Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Condition responsive light guide (e.g., light guide is physically affected by parameter sensed which results in light conveyed to the photocell)

Subclass of:

250 - Radiant energy

250200000 - PHOTOCELLS; CIRCUITS AND APPARATUS

250216000 - Optical or pre-photocell system

250227110 - Light conductor

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
250227140 Condition responsive light guide (e.g., light guide is physically affected by parameter sensed which results in light conveyed to the photocell) 85
20080210852Fiber optic security system for sensing the intrusion of secured locations - A sensor for a security system is disclosed to detect intrusions at one or more predetermined locations wherein each location includes a moveable member which must be moved in order to intrude the location. The system includes a fiber network routed in close proximity to one or more locations. The sensor comprises a sensor housing for being disposed at a location to detect a predetermined movement of the moveable member from a secure position to an unsecured position, and means for mounting the sensor housing in a stationary position at the location without a physical connection to the moveable member. The sensor housing includes a fiber inlet and a fiber outlet, and a fiber chamber for receiving a predetermined sensor fiber of the fiber network being routed through the sensor housing. The sensor has a sensor actuator for engaging the sensor fiber to generate an intrusion signal upon detecting predetermined movement of the moveable member, and causing the intrusion signal to be transmitted along the sensor fiber to a processor whereby the intrusion and location of the intrusion may be determined by the processor. Preferably, the sensor includes a magnetic actuator having a magnetic attraction to the moveable members whose interruption causes activation of the sensor and generation of the intrusion signal.09-04-2008
20080296480Method and Apparatus for Multiple Scan Rate Swept Wavelength Laser-Based Optical Sensor Interrogation System with Optical Path Length Measurement Capability - The invention relates to optical sensor measurement methods that use a swept wavelength optical source to determine wavelength shift as well as to optical sensor systems that embody and employ these methods. A variable scan rate swept optical source is used to determine the optical path length from the optical interrogator to the optical sensors being measured. This data can then be used as desired or needed in implementing the sensor or making sensor measurements. In particular the data can be used in the optical sensor system to compensate for potential measurement errors due to the finite speed of light in the optical medium interconnecting optical sensors under test.12-04-2008
20090001258OPTICAL SENSOR - An optical sensor includes a light source, a sensing unit, a first optical fiber transmitting light from the light source to the sensing unit, second and third optical fibers transmitting the light from a reflecting surface of the sensing unit to light-receiving portions, and a calculation unit calculating physical quantities from electrical signals from the light-receiving portions. End surfaces of these fibers opposed to the reflecting surface are fixed so that the longitudinal direction thereof and the normal line of the reflecting surface form an angle θ, the second and third optical fibers are parallel to each other, and the fixing angles of the first optical fiber and the second and third optical fibers are symmetric about the normal line. These optical fibers have a single mode in the wavelength of which the optical fibers are used. A depolarizer is interposed between the light source and the first optical fiber.01-01-2009
20090008536DISTRIBUTED SENSING IN AN OPTICAL FIBER USING BRILLOUIN SCATTERING - To perform distributed sensing with an optical fiber using Brillouin scattering, a light pulse is transmitted into the optical fiber, where the transmitted light pulse has a first frequency. Backscattered light and optical local oscillator light are combined, where the backscattered light is received from the optical fiber in response to the transmitted light pulse, and where the optical local oscillator light has a second frequency. A frequency offset is caused to be present between the first frequency of the transmitted light pulse and the second frequency of the optical local oscillator light, where the frequency offset is at least 1 GHz less than a Brillouin frequency shift of the backscattered light. Spectra representing Stokes and anti-Stokes components of the backscattered light are acquired, where the Stokes and anti-Stokes components are separated by a frequency span that is based on the frequency offset.01-08-2009
20090014634EVALUATING THE POSITION OF A DISTURBANCE - The present invention relates to a method of and apparatus for evaluating the position of a disturbance, in particular using a waveguide having a plurality of overlap regions. A position sensor is provided including: an optical waveguide; a transmission stage for launching a sensing signal into the waveguide; a receiving stage arranged to receive a returned sensing signals which returned sensing signal is a time distributed signal derived from backscattered components of the sensing signal, the waveguide being arranged along a path having a plurality of overlap regions such that a disturbance in an overlap region causes a first disturbance feature and a second disturbance feature in the returned sensing signal; and, monitoring means for monitoring the returned signal, such that a respective time of return can be associated with the first and second disturbance feature. Both return features can then be used to evaluate the position of the disturbance so as to enhance the resolution of the position sensor.01-15-2009
20090026358Position Sensor - A hinge position sensor comprises first and second members connected together to provide a hinge, and an optical fibre or wave-guide connected between the first and second members to provide a communication link between the first and second members. A laser or LED is coupled to the optical fibre or wave-guide to transmit optical signals between the first and second members and the optical signal is received by a photo-detector. The optical fibre or wave-guide is physically distorted by actuation of the hinge such that light escapes from the optical fibre or wave-guide. The optical power level received by the photo-detector is used to determine the position of the hinge.01-29-2009
20090039241BIOMETRIC DEVICE AND INFORMATION TERMINAL - A compact biometric device includes a first light source for emitting light irradiated onto a subject; a first light guide unit whose surface is inputted with light radiated from the subject and whose ends output the light inputted from the subject; a photo sensor unit to detect light outputted from the end of the first light guide means as a signal; a liquid crystal display unit installed between the subject and the surface of the first light guide means; a control unit for controlling the display on the liquid crystal display unit; and a signal processor unit for processing the signals detected by the photo sensor unit. The control unit controls the display on the liquid crystal display unit to change the position where the light emitted from the subject is inputted onto the surface of the first light guide unit.02-12-2009
