an electron emitter, electron optics, and a thin membrane in an evacuated tube. The electron emitter may include a photocathode surface mounted on an optically transparent window and an external source of UV photons. The transparent window may include a UV transparent window mounted on an evacuated tube and/or the evacuated tube may be a transparent tube on which a photocathode surface film is deposited. The electron optics may include successive electrodes biased at increasing voltages. The membrane may include a material transparent or semi-transparent to energetic electrons. Upon impacting the membrane, continuous or pulsed electron packets are partially transmitted through to a high pressure ionization region. | 02-06-2014 |
20140061498 | BEAM DATA PROCESSING APPARATUS AND PARTICLE BEAM THERAPY SYSTEM - A beam data processing apparatus has a plurality of channel data conversion units that convert a plurality of analogue signals outputted from a position monitor into digital signals, a position size processing unit that calculates a beam position, based on voltage information items obtained through processing by the plurality of channel data conversion units, an abnormality determination processing unit that determines the beam position and generates a position abnormality signal, and an integrated control unit that controls the plurality of channel data conversion units in such a way that while a beam is stopped at an irradiation spot, digital signal conversion processing is implemented two or more times; the channel data conversion unit has a plurality of A/D converters, a demultiplexer that distributes analogue signals, and a multiplexer that switches respective digital signals processed by the ND converters so as to output them to the position size processing unit. | 03-06-2014 |
20140070112 | CHARGED-PARTICLE BEAM EXPOSURE APPARATUS AND METHOD OF MANUFACTURING ARTICLE - A charged-particle beam exposure apparatus which includes a deflector that deflects a charged-particle beam, and a stage mechanism that drives a substrate, and draws a pattern on the substrate while scanning the charged-particle beam in a main-scanning direction by the deflector and scanning the substrate in a sub-scanning direction by the stage mechanism. The apparatus includes a blanker unit configured to control irradiation and unirradiation of the substrate with the charged-particle beam, and a controller configured to control the deflector to deflect the charged-particle beam in the sub-scanning direction by an amount of driving of the substrate in the sub-scanning direction by the stage mechanism during a period of time from stop of drawing on the substrate until restart thereof when the drawing on the substrate is stopped and then restarted while the substrate is driven in the sub-scanning direction by the stage mechanism. | 03-13-2014 |
20140077097 | CRYSTAL ANALYSIS APPARATUS, COMPOSITE CHARGED PARTICLE BEAM DEVICE, AND CRYSTAL ANALYSIS METHOD - A crystal analysis apparatus includes: a measurement data storage configured to store electron back-scattering pattern (EBSP) data measured at electron beam irradiation points on a plurality of cross-sections of a sample formed substantially in parallel at prescribed intervals; a crystal orientation database configured to accumulate therein information of crystal orientations corresponding to EBSPs; and a map constructing unit that constructs a three-dimensional crystal orientation map based on distribution of crystal orientations in normal directions of a plurality of faces of a polyhedral image having the cross-sections arranged at the prescribed intervals by reading out the crystal orientations in the normal directions of the faces from the crystal orientation database on the basis of the EBSP data stored in the measurement data storage. | 03-20-2014 |
20140077098 | CHARGED PARTICLE BEAM IRRADIATION APPARATUS - A charged particle beam irradiation apparatus includes: an irradiation section configured to irradiate an irradiated body with a charged particle beam; a multi-leaf collimator configured to set an irradiation range of the charged particle beam which is irradiated from the irradiation section; an imaging section that is provided so as to be able to advance and retreat with respect to an irradiation axis of the charged particle beam which is irradiated from the irradiation section, between the irradiation section and the multi-leaf collimator, and directly images an opening portion of the multi-leaf collimator; and a drive section configured to move the imaging section between an imaging position corresponding to an irradiation area which includes the irradiation axis of the charged particle beam and a retreated position away from the irradiation area. | 03-20-2014 |
