Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Plural photosensitive nonimage detecting elements

Subclass of:

250 - Radiant energy

250200000 - PHOTOCELLS; CIRCUITS AND APPARATUS

250206000 - Photocell controlled circuit

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
250208600 With specific relative positional geometry of photosensitive elements (e.g., an annular photosensitive element surrounding a coaxially mounted photosensitive element) 12
250208300 With electronic scanning 6
250208400 Used to switch an electrical circuit or device on or off 5
20110303826PHOTOSENSITIVE CONTROL SYSTEM, AND METHOD OF OPERATING THEREOF - A photosensitive control system includes a light source device configured to provide a directional light beam and a photosensitive device which includes at least one pre-arranged photosensitive unit. Also, the photosensitive control system has a light guide device configured between the light source device and the photosensitive device for guiding the light beam to the at least one photosensitive unit and therefore the photosensitive device produces a sensing signal. In addition, the photosensitive control system includes a controller configured to receive the sensing signal and provide control data in accordance with the sensing signal.12-15-2011
20120235025SWITCH - A slit is formed in a plunger of a limit switch in such a manner that an amount of light incident on a light receiving element is changed in accordance with displacement of the plunger. The limit switch is provided with a setting processing unit (09-20-2012
20140217266METHOD AND SYSTEM FOR SENSING LIGHT REFLECTIVE SURFACES IN A REFLECTIVE PHOTO-ELECTRIC SENSING SYSTEM - A reflective photo-electric sensing system includes a transmitter for the transmission of light and a reflector for reflecting the light. The reflector being positioned in a far field. A light channeling device receives reflected light from the far field or from a near field and channels the received reflected light to a near field receiver or a far field receiver dependent on an angle of the received reflected light. An electrical signal is generated at the near field receiver or the far field receiver. A controller evaluates the electrical signal of the near field receiver and the electrical signal of the far field receiver and generates an actuation signal dependent on the evaluation.08-07-2014
20140263976HIGH FREQUENCY MODULATION CIRCUITS BASED ON PHTOCONDUCTIVE WIDE BANDGAP SWITCHES - Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.09-18-2014
20150090865Proximity Sensing Configuration - Embodiments are provided for intelligently revealing selectable icons on a control panel of a playback device based on proximity detection. In one example, an ambient light level may be determined based on a detection of ambient light by a light sensor of a control area for a playback device. Based on the ambient light level, a sensitivity of an infrared (IR) proximity sensor and a sensitivity of a capacitive proximity sensor may be adjusted. The IR proximity sensor and the capacitive proximity sensor may each be configured to detect a physical movement. Based on the detection of the physical movement by at least one of the IR proximity sensor and the capacitive proximity sensor, a physical approach of an entity towards the playback device may be determined, and a control area of the playback device may be illuminated.04-02-2015
250208500 With photodetector output ratioing other than by bridge or push-pull circuits 2
20130032698OPTICAL COUPLING DEVICE - According to one embodiment, an optical coupling device is provided.02-07-2013
20140374575SPATIAL FREQUENCY REPRODUCING APPARATUS AND OPTICAL DISTANCE MEASURING APPARATUS - A spatial frequency reproducing apparatus includes a light source, a first means for modulating a light emitted from the light source into two lights having different frequencies and separately irradiated adjacently, a second means for two-dimensionally scanning the two lights, a third means for irradiating an object under measurement with the two lights, a fourth means for receiving and converting into an electrical signal at least two or more divided lights from the object under measurement with a boundary line being interposed therebetween in a direction substantially perpendicular to the direction separating the two lights, a fifth means for amplifying respective photoelectrically converted electrical signals while varying a degree of amplification according to frequencies thereof and generating a difference signal or a summation signal of the amplified signals, and a sixth means for obtaining a phase difference or an intensity difference of these signals to obtain a measurement value.12-25-2014
Entries
DocumentTitleDate
20080197270CONFIGURABLE PHOTO DETECTOR CIRCUIT - A configurable photo detector circuit includes a photo detector array having a plurality of photo detectors. A switching matrix includes a first plurality of inputs coupled to outputs of the plurality of photo detector, a second plurality of inputs, and a plurality of matrix outputs. A controller is coupled to the second plurality of inputs of the switching matrix for configuring the switching matrix. The controller is operable to receive programmed commands for configuring the switching matrix. An output block having a plurality of inputs is coupled to receive the plurality of matrix outputs and a plurality of outputs, wherein electrical signals from the plurality of photo detectors are directed to respective ones of the plurality of outputs based on the switching matrix.08-21-2008