20090121121Fibre Structure for the Identification of Defects In the Structure - This invention is concerned with means for detecting potential fracturing, such as stress fractures, or damage to, a fibre based structure, by incorporating either hollow fibres containing coloured fluids, or solid fibres, or hollow fibres containing coloured fluids or fluids, which are capable of changing their visual appearance when exposed to external forces, and/or by incorporating fibres within the structure which can change a property such as electrical resistance, capacitance or inductance so that there is an indication whenever and wherever and the extent when a fracture occurs. Where coloured fluids are used, detection is by leakage of the fluid around the fracture. Where colour changing fluids are employed, detection is by observation of change of colour of the fluid. Different fluids can be used for different levels in the strata of tubes in the structure and where these are embedded within the structure, they can be observed where the fibres emanate from the body of the structure. Where fibres are incorporated into the structure that rely on electrical properties to sense a fracture, these fibres may be solid and formed from electrically conductive material and may be coated with such material. Alternatively, though used together with solid fibres, hollow fibres may be used where those hollow fibres contain and/or are coated with electrically conductive material. Appropriate detector means are associated with these fibres to detect the occurrence of a fracture.05-14-2009
20100096538METHOD FOR MEASURING ANGULAR DISPLACEMENT USING OPTICAL FIBER AND METHOD FOR MANUFACTURING THE SAME - In a senor for measuring an angular displacement and a method for manufacturing the senor, the sensor includes an optical fiber and a detector. The optical sensor has a light source attached to a first end portion of the optical fiber for emitting light, and an exiting surface formed at a second end portion of the optical fiber. The detector has a photo sensor being attached to an end portion of the detector, for measuring a light's intensity. The exiting surface includes a first inclination surface being cut to have a predetermined angle along a first rotational direction of the optical fiber, and further includes a second inclination surface being cut to have a predetermined angle along a second rotational direction of the optical fiber. Therefore, manufacturing cost may be reduced and durability may be enhanced.04-22-2010
20100140462System and Method for Real-Time Measurement of Sail Conditions and Dynamics - The invention provides an optical measurement system and method for monitoring the condition of a sail, the system comprising: an optical interrogation unit that produces and receives an optical signal; and an optical fibre network that interconnects the interrogation unit with a plurality of optical sensors in communication with the sail, wherein the sensors are mounted onto the sail. The optical system measures parameters of the sail, from which shape, integrity and overall conditions of the sail can be calculated in real-time.06-10-2010
20120068057INTERROGATOR FOR A PLURALITY OF SENSOR FIBER OPTIC GRATINGS - An interrogator for a plurality of sensor fiber optic gratings. The interrogator includes a broadband optical source; at least one beam splitter directing output of the optical source to the sensor fiber optic gratings; at least one linear filter for converting changes in peak reflection wavelength to changes in intensity; at least one optical receiver; and at least one amplifier associated with each optical receiver. The interrogator also includes, alternatively, a driver/modulator for the optical source providing on/off pulses; an analog integrator following the at least one amplifier; or a mechanism compensating for masking of one sensor fiber optic grating by another.03-22-2012
20120119074SENSOR APPARATUS FOR DETECTING AND MONITORING A CRACK PROPAGATING THROUGH A STRUCTURE - A sensor apparatus is provided for detecting and monitoring a crack propagating through a structure. The sensor apparatus comprises: light source apparatus; detector structure; and a plurality of optical fibers having proximal and distal ends. The fibers may be spaced apart from one another and associated with the structure such that as a crack propagates through the structure, one or more of the optical fibers is broken by the crack. The optical fibers may receive light at the fiber proximal ends and the optical fibers may have a coating on the fiber distal ends capable of causing light to be returned toward the fiber proximal ends.05-17-2012
20120298849OPTICAL SENSOR BASED ON A BROADBAND LIGHT SOURCE AND CASCADED WAVEGUIDE FILTERS - An optical sensor based on a broadband light source and cascaded waveguide filters comprises a broadband light source, an input waveguide, a reference ring resonator coupled with the input waveguide, a common bus waveguide coupled with the reference ring resonator, a sensing ring resonator coupled with the common bus waveguide, an output waveguide coupled with the sensing ring resonator, and two optical power detectors. At least a portion of the sensing ring resonator is influenced by the physical parameter to be measured or in contact with an analyte. The variation of the physical parameter to be measured or the variation of the analyte induces a shift of the transmission spectrum of the sensing ring resonator. By using the cascaded filtering effect of the double resonators, the wavelength shift can be translated into a variation of the total output power. Consequently the physical parameter to be measured can be easily deduced.11-29-2012
20120305755TOUCH SENSING APPARATUS HAVING A SIMPLIFIED STRUCTURE AND REDUCED MANUFACTURING COST - A touch sensing apparatus includes a light source generating a light. The light travels though a light distribution part. A light guide part guides the light to the light distribution part. A light sensing part outputs an output signal corresponding to an intensity of the light incident through the light guide part and the light distribution part when a touch occurs. A light reflection part reflects the light provided to the light distribution part, and a coordinate generating part calculates a coordinate value of the touch using the output signal from the light sensing part.12-06-2012
20130015335DEVICE AND METHOD FOR ATTACHING PROTECTIVE FILM TO AND REMOVING PROTECTIVE FILM FROM LIGHT GUIDE PLATEAANM YU; TAI-CHERNGAACI Tu-ChengAACO TWAAGP YU; TAI-CHERNG Tu-Cheng TWAANM LIN; DA-WEIAACI Tu-ChengAACO TWAAGP LIN; DA-WEI Tu-Cheng TW - A device includes a first roller to roll down a protective film around the first roller, a conveying device to convey a light guide plate (LGP), and a first fan to generate charged ions and blow out the charged ions. While the rolled-down protective film is being placed onto the LGP being conveyed by the conveying device, the charged ions blown out by the first fan are adhered to a first surface of the protective film to generate static electricity and the first surface of the protective film is attached to the LGP by the static electricity.01-17-2013
20130099104INTERROGATOR HAVING AN ANALOG INTERROGATOR FOLLOWING AT LEAST ONE AMPLIFIER - An interrogator for a plurality of sensor fiber optic gratings. The interrogator includes a broadband optical source; at least one beam splitter directing output of the optical source to the sensor fiber optic gratings; at least one linear filter for converting changes in peak reflection wavelength to changes in intensity; at least one optical receiver; and at least one amplifier associated with each optical receiver. The interrogator also includes an analog integrator following the at least one amplifier.04-25-2013