20140145091 | ELECTRON BEAM EXPOSURE APPARATUS - An electron beam exposure apparatus may include a plurality of electron guns, a condenser lens, a position-adjusting unit and an aperture plate. The electron guns may emit electron beams to a substrate. The condenser lens may be arranged between the electron guns and the substrate to concentrate the electron beams. The position-adjusting unit may individually adjust positions of the electron guns to provide the concentrated electron beam with a uniform intensity. The aperture plate may be arranged between the substrate and the condenser lens. The aperture plate may have a plurality of apertures through which the concentrated electron beams are incident. | 05-29-2014 |
20140158903 | DRAWING APPARATUS AND METHOD OF MANUFACTURING ARTICLE - The present invention provides a drawing apparatus which performs drawing on a substrate with a plurality of charged particle beams, including an aperture array configured to include a plurality of apertures for shaping the respective charged particle beams, a deflection unit configured to include a plurality of first deflectors which are arranged on a side, with respect to the aperture array, of a charged particle source for radiating a charged particle beam and which deflect the respective charged particle beams, and to individually change irradiated positions of the respective charged particle beams on the aperture array by driving the respective first deflectors, and a controller configured to control deflection of the charged particle beams by the first deflectors to reduce a dispersion of intensities of the respective charged particle beams on the substrate. | 06-12-2014 |
20140166896 | Irradiation Installation and Control Method for Controlling Same - To control of an irradiation installation, a particle beam is generated with a beam intensity, and a beam quality of the particle beam is monitored with a beam monitoring device. One of several adjustable measurement ranges is selected, wherein the measurement range of the beam monitoring device is set depending on the beam intensity of the particle beam and/or depending on a particle count to be applied. | 06-19-2014 |
20140175301 | Ion Source, Nanofabrication Apparatus Comprising Such Source, and a Method for Emitting Ions - A ion source comprises: a chamber ( | 06-26-2014 |
20140203185 | CHARGED PARTICLE BEAM WRITING APPARATUS, METHOD OF ADJUSTING BEAM INCIDENT ANGLE TO TARGET OBJECT SURFACE, AND CHARGED PARTICLE BEAM WRITING METHOD - A charged particle beam writing apparatus according to one aspect of the present invention includes an emission unit to emit a charged particle beam, an electron lens to converge the charged particle beam, a blanking deflector, arranged backward of the electron lens with respect to a direction of an optical axis, to deflect the charged particle beam in the case of performing a blanking control of switching between beam-on and beam-off, a blanking aperture member, arranged backward of the blanking deflector with respect to the direction of the optical axis, to block the charged particle beam having been deflected to be in a beam-off state, and a magnet coil, arranged in a center height position of the blanking deflector, to deflect the charged particle beam. | 07-24-2014 |
20140203186 | CHARGED PARTICLE BEAM IRRADIATION SYSTEM AND OPERATING METHOD OF CHARGED PARTICLE BEAM IRRADIATION SYSTEM - A charged particle beam irradiation system in which the energy, Bragg peak, and irradiation depth of a charged particle beam, with which a patient is to be irradiated, can be checked in real time just before actual irradiation. Just before the actual irradiation, by providing a high-speed steering magnet with 100% current, a checking beam is intentionally hit into a beam damper. By using a dosimeter and a dose measuring device in front thereof, extraction beam intensity is measured. By using a multi-layer beam monitor, a dose distribution thereof is measured. Accordingly, just before the actual irradiation, the energy, Bragg peak, and irradiation depth of the charged particle beam, with which the patient is to be irradiated, can be checked accurately and in real time. When the beam has a desired dose distribution as a result of checking, continuously, extraction control is performed. | 07-24-2014 |
20140217304 | MULTIPOLE MEASUREMENT APPARATUS - In order to provide a multipole measurement apparatus that can easily obtain table data for an aberration corrector that corrects the aberrations in a charged particle beam apparatus, the multipole measurement apparatus, which is provided with an optical system ( | 08-07-2014 |
20140319367 | DRAWING APPARATUS, AND METHOD OF MANUFACTURING ARTICLE - The present invention provides a drawing apparatus for performing drawing on a substrate with a charged particle beam, the apparatus including a controller configured to perform control of the drawing performed by movement of a stage and a blanking function of each of a plurality of charged particle optical systems, wherein the controller is configured to perform, with respect to a first charged particle optical system, of the plurality of charged particle optical systems, from a plurality of charged particle beams reach a first region and a second region, formed on the substrate and adjacent to each other, the control such that the drawing is performed only in one of the first and second regions with a first portion of charged particle beams of the plurality of charged particle beams with the stage moved in a second direction. | 10-30-2014 |