20080217515ILLUMINANCE DETECTION APPARATUS AND SENSOR MODULE - A silicon substrate is used as a substrate body of a wiring substrate and also, plural light receiving elements for outputting a detection signal according to illuminance of light at the time of receiving light applied from the outside, an amplification circuit element for amplifying the detection signal outputted by the light receiving elements, a changeover switch element for performing switching as to whether or not the light receiving element is electrically connected to the amplification circuit element, and a resistor and a capacitor electrically connected to the amplification circuit element are disposed on the wiring substrate.09-11-2008
20090014630EXTENDED DYNAMIC RANGE SYSTEM DESIGN - Systems and method for detecting and measuring light emitted from a sample and having a large dynamic range, e.g., a range of luminous intensity covering six or more orders of magnitude, that may be difficult to fully detect using a single detector with a limited detection range. Simultaneous measurement of the emitted light in two intensity ranges is performed using two detectors, e.g., one including a photomultiplier tube (PMT) and the other including a solid state detector such as a photodiode. A beam splitting element directs light emitted from a sample under investigation to both detectors simultaneously such that a portion of the light impinges on the first detector and a second portion of the light impinges on the second detector. A processor receives output signals from the two detectors and provides an output representing the luminous intensity of the sample over a detection range greater than the detection range of each individual detector, thereby providing a detection system having an enhanced dynamic range.01-15-2009
20090045324SCANNING OPTICAL SYSTEM MEASURING DEVICE AND SCANNING OPTICAL SYSTEM MEASURING METHOD - Measurement of a scanning optical system is to be carried out simply and easily. According to the invention, a scanning optical system measuring device for making adjustment of a scanning optical system which performs scanning with a light beam, includes: plural one-dimensional position detection devices provided at a distance from each other in a scanning direction of a light beam caused to perform scanning, and arranged to intersect the scanning direction of the light beam, and configured to output light receiving position of the light beam caused to perform scanning, as an analog signal; and a detection signal processing unit configured to detect scanning state of the light beam on the basis of a detection signal of the one-dimensional position detection devices.02-19-2009
20090065682SOI structure including nanotaper with improved alignment capabilities to external light guide - An arrangement for providing alignment between an optical nanotaper coupler and a free space optical signal includes the formation of a “ridge” structure around the location of the nanotaper coupler to reduce stray light-related errors in the alignment process. The ridge is preferably formed by etching vertical sidewalls through the inter-level dielectric (ILD) and buried oxide (BOX) layers of the SOI structure. When an optical source (such as an illuminated fiber, laser, etc.) is scanned across this etched arrangement, the signal received by an associated photodetector registers an increase at the boundary between the etched region and the vertical sidewall of the ridge, thus defining the bounds within which the nanotaper coupler is located. Since the dimensions of the ridge are known and controlled by the etching process, the location of the nanotaper coupler tip along the endface of the ridge can be determined from this scan.03-12-2009
20090121118Photodiode Array and Optical Microwave Transmission System Receiver - Provided is a photodiode array that is capable of outputting an electric signal with a large electric power and an optical microwave transmission system receiver that supplies an electric power with the aid of an optical fiber and does not require the electric power line from the external. An input modulation light is branched and input to a plurality of photodiode elements (05-14-2009
20090200453Optical Touch Screen Assembly - An optical touch panel including a support defining a detection region, an optical illumination assembly including at least two edge emitting optical light guides extending along adjacent portions of the detection region and having ends adjacent to one another and at least one mechanical coupling and optical coupling assembly, at least one sensor assembly, operative to detect changes in the light received from the optical illumination assembly produced by the presence of an object in the detection region and detection circuitry receiving at least one output from the at least one sensor assembly and providing an output indication of the two dimensional location of object impingement in the detection region.08-13-2009
20090236499Key Device and Electronic Device Comprising the Same - The key device of the present invention is provided with: first light-emitting portions that emit light propagating in a first direction; second light-emitting portions that emit the light R propagating in a second direction; converters H that can convert a propagating direction of light from the first direction to the second direction, or from the second direction to the first direction; first light-receiving portions that receive light propagating in the first direction through the converters; second light-receiving portions that receive light propagating in the second direction through the converters; and a plurality of keys, which are provided correspondingly to the converters, and which determine whether the propagating direction of light is converted in the converters.09-24-2009