20130119242OPTICAL SENSOR - An optical sensor comprising a waveguide having a sensing layer which is molecularly imprinted such that it will receive and retain target entities to be sensed, the optical sensor further comprising a detection apparatus arranged to detect a change of an optical property of the waveguide which occurs when the target entities are received and retained in the sensing layer.05-16-2013
20130175437Hydrogen-Sensing Optical Fiber - In harsh and hazardous environments, the presence of elevated levels of hydrogen gas is an indicator of chemical and/or radiological activity. The present hydrogen-sensing optical fiber provides rapid and reliable hydrogen detection and quantification, irrespective of temperature fluctuations. The hydrogen-sensing optical fiber does not exhibit significant irreversible hydrogen-induced attenuation losses after exposure to a hydrogen-rich atmosphere.07-11-2013
20130240718METHOD FOR MEASURING THE DEFORMATION OF A SPECIMEN USTING A FIBER OPTIC EXTENSOMETER - A method for measuring the deformation of a specimen using an extensometer having a loop of a single-mode optical fiber. At least two points of the loop are attached to desired locations on a specimen. Light is transmitted through the loop and the transmitted optical power is measured by a photodetector. The deformation of the specimen causes the size and shape of the loop to change, which changes the transmitted optical power. The change in optical power is related to extension or compression using calibration curves. The sensor works on the principle of transmitted power modulation through the curved section.09-19-2013
20130248697SIDE ILLUMINATED MULTI POINT MULTI PARAMETER - A side illuminated multi point multi parameter optical fiber sensor that requires no sensitive coating is provided. This sensor comprises an optical fiber having at least one removed cladding section as the sensitive region, at least one probing light source that side illuminates the fiber, a power supply, a detector, a signal processor and a display. The sensitive optical fiber is optically affected by the presence of a measurand medium that can fluoresce, phosphoresce, absorb and/or scatter the probing light. This probing light is guided by the fiber core towards a detector which measures the light intensity and this light intensity is correlated with a measurand.09-26-2013
20130292555APPARATUS AND METHODS UTILIZING OPTICAL SENSORS OPERATING IN THE REFLECTION MODE - Optical apparatus and methods utilizing sensors operating in the reflection mode are provided. The apparatus includes at least one optical bus. The at least one optical bus is configured to be optically coupled to at least one source of input optical signals, to at least one optical detector, and to a plurality of reflective sensing elements. The at least one optical bus transmits an input optical signal from the at least one source to the plurality of reflective sensing elements. At least one reflective sensing element of the plurality of reflective sensing elements receives a portion of the input optical signal and reflects at least a portion of the received portion. The at least one optical bus transmits the reflected portion to the at least one optical detector.11-07-2013
20130341497System and method for monitoring a component in production and/or in service - A system for monitoring a fiber-reinforced composite component in production or in service. The system includes a composite component having reinforcing fibers which are encompassed by a matrix material; at least one optical fiber arranged to extend in a continuous path over a monitoring area of the composite component for contact with the matrix material; a signal generator configured to transmit an optical signal along the at least one optical fiber; and a detector device configured to detect scattering, and in particular backscattering, of the optical signal transmitted along the at least one optical fiber.12-26-2013
20130341498Fiber Optic Measurement of Parameters for Downhole Pump Diffuser Section - A system for monitoring operating parameters for the pump section of an electrical submersible pump. The system includes an optic fiber associated with the pump section of an electrical submersible pump and having a sensor to detect at least one operating parameter within the pump section. The system also includes a signal analyzer operably associated with the optic fiber to receive an optical signal representative of the detected operating parameter.12-26-2013
20140042306TWO-CORE OPTICAL FIBERS FOR DISTRIBUTED FIBER SENSORS AND SYSTEMS - A two-core optical fiber is provided for use in Brillouin distributed fiber sensor applications and systems. The two-core fiber includes a first and second core. Each core is configured to exhibit a Brillouin frequency shift greater than 30 Mhz relative to the other core. Further, each core possesses temperature and strain coefficients that differ from the other core. The cores can be configured to produce Brillouin frequency shift levels of at least 30 Mhz relative to one another. These differences in shift levels may be effected by adjustment of the material compositions, doping concentrations and/or refractive index profiles of each of the cores. These optical fibers may also be used in BOTDR- and BOTDA-based sensor systems and arrangements.02-13-2014
20140042307OPTICAL CANTILEVERY BASED SAMPLE ANALYSIS - An apparatus and method for analysing a sample. The apparatus comprises a waveguide (02-13-2014
20140054451DBF FIBER LASER BEND SENSOR AND OPTICAL HETERODYNE MICROPHONE - Methods and systems using one or more distributed feedback (DFB) lasers for capturing changes in the lasing environment are disclosed. Specifically, a sensor for measuring a measurand, such as pressure or temperature, or changes in a measurand, includes a fiber with at least one core, at least one fiber laser cavity formed by a single fiber grating in the core, wherein the laser operates on at least two modes along at least part of its length. The DFB laser includes a section that is bent into a non-linear shape and at least one pump laser connected to the fiber laser cavity. When the DFB laser experiences a perturbation or measurand change that changes the spacing of the modes, a change in an RF beat note is generated. This beat note can then be measured and related to the measurand change.02-27-2014
20140061452APPARATUS FOR MEASURING STATE VARIABLES - An apparatus for measuring state variables with at least one fiber-optic sensor, containing at least one optical coupler, at least one filter element and at least one photoelectric converter, where the optical coupler, the filter element and the photoelectric converter are integrated on a substrate, and the filter element contains at least one Bragg grating which is designed to supply the light portion reflected by the Bragg grating to the photoelectric converter.03-06-2014
20140070082INTEGRATED PHOTONIC CRYSTAL STRUCTURES AND THEIR APPLICATIONS - Devices, methods and systems based on integrated photonic crystal structures are disclosed. An integrated photonic crystal structure includes a photonic crystal structure and a defect member disposed adjacent the photonic crystal structure. The defect member includes a photoconductive material. The integrated photonic crystal structure is configured to receive an input light signal such that the input light signal is internally reflected within the photonic crystal structure and the defect member, such that the input light signal is absorbed by the photoconductive material in the defect member, and such that a property of the photoconductive material is changed to thereby output an output signal.03-13-2014