20140319368 | PARTICLE BEAM IRRADIATION APPARATUS - A particle beam irradiation apparatus including: a scanning unit configured to scan a particle beam; an electric current supply unit configured to supply an electric current to the scanning unit; and a scanning control unit configured to control the scanning unit by sending an electric current command value to the electric current supply unit, wherein a period of an operation clock of the scanning control unit and a period of an operation clock of the electric current supply unit are the same. | 10-30-2014 |
20140367586 | CHARGED PARTICLE BEAM SYSTEM AND METHOD OF OPERATING THEREOF - A charged particle beam device is described. In one aspect, the charged particle beam device includes a charged particle beam source, and a switchable multi-aperture for generating two or more beam bundles from a charged particle beam which includes: two or more aperture openings, wherein each of the two or more aperture openings is provided for generating a corresponding beam bundle of the two or more beam bundles; a beam blanker arrangement configured for individually blanking the two or more beam bundles; and a stopping aperture for blocking beam bundles. The device further includes a control unit configured to control the individual blanking of the two or more beam bundles for switching of the switchable multi-aperture and an objective lens configured for focusing the two or more beam bundles on a specimen or wafer. | 12-18-2014 |
20150034835 | CHARGED PARTICLE BEAM APPARATUS - An embodiment is to provide a technique that continuously applies a certain amount of an electron beam to a sample by selecting a beam applied to the sample from an electron beam emitted from an electron source in a scanning electron microscope. A charged particle apparatus is configured, including: a mechanism that detects the distribution of electric current strength with respect to the emitting direction of an electron beam emitted from an electron source; a functionality that predicts a fluctuation of an electric current applied to a sample by predicting the distribution of the electric current based on the detected result; a functionality that determines a position at which a beam applied to the sample is acquired based on the predicted result; and a mechanism that controls a position at which a probe beam is acquired based on the determined result. | 02-05-2015 |
20150041672 | MULTI CHARGED PARTICLE BEAM WRITING METHOD, AND MULTI CHARGED PARTICLE BEAM WRITING APPARATUS - A multi charged particle beam writing apparatus includes a beam forming member, where first openings for writing and second openings not for writing around the first openings are formed, to form multiple beams for writing and to form multiple beams for measurement, plural mark members on a blanking aperture member arranged close to the height position where crossover is formed, a measurement unit to measure positions of the multiple beams for measurement by the plural mark members, and a correction unit to correct a voltage for making a “beam on” state applied to one of the plural blankers, in order to correct a position deviation amount of a measured position. | 02-12-2015 |
20150041673 | BEAM MONITOR SYSTEM AND PARTICLE BEAM IRRADIATION SYSTEM - A charge collection electrode is formed of a plurality of groups each of which is made up of a plurality of adjoining wire electrodes. Further, all the wire electrodes are connected to channels of a signal processing device by the same number of lines as the wire electrodes belonging to one group so that each detection signal outputted from one wire electrode selected from each group is inputted through the same line and so that no two adjoining channels are physically continuous in regard to a certain set of consecutive measurement channels. The signal processing device determines group information indicating to which group the wire electrodes that sent the inputted detection signals belong and outputs a processing signal including the group information to a beam monitor controller. The beam monitor controller determines the position and the beam width of the charged particle beam that passed through the wire electrodes. | 02-12-2015 |
20150069261 | METHOD FOR TRANSMITTING A BROADBAND ION BEAM AND ION IMPLANTER - A method for transmitting a broadband ion beam ( | 03-12-2015 |