20140077072Optics Sensor Structure For Detecting Water Or Oil Leakage Inside A Conservator Having A Bladder Or Membrane - Optical sensor structure senses the presence of liquid in a sealed conservator tank. The sensor structure includes a sensor head having a body with first and second opposing ends, a plurality of perforations through the body and spaced between the first and second ends, and a mirror disposed at the second end. The perforations are constructed and arranged to receive and hold fluid therein. The sensor head is constructed and arranged to rest on a surface of a bladder. The sensor structure includes a light source, a first fiber optic cable between the light source and the first end of the body, a light detector, and a second fiber optic cable between the light detector and the first end of the body. The amount of light received by the light detector is reduced when liquid, instead of air, is in at least some of the perforations in the body.03-20-2014
20140084147Method for the Chip-Integrated Spectroscopic Identification of Solids, Liquids, and Gases - Methods and systems for a label-free on-chip optical absorption spectrometer consisting of a photonic crystal slot waveguide are disclosed. The invention comprises an on-chip integrated optical absorption spectroscopy device that combines the slow light effect in photonic crystal waveguide and optical field enhancement in a slot waveguide and enables detection and identification of multiple analytes to be performed simultaneously using optical absorption techniques leading to a device for chemical and biological sensing, trace detection, and identification via unique analyte absorption spectral signatures. Other embodiments are described and claimed.03-27-2014
20140158871SYSTEMS AND METHODS FOR SENSING PROPERTIES OF A WORKPIECE AND EMBEDDING A PHOTONIC SENSOR IN METAL - Systems and methods for sensing properties of a workpiece and embedding a photonic sensor in metal are disclosed herein. In some embodiments, systems for sensing properties of a workpiece include an optical input, a photonic device, an optical detector, and a digital processing device. The optical input provides an optical signal at an output of the optical input. The photonic device is coupled to the workpiece and to the output of the optical input. The photonic device generates an output signal in response to the optical signal, wherein at least one of an intensity of the output signal and a wavelength of the output signal depends on at least one of thermal characteristics and mechanical characteristics of the workpiece. The optical detector receives the output signal from the photonic device and is configured to generate a corresponding electronic signal. The digital processing device is coupled to the optical detector and determines at least one of the thermal characteristics and mechanical the characteristics of the workpiece based on the electronic signal.06-12-2014
20140175269OPTICAL FIBER ORIENTATION DETECTION METHOD AND APPARATUS - A method is provided for detecting an orientation of an optical fiber including a flat surface as a part of a surface of the maintaining member. The method includes directing collimated light to the optical fiber through the flat surface of the maintaining member, receiving reflected light of the collimated light by using an optical sensor device, generating a brightness distribution image according to an output signal from the optical sensor device, identifying a reference point on a brightness distribution line appearing on the generated brightness distribution image, according to a position of the brightness distribution line in relation to a target orientation for the optical fiber, the brightness distribution line detectable on the brightness distribution image in correspondence to the reflected light received by the optical sensor device, and detecting the orientation of the optical fiber according to a coordinate of the reference point on the brightness distribution image.06-26-2014
20140209797LOW-COMPLEXITY OPTICAL FORCE SENSOR FOR A MEDICAL DEVICE - An apparatus for detecting deformation of an elongate body may comprise a light source configured to sequentially provide light of multiple frequencies, an optical receiver configured to receive light from the light source, and a filter disposed between the light source and the optical detector. The filter may comprise multiple segments, each of the segments configured to filter light at one of the frequencies so as to alter the amount of light incident on said optical receiver. A total amount of light detected by the optical receiver may change during the sequence so as to be indicative of deformation of the elongate body.07-31-2014
20140217269COUPLED WAVEGUIDES FOR SLOW LIGHT SENSOR APPLICATIONS - An optical device includes at least one optical waveguide including a plurality of elongate portions. Light propagates sequentially and generally along the elongate portions. At least two elongate portions of the plurality of elongate portions are generally planar with one another and are adjacent and generally parallel to one another. The at least two elongate portions are optically coupled to one another such that the light is coupled between the at least two elongate portions in a direction generally perpendicular to the at least two elongate portions as the light propagates generally along the at least two elongate portions.08-07-2014
20140231637Apparatus for Distance Measurement Using Inductive Means - A system that provides detection, annunciation, mitigation, and alleviation of stress attacks by executing algorithms based on measurement of intensity of light. The system determines to execute algorithms to take programmed action based on potential effects of a detected stress attack. The system can be used, for example, to determine the position of potential attacks to conduits that transport electricity, oil, gas, foodstuffs, water, people, and materials.08-21-2014
20140246572OPTICAL SENSOR - An optical sensor includes a light source, a light supply light guide member optically coupled to the light source, detection light guide members, a light distribution unit to distribute light from the light supply light guide member to the detection light guide members, and a light separating detector to separate and detect the light guided by the detection light guide members. Each of the detection light guide members includes a characteristic detection portion whose optical characteristics vary in accordance with a physicochemical state.09-04-2014
20140252214METHOD AND DEVICE FOR ANALYSIS OF A FLUID BY MEANS OF EVANESCENCE FIELD SPECTROSCOPY AND DIELECTROPHORESIS - A device for analyzing a fluid by evanescence field spectroscopy. The device includes a waveguide, a source of electromagnetic radiation coupled to the waveguide on the entry side, and a detector coupled to the waveguide on the exit side for detecting electromagnetic radiation, wherein the waveguide is arranged in contact with the fluid in at least certain sections between its entry side and its exit side. An electrode arrangement is also provided, which is designed to generate an inhomogeneous electric field in the direct environment of the waveguide, said field exerting a dielectrophoretic force on polarisable particles in the fluid, which moves these particles towards or away from the waveguide. A corresponding method is presented.09-11-2014
20140263985OPTICAL SENSOR HAVING FIDUCIARY MARKS DETECTED BY RAYLEIGH SCATTERED LIGHT - An optical fiber having at least one fiduciary mark is provided. The at least one fiduciary mark is located at one or more axial positions along the optical fiber. The at least one fiduciary mark is configured to produce at least one change in a Rayleigh backscattering signal in the optical fiber. The at least one change in a Rayleigh backscattering signal may be an abrupt change in the Rayleigh backscattering signal. The abrupt change in the Rayleigh backscattering signal occurs over a length of the optical fiber that is of the order of or less than a spatial resolution of an interrogation system employed to detect the Rayleigh backscattering signal.09-18-2014
20140299753FIBER-OPTIC SENSOR DEVICE - Provided is a fiber-optic sensor device. The fiber-optic sensor device is capable of sensing a change in physical quantity by using two fiber Bragg grating units arranged within an optical fiber and a fiber-optic sensor unit arranged therebetween, thereby implementing a low cost fiber-optic grating sensor having a simple structure without requiring a reference FBG.10-09-2014
20140306101DEVICE AND METHOD FOR MEASURING THE DISTRIBUTION OF PHYSICAL QUANTITIES IN AN OPTICAL FIBER - The invention refers to a device and method for measurement of the distribution of physical magnitudes in an optical fiber, said device comprising and optical source (10-16-2014
20140346331OPTICAL SENSOR - An optical sensor includes a light source, a characteristic light-guiding member, a characteristic changing part which changes the optical characteristic of light, and a detecting unit which detects the light having the optical characteristic changed by the characteristic changing part and guided by the characteristic light-guiding member. The optical sensor includes a control member which inhibits at least the twisting of the characteristic light-guiding member, and controls a bending state of the characteristic light-guiding member, and a positioning mechanism which positions the characteristic changing part with respect to at least a circumferential direction of the characteristic light-guiding member.11-27-2014
20140374578Device for Detecting and/or Dosing Hydrogen and Method of Detecting and/or Dosing Hydrogen - The invention concerns a device (12-25-2014
20150053850LIGHT OUT-COUPLING ARRANGEMENT AND A TOUCH SENSITIVE SYSTEM COMPRISING THE OUT-COUPLING ARRANGEMENT - The disclosure relates to a light out-coupling arrangement for a touch sensitive system comprising a light guide of a material with a refractive index n02-26-2015
20150069223LIGHT GUIDE MEMBER, OBJECT DETECTION APPARATUS, AND VEHICLE - A light guide member for an object detection apparatus for detecting an object adhered on a light translucent member based on change of quantity of reflection light received from the light translucent member includes a detection face where light exits to the light translucent member and reflection light reflected from the light translucent member enters, the detection face including a detection area where a part of the reflection light to enter the detection unit passes through, and a non-detection area where remaining part of the reflection light not to enter the detection unit passes through; a first intervening member disposed on the detection face attachable to the light translucent member via the first intervening member; and a second intervening member disposed on the detection face attachable to the light translucent member via the second intervening member. The first intervening member has flexibility greater than flexibility of the second intervening member.03-12-2015
20150069224LIGHT GUIDE MEMBER, OBJECT DETECTION APPARATUS, AND VEHICLE - A light guide member for an object detection apparatus is devised. The object detection apparatus includes a light source unit, and a detection unit for detecting an object adhered on a surface of a light translucent member based on change of light quantity of reflection light received from the light translucent member. The light guide member includes an incident face where the light exiting from the light source unit enters; a detection face where the exiting light exits to a rear face of the light translucent member and the reflection light reflected from the light translucent member enters; an exiting face where the reflection light exits to the detection unit; and a light guiding portion through which the exiting light and the reflection light proceed. The detection face has curvature corresponding to curvature of the light translucent member.03-12-2015
20150097110LIGHT GUIDE SENSOR, AND METHOD OF FORMING LIGHT GUIDE SENSOR - A light guide sensor includes a light source, a light guide member comprising a core which guides light radiated from the light source, a cladding formed around the core, and at least one detecting portion is formed, and a light receiving unit which receives the light that has been guided by the member and has passed via the detecting portion. The detecting portion includes a first opening formed by removal in the outer circumference of the member so that at least part of the cladding is left by a thickness such as not to transmit the light from the core, and a second opening formed within the range of the first opening to transmit the light from the core. A method of forming such a light guide sensor is provided.04-09-2015
20150108334Optical Sensor Module - An optical sensor module is proposed. The optical sensor module comprises two parts, including optical module and vibration sensing unit. The vibration sensing unit is disposed on the optical module. The optical module comprises a light source, a photo detector, and a second substrate with optical micro-reflection surface. The vibration sensing unit comprises a first substrate, a membrane, and an optical gate. The membrane is disposed between the first substrate and the optical gate. The light source and the photo detector are disposed on the second substrate04-23-2015
20150316580OPTOMECHANICAL SENSOR FOR ACCELEROMETRY AND GYROSCOPY - Embodiments of the present disclosure are directed towards a micro-electromechanical system (MEMS) sensing device, including a laser arrangement configured to generate a light beam, a first waveguide configured to receive and output a first portion of the light beam, and a second waveguide having a section that is evanescently coupled to the first waveguide and configured to receive and output a second portion of the light beam. The section of the second waveguide is configured to be movable substantially parallel to the first waveguide, wherein a movement of the section of the second waveguide may be caused by an inertial change applied to the sensing device. The movement of the section may cause a detectable change in light intensity between the first and second portions of the light beam. Based on the detected change, the inertial change may be determined. Other embodiments may be described and/or claimed.11-05-2015