20150069262 | ELECTROSTATIC LENSES AND SYSTEMS INCLUDING THE SAME - A system includes an electrostatic lens positioned in a path between a charged-particle source and a charged-particle detector. The electrostatic lens includes: a first electrode having a first aperture positioned in the path and aligned with a first axis; a second electrode positioned in the path between the first electrode and the charged-particle detector, the second electrode having a second aperture positioned in the path and aligned with a second axis, the second axis being parallel to the first axis and displaced from the first axis along a first direction; a third electrode positioned in the path between the first electrode and the second electrode; and a potential generator coupled to the first, second, and third electrodes. During operation, the potential generator applies a first potential to the first electrode, a second potential to the second electrode, and a third potential to the third electrode so that the electrostatic lens directs a beam of charged particles from the charged-particle source propagating along the first axis to propagate along the second axis. | 03-12-2015 |
20150083928 | METHOD FOR DETERMINING BEAM PARAMETERS OF A CHARGE CARRIER BEAM, MEASURING DEVICE, AND CHARGE CARRIER BEAM DIVCE - The application relates to a method for determining beam parameters of a charge carrier beam, a measuring device, and a charge carrier beam device. The charge carrier beam ( | 03-26-2015 |
20150090896 | DRAWING APPARATUS, AND METHOD OF MANUFACTURING ARTICLE - The present invention provides a drawing apparatus which performs drawing on a substrate with a plurality of charged particle beams, the apparatus comprising two blanker arrays each including a plurality of first blankers which blank a plurality of charged particle beams individually and a plurality of second blankers which blank a plurality of charged particle beams in common, wherein the plurality of first blankers and the plurality of second blankers in each of the two blanker arrays are arranged such that one of the plurality of charged particle beams passes through corresponding one of the plurality of first blankers of one of the two blanker arrays and corresponding one of the plurality of second blankers of the other of the two blanker arrays. | 04-02-2015 |
20150129774 | BEAM IMAGING SENSOR AND METHOD FOR USING SAME - The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature. In another embodiment, the beam imaging sensor of the present invention comprises, among other things, a discontinuous partially circumferential slit. Also disclosed is a method for using the various beams sensor embodiments of the present invention. | 05-14-2015 |
20150311037 | ION IMPLANTER AND ION IMPLANTATION METHOD - A beamline unit of an ion implanter includes a steering electromagnet, a beam scanner, and a beam collimator. The beamline unit contains a reference trajectory of an ion beam. The steering electromagnet deflects the ion beam in an x direction perpendicular to a z direction. The beam scanner deflects the ion beam in the x direction in a reciprocating manner to scan the ion beam. The beam collimator includes a collimating lens that collimates the scanned ion beam in the z direction along the reference trajectory, and the collimating lens has a focus at a scan origin of the beam scanner. A controller corrects a deflection angle in the x direction in the steering electromagnet so that an actual trajectory of the deflected ion beam intersects with the reference trajectory at the scan origin on an xz plane. | 10-29-2015 |
20150318139 | TARGET DEVICE, LITHOGRAPHY APPARATUS, AND ARTICLE MANUFACTURING METHOD - Provided is a target device for scattering a charged particle incident thereon, the device comprising: a base; a reference mark provided on the base and having a range of the charged particle therein smaller than a range of the charged particle in the base; and a shield provided on the base apart from the reference mark and having a range of the charged particle therein smaller than the range of the charged particle in the base. | 11-05-2015 |
20150318142 | Angular Scanning Using Angular Energy Filter - An ion implantation system and method is provided for varying an angle of incidence of a scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece. The system has an ion source configured to form an ion beam and a mass analyzer configured to mass analyze the ion beam. An ion beam scanner is configured to scan the ion beam in a first direction, therein defining a scanned ion beam. A workpiece support is configured to support a workpiece thereon, and an angular implant apparatus is configured to vary an angle of incidence of the scanned ion beam relative to the workpiece. The angular implant apparatus comprises one or more of an angular energy filter and a mechanical apparatus operably coupled to the workpiece support, wherein a controller controls the angular implant apparatus, thus varying the angle of incidence of the scanned ion beam relative to the workpiece concurrent with the scanned ion beam impacting the workpiece. | 11-05-2015 |