20150331229SCANNING OBSERVATION APPARATUS AND CONTROL METHOD THEREOF - A scanning observation apparatus includes: an optical fiber that emits illumination light; a scanning section that two-dimensionally scans an observation object with the illumination light by giving vibration to a distal end of the optical fiber; a waveform generation section that generates a vibration waveform of the distal end of the optical fiber by the scanning section; a sampling section that samples a vibration waveform generated by the waveform generation section and instructs the scanning section on the vibration waveform; and a control section that supplies a drive frequency and a frame period to the waveform generation section, and a scanning sampling rate to the sampling section, wherein the control section calculates the frame period by dividing the number of vibrations in one frame period input thereto by the drive frequency, and calculates the scanning sampling rate so as to be an integer multiple of the drive frequency.11-19-2015
20150355421OPTICAL ALIGNMENT STRUCTURE AND METHOD OF DETERMINING ALIGNMENT INFORMATION - In various embodiments, an optical alignment structure may be provided. The optical alignment structure may include a light carrying structure configured to receive an input optical light from an external light source. The optical alignment structure may further include a light redirection mechanism coupled to the light carrying structure. The light redirection mechanism may be configured to receive the input optical light from the light carrying structure. The light redirection mechanism may be further configured to redirect the input optical light back to the light carrying structure, the redirected input optical light configured to be detected by a detector for alignment of the optical alignment structure with the external optical source.12-10-2015
20150377655SYSTEM AND METHOD FOR OPTICALLY READING A SENSOR ARRAY - A system including an optical waveguide having a length extending from an optical interrogator at a first end, a plurality of light-modulating sensor nodes disposed at predetermined locations along the length of the optical waveguide, each of the plurality of light-modulating sensor nodes having an optical modulator for modulating an optical signal propagating from the optical interrogator in the optical waveguide, and for returning the modulated optical signal to the optical interrogator in an opposite direction along the same optical waveguide path.12-31-2015
20160003647THERMALLY CONSTRAINED HIGH TEMPERATURE OPTICAL FIBER HOLDER - A disclosed probe assembly includes a sensor member and an outer holder including a main bore for the sensor member, the outer holder including a first coefficient of thermal expansion. The sensor member is held within a sensor bore of an inner holder. The inner holder is held within the main bore of the outer holder by an interference fit. The inner holder includes a second coefficient of thermal expansion greater than the first coefficient of thermal expansion. Expansion of the inner holder is constrained by the outer holder to maintain the sensor member within the probe bore of the inner holder at elevated temperatures.01-07-2016
20160018245Measurement Using A Multi-Core Optical Fiber - A system receives data corresponding to light signals in the plurality of cores, the plurality of cores including a first pair of cores spaced apart laterally along a first direction in the optical fiber, and a second pair of cores spaced apart laterally along a second direction in the optical fiber. The system determines a directional measurement of a dynamic parameter based on the data corresponding to light signals in the plurality of cores, wherein directionality of the directional measurement is indicated by a difference between a response of the first pair of cores to a stimulus and a response of the second pair of cores to the stimulus.01-21-2016
20160025584A SENSING CABLE - A sensing cable including one or more optical fibers and a coating which is provided on the one or more optical fibers. The coating is configured so that pressure applied to the sensing cable, along one or more axes, induces less lateral compression on the one or more optical fibers than pressure applied to the sensing cable along one or more other axes so as to change birefringence in the one or more optical fibers.01-28-2016
20160084733HIGH-DURABILITY AND LONG-SCALE-DISTANCE FIBER GRATING SENSOR AND MANUFACTURING METHOD THEREFOR - A high-durability and long-scale-distance fiber grating sensor and a manufacturing method therefor, which relate to the technical field of fiber grating sensors. A fiber grating is disposed on the middle segment of a commercial optical fiber. A bushing, a woven fiber jacket layer, and a packaging structure are disposed on the periphery of the commercial optical fiber. The commercial optical fiber and the bushing therebetween are fixed by using fixing points in the bushing. Anchoring segments are disposed between the fixing points in the, bushing and the woven fiber jacket layer. Two ends of the commercial optical fiber are sequentially connected to optical fibers on the anchoring segments and connecting optical fibers. Tail ends of the connecting optical fibers are connected to a transmission cable by using connecting flanges. By using the apparatus and the manufacturing method, the applicability and the durability of application of the fiber grating sensor in the civil traffic engineering field are improved, thereby providing a stable and reliable apparatus for long-time detection and sound monitoring of large engineering structures in the civil traffic engineering field.03-24-2016
20160146729MEASUREMENT METHOD BASED ON AN OPTICAL WAVEGUIDE SENSOR SYSTEM - A method for measuring a value change of a parameter at the sensing area of an optical sensor element. The method includes the steps:05-26-2016
20160161326Flexible Optical Sensor Module - A flexible optical sensor module is proposed. The flexible optical sensor module comprises a supporting substrate and a flexible waveguide. The supporting substrate has a first trench and a second trench, wherein the first trench has a first optical micro-reflection surface and a second optical micro-reflection surface at two sides of the first trench. The flexible waveguide disposed on the first trench of the supporting substrate. The supporting substrate may include a first substrate with the first trench and a second a second substrate with the second trench, wherein the first substrate is disposed on said second substrate. A membrane is disposed between the first substrate and the second substrate. The light source and the photo detector are disposed on the first substrate.06-09-2016
20160169932APPARATUS, METHOD, AND SYSTEM FOR DETECTING ACCELERATION AND MOTOR MONITORING06-16-2016
20160202053REDUCING INCREMENTAL MEASUREMENT SENSOR ERROR07-14-2016
20160202133STRAIN MEASURING DEVICE07-14-2016
20160202285Accelerometer Based on Two-Mode Elliptical-Core Fiber Sensor07-14-2016
20160252344Self referenced intensity-based polymer optical fibre displacement sensor09-01-2016
20160252463ABNORMALITY DETECTION SYSTEM AND ABNORMALITY DETECTION METHOD09-01-2016
250227150 With detection of macroscopic break in fiber 2
20100051791FIBER-OPTIC HARNESS TESTING APPARATUS AND RELATED METHODS - A fiber optic harness testing apparatus and method of forming termini for a harness testing apparatus, are provided. The apparatus can include an analyzer to determine an attenuation value between an electrical form transmit test signal and an electrical form return test signal to determine an attenuation across one or more optical fibers of a fiber-optic harness under test, and a plurality of electrical test leads each including a test lead connector adapted to mechanically and optically interface the electrically conductive test leads and the analyzer with the fiber-optic harness under test. Each test lead connector can include a set of test lead connector termini. Each test lead connector terminus can include an optically active element to optically interface with a corresponding fiber-optic harness connector terminus positioned in one or more of the connectors of the fiber-optic harness under test.03-04-2010