20150325407 | CHARGED PARTICLE BEAM WRITING APPARATUS, AND METHOD FOR DETECTING IRREGULARITIES IN DOSE OF CHARGED PARTICLE BEAM - A charged particle beam writing apparatus includes a first limiting aperture member, in which a first opening is formed, to block a charged particle beam having been blanking-controlled to be beam “off”, and to let a part of the charged particle beam having been blanking-controlled to be beam “on” pass through the first opening, a first detector to detect a first electron amount irradiating the first limiting aperture member, in a state were beam “on” and beam “off” are repeated, a first integration processing unit to generate a first integrated signal by integrating components in a band sufficiently lower than a band of a repetition cycle of beam “on” and beam “off”, in a first detected signal detected for obtaining the first electron amount, and a first irregularity detection unit to detect irregularity in a dose amount of the charged particle beam by using the first integrated signal. | 11-12-2015 |
20150357160 | ION IMPLANTATION APPARATUS AND ION IMPLANTATION METHOD - An ion implantation apparatus includes a beam scanning unit and a beam parallelizing unit arranged downstream thereof. The beam scanning unit has a scan origin in a central part of the scanning unit on a central axis of an incident ion beam. The beam parallelizing unit has a focal point of a parallelizing lens at the scan origin. The ion implantation apparatus is configured such that a focal position of the incident beam into the scanning unit is located upstream of the scan origin along the central axis of the incident beam. The focal position of the incident beam into the scanning unit is adjusted to be at a position upstream of the scan origin along the central axis of the incident beam such that a divergence phenomenon caused by the space charge effect in an exiting ion beam from the parallelizing unit is compensated. | 12-10-2015 |
20150371822 | ION IMPLANTATION APPARATUS - An ion implantation apparatus includes: a lens electrode unit including a plurality of electrode sections for parallelizing an ion beam; and a vacuum unit that houses the lens electrode unit in a vacuum environment. The vacuum unit includes: a first vacuum container having a first conductive container wall; a second vacuum container having a second conductive container wall; and an insulating container wall that allows the first vacuum container and the second vacuum container to communicate with each other and that insulates the first conductive container wall from the second conductive container wall. An insulating member is provided that insulates at least one electrode section of the lens electrode unit from at least one of the first conductive container wall and the second conductive container wall, and the insulating member is housed in the vacuum environment together with the lens electrode unit. | 12-24-2015 |
20160133435 | DOME DETECTION FOR CHARGED PARTICLE BEAM DEVICE - According to an embodiment, a method of operating a charged particle beam device is provided. The charged particle beam device includes a beam separation unit, a first optical component distanced from the beam separation unit and a second optical component distanced from the beam separation unit and distanced from the first optical component. The method includes generating a primary charged particle beam. The method further includes generating a first electric field and a first magnetic field in the beam separation unit. The method further includes guiding the primary charged particle beam through the beam separation unit in which the first electric field and the first magnetic field are generated, wherein a travel direction of the primary charged particle beam leaving the beam separation unit is aligned with a first target axis under the influence of the first electric field and the first magnetic field. The method further includes generating a secondary charged particle beam by impingement of the primary charged particle beam onto a sample. The method further includes separating the secondary charged particle beam from the primary charged particle beam in the beam separation unit, wherein the secondary charged particle beam is deflected under the influence of the first electric field and the first magnetic field to travel from the beam separation unit to the first optical component. The method further includes generating a second electric field and a second magnetic field in the beam separation unit. The method further includes guiding the primary charged particle beam through the beam separation unit in which the second electric field and the second magnetic field are generated, wherein the travel direction of the primary charged particle beam leaving the beam separation unit is aligned with the first target axis under the influence of the second electric field and the second magnetic field. The method further includes separating the secondary charged particle beam from the primary charged particle beam in the beam separation unit, wherein the secondary charged particle beam is deflected under the influence of the second electric field and the second magnetic field to travel from the beam separation unit to the second optical component. | 05-12-2016 |
20160155608 | MULTI CHARGED PARTICLE BEAM WRITING APPARATUS, AND MULTI CHARGED PARTICLE BEAM WRITING METHOD | 06-02-2016 |
20160172159 | APPARATUS AND METHOD TO CONTROL AN ION BEAM | 06-16-2016 |