20150377737FIBER INTEGRITY MONITORING - It is provided an apparatus, comprising a box configured to conduct an optical fiber from an exterior to an interior of the box; at least one of a mounting means adapted to mount a connecting means to which the optical fiber may be connected and a guiding means adapted to guide the optical fiber, wherein the at least one of the mounting means and the guiding means is arranged in the interior of the box; a detecting means arranged in the interior of the box adapted to detect a first signal from the interior of the box, wherein the first signal is at least one of a light and a smoke; wherein the interior of the box is substantially shielded from a second signal from an exterior of the box, and the detecting means is suitable to detect the second signal in a same manner as the first signal.12-31-2015
250227160 With detection of fiber microbend caused by parameter affecting fiber 4
20110042557Optical fiber based sensor system suitable for monitoring remote aqueous infiltration - A method of monitoring the integrity of a hull of an aircraft or a submarine comprising placing an optical fiber network over at least an outer portion of a hull and connecting fiber optic cable instrumentation and a light source to said optical fiber network and, monitoring the integrity of the hull using the instrumentation and the light source.02-24-2011
20140332675OPTICAL SENSOR - An optical sensor has a light source, a characteristic light-guiding member, a characteristic changing part, a detecting unit, and an optical connecting unit. The optical connecting unit has a light branching unit configured to branch the light emitted from the light source to the characteristic light-guiding member, and branches the light guided by the characteristic light-guiding member to the detecting unit.11-13-2014
20160076918OPTICAL LINEAR MEASUREMENT SYSTEM AND METHOD - An optical linear measurement system and method are provided that determine movement of a movable device based on the signal strength of an optical signal propagating in a first optical fiber that is attached to the movable device. As the linear position of the movable device changes, the radius of a coil of the first optical fiber changes. As the radius of the coil changes, the strength of the optical signal changes. A second static optical fiber is used for performing temperature compensation. Changes in signal strength of an optical signal carried on the second optical fiber due to temperature are used to adjust the measured strength of the signal carried on the first optical fiber. The movement of the movable device is then made based on the adjusted signal strength measurement.03-17-2016
20160097658FIBER OPTIC IMPLEMENT POSITION DETERMINATION SYSTEM - A system for determining the orientation of an implement relative to a frame of a machine is provided. The implement is attached to and moveable relative to the machine. A fiber optic shape sensing system is associated with the implement. The fiber optic shape sensing system provides the position and orientation of the implement relative to a reference frame that is fixed to the machine frame.04-07-2016
250227170 Causing polarization change in fiber 3
20120280117Fibre Optic Distributed Sensing - The application describes methods and apparatus for distributed fibre sensing, especially distributed acoustic/strain sensing. The method involves launching at least first and second pulse pairs into an optical fibre, the first and second pulse pairs having the same frequency configuration as one another and being generated such that the phase relationship of the pulses of the first pulse pair has a predetermined relative phase difference to the phase relationship of the pulses of the second pulse pair. In one embodiment there is a frequency difference between the pulses in a pulse pair which is related to the launch rate of the pulse pairs. In another embodiment the phase difference between the pulses in a pair is varied between successive launches. In this way an analytic version of the backscatter interference signal can be generated within the baseband of the sensor.11-08-2012
20150108335FIBER OPTIC SENSOR FOR POSITION SENSING - A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.04-23-2015
20160025563Photonic Optical Sensor and Method of Use Thereof - The system may include a photonic optical sensor including a photonic crystal and an incident light source arranged so as to project light onto the photonic optical sensor, and such that the photonic optical sensor returns a portion of the light projected onto the photonic optical sensor as returned light. The system may further include a detector positioned with respect to the photonic optical sensor so as to detect the returned light. The detector produces a data output based on the returned light. Additionally, a processing unit receives and processes the data output.01-28-2016
250227180 Causing light spectral frequency/wavelength change 12
20080203281APPARATUS AND METHOD FOR BIOLOGICAL SENSING - A biological agent detector for detecting predetermined biological agents. The biological agent detector includes an optical fiber, a cladding that clads a length of the optical fiber and a bioindicator disposed within the cladding. The biological agent detector also includes a coherent light source that excites the optical fiber and a biological agent signature detector that detects the presence of a biological agent based upon a change in a resonance characteristic of the optical fiber caused by absorption of the predetermined biological agent into the cladding of the fiber.08-28-2008
20090127443METHOD AND DEVICE FOR DETECTING DISPERSION, OPTICAL SIGNAL TRANSMISSION SYSTEM - The present invention discloses a method for detecting dispersion, overcoming disadvantages of complex configuration and insensitivity to a tiny dispersion of the method and device for detecting dispersion in the prior art. The inventive method includes: obtaining a signal within a predetermined bandwidth range from an optical signal received; obtaining an operated value of power via an operation on the signal within the predetermined bandwidth range; and obtaining amount of system dispersion according to a corresponding relation between the operated value of power and the amount of system dispersion. A device for detecting dispersion is disclosed, including a photoelectric filter operational unit and a processing unit, where an output of the photoelectric filter operational unit is connected to an input of the processing unit. The device for detecting dispersion of the present invention is applicable to an adaptive dispersion compensation system. An optical signal transmission system is further disclosed.05-21-2009
20100264300Detecting Light in Whispering-Gallery-Mode Resonators - An optical device including a whispering gallery mode (WGM) optical resonator configured to support one or more whispering gallery modes; and a photodetector optically coupled to an exterior surface of the optical resonator to receive evanescent light from the optical resonator to detect light inside the optical resonator.10-21-2010
20110139970Nanoscale Object Detection Using A Whispering Gallery Mode Resonator - Detection of individual objects using a light source and a whispering gallery mode (WGM) resonator. Light from the whispering gallery mode (WGM) resonator is analyzed. The presence of an object is determined based on mode splitting associated with the light received by the photodetector. For example, the presence of the object may be determined based on the distance between two whispering gallery modes and/or the linewidths of the two modes in a transmission spectrum. Alternatively, the presence of the object may be determined based on a beat frequency that is determined based on a heterodyne beat signal produced by combining split laser modes in the received light from a WGM microcavity laser.06-16-2011
20130140445Multi-Point Measuring Method of FBG Sensor and Multi-Point Measuring Apparatus - A multi-point measuring apparatus of FBG sensor has an optical fiber, a wide-band wavelength light source, a light-source side light modulator for controlling time of a light entering into the optical fiber, among lights from this light source, a detector side light modulator for controlling time, during which a reflection light from a diffraction grating of the optical fiber penetrates through, a wavelength shift amount calculator for processing a signal obtained through detection of the reflection light from this light modulator, a temperature/distortion calculator for calculating an amount of deformation of a target to be measured from a result of this calculator, and a display portion for displaying information relating to the amount of deformation of this target to be measured.06-06-2013
20140131562DYNAMIC FIBER BRAGG GRATING INTERROGATION SYSTEM AND METHOD - A fiber Bragg grating (FBG) interrogation method allows for high frequency dynamic measurement. The method may utilize a broad band light source connected to the sensing elements. Each sensing element may comprise two wavelength matching FBGs, a coupler, and a photodiode. The FBG closest to the light source may attenuate the central wavelength in the transmission spectrum and thus the reflection spectrum of the second FBG. Variations in intensity of the second FBG may be measured by the photodiode and can be calibrated to the desired measurands.05-15-2014
20140239166OPTICAL FIBRE GRATING SENSOR SYSTEM AND METHOD - The present invention relates to an optical fibre for a fibre optic sensor, comprising a first optical grating adapted to operate over a first range of wavelengths; and at least one set of further gratings adapted to operate over a second range of wavelengths, each grating being adapted to operate over a portion of the second range; wherein, each grating within said set has an operating range that partially overlaps with at least one other such grating operating range. The invention also extends to a sensor system, and method, using such an optical fibre.08-28-2014
20150144773Method for compensation of fiber optic measurement systems and fiber optic measurement system - The present invention relates to a method for compensation, for example, for temperature compensation of a fiber optic measurement system designed for determining a mechanical quantity. First and second fiber Bragg gratings have a respective Bragg wavelength, wherein the fiber Bragg gratings are irradiated with primary light. After applying a mechanical quantity to the first and second fiber Bragg gratings, the Bragg wavelengths of the fiber Bragg gratings are changed by the mechanical quantity. Filtering of the first and second secondary light, said first and second secondary light is effected from the primary light and modified by the Bragg wavelength of the fiber Bragg grating depending on the mechanical quantity by use of an optical filter device follows, in such a way that the Bragg wavelength of the first fiber Bragg grating lies in the region of the rising filter gradient of the optical filter device and the Bragg wavelength of the second fiber Bragg grating lies in the region of the falling filter gradient of the optical filter device. After determining the intensities of the filtered first and second secondary light, they are compared, whereupon the mechanical quantity is determined from the intensity comparison.05-28-2015
20160116670MULTI-PARAMETER OPTICAL SENSOR AND METHOD FOR OPTICAL SENSOR MANUFACTURING - A dual-parameter optical sensor having: a fiber optic cable; a fiber Bragg grating (FBG) section provided on the fiber optic cable; and a sleeve affixed to the fiber optic cable such that the sleeve encloses a predetermined portion of the FBG section, wherein the sleeve has a different thermal expansion co-efficient than the fiber optic cable. A method for manufacturing the dual-parameter optical sensor including selecting a fiber optic cable having a predetermined thermal expansion coefficient; forming a fiber Bragg grating (FBG) section on the fiber optic cable; selecting a sleeve having a predetermined thermal expansion co-efficient that is different from the thermal expansion co-efficient of the fiber optical cable; selecting a predetermined portion of the FBG section to be enclosed by the sleeve; and joining the fiber optic cable to the sleeve such that the sleeve encloses the selected predetermined portion of the FBG section.04-28-2016
20160146642OPTICAL FIBER SENSING OPTICAL SYSTEM AND OPTICAL FIBER SENSING SYSTEM - The present invention addresses the problem of inexpensively providing an optical fiber sensing system capable of carrying out highly accurate measurement by preventing the influence of noise other than the physical quantity to be measured, especially polarization variation. An optical fiber sensing optical system according to the present invention is provided with a light source (05-26-2016
20160202414Systems And Methods For Suspended Polymer Photonic Crystal Cavities And Waveguides07-14-2016
20160377456SYSTEM AND METHOD FOR SENSING MANY FIBER SENSORS USING TIME-DIVISION MULTIPLEXING AND WAVELENGTH DIVISION MULTIPLEXING - A system and method for discriminately measuring the response of a plurality of spatially separated fiber sensors positioned along an optical fiber using a sweep of electromagnetic radiation. Each fiber sensor affects the transmission of a particular wavelength of electromagnetic radiation and the particular wavelength affected by a given fiber sensor is dependent on at least one environmental property of the given fiber sensor. By detecting the particular wavelength affected by a given sensor, it is possible to determine the environmental property of the given sensor.12-29-2016
250227190 With coherent interferrometric light 1
20160003648APPARATUS AND METHOD OF MULTIPLEXED OR DISTRIBUTED SENSING - Various embodiments include apparatus and methods to measure a parameter of interest using a fiber optic cable. The parameters can be provided by a process that provides for multiplexed or distributed measurements. A multiplexed or a distributed architecture can include acoustic sensor units placed selectively along an optical fiber such that the acoustic sensor units effectively modulate the optical fiber with information regarding a parameter to provide the information to an interrogator coupled to the optical fiber that is separate from the acoustic sensor units.01-07-2016

Patent applications in class Condition responsive light guide (e.g., light guide is physically affected by parameter sensed which results in light conveyed to the photocell)

Patent applications in all subclasses Condition responsive light guide (e.g., light guide is physically affected by parameter sensed which results in light conveyed to the photocell)

Website © 2023 Advameg, Inc.