20090250595SYSTEM FOR DETECTING ONE OR MORE PREDETERMINED OPTICALLY DERIVABLE CHARACTERISTICS OF A SAMPLE - A field use optical grain characterising system (10-08-2009
20090256062OPTICAL COMMUNICATION DEVICE AND ELECTRONIC EQUIPMENT - An optical communication device includes a one-chip light receiving element having a plurality of light receiving sections having light receiving sensitivity to different wavelength ranges in a visible light spectrum. The photodiode has a light receiving surface, which is divided into nine blocks. For each light receiving section group in which light receiving sections have the light receiving sensitivity to an identical wavelength range, the light receiving sections are dispersedly placed in corresponding ones of the blocks.10-15-2009
20100006745Light Grid With Parallel Evaluation - A light grid includes pairs of transmitters and receiver units, and a programmable logic unit for signal evaluation. The analog part of the light grid includes only the reception elements and the storage capacitors for performing analog-to-digital conversion.01-14-2010
20100006746COLOR SENSOR AND ELECTRONIC DEVICE HAVING THE SAME - A color sensor with a plurality of optical sensors in which the number of terminals for connection with the outside can be reduced. The color sensor includes a plurality of optical sensors each provided with a photoelectric conversion element and an optical filter over a light-transmitting substrate. The optical filters in the plurality of optical sensors have light-transmitting characteristics different from each other. The plurality of optical sensors is mounted over an interposer including a plurality of terminal electrodes for electrical connection with an external device. The interposer includes a wiring having a plurality of branches for electrical connection between the terminal electrode for inputting a high power supply potential to the plurality of optical sensors and a wiring having a plurality of branches for electrical connection between the terminal electrode for inputting a low power supply potential to the plurality of optical sensors.01-14-2010
20100032551OPTICAL DETECTOR DEVICE - The invention relates to an optical detector device (02-11-2010
20100102207Method for Measuring Information of Technical Systems - The invention relates to a method for measuring information of biological systems. The aim of the invention is to receive signals using less energy. To achieve this, random generators are used as receivers (B) of low-energy quanta, since the random generators can be regarded and implemented as antennae and receivers of signals of this type. The extensive natural transmission range of low-energy quanta can also be used to receive information from spatially remote systems.04-29-2010
20100127159PHOTODETECTING SEMICONDUCTOR APPARATUS AND MOBILE DEVICE - One embodiment of a photodetecting semiconductor apparatus is provided with a sensor chip, a resin-sealed package in which the sensor chip is resin-sealed with a transparent resin, and a color filter disposed on the surface of the sensor chip, with a sensor circuit unit and a light-sensitive element group being formed in the sensor chip. The light-sensitive element group is configured with a color light-sensitive element having a sensitivity peak for color and an infrared light-sensitive element having a sensitivity peak for infrared light. The color light-sensitive element includes a red light-sensitive element having a sensitivity peak for red, a green light-sensitive element having a sensitivity peak for green, and a blue light-sensitive element having a sensitivity peak for blue.05-27-2010
20100148036Photodetector circuit - A photodetecting circuit includes an adder that selectively adds outputs of a plurality of circuits for photodetection. Each of the circuits for photodetection includes: a element for photodetecting; a transimpedance amplifier for photodetection, with a first input terminal connected to the photodetecting element; a transconductance amplifier, with a first input terminal connected to an output terminal of the transimpedance amplifier; and a feedback circuit, connected between the output terminal of the transimpedance amplifier for photodetection and the first input terminal of the transimpedance amplifier for photodetection and applying feedback to keep fixed an output voltage of the transimpedance amplifier for photodetection.06-17-2010
20100155577Obtaining Sensing Results Indicating Time Variation - In response to objects having relative motion within an encoding/sensing region relative to an encoder/sensor that, e.g., photosenses emanating light or performs impedance-based sensing, sensing results can indicate sensed time-varying waveforms with information about the objects, about their relative motion, about excitation characteristics, about environmental characteristics, and so forth. An encoder/sensor can include, for example, a non-periodic arrangement of sensing elements; a longitudinal sequence of sensing elements with a combined sensing pattern that approximates a superposition or scaled superposition of simpler sensing patterns; and/or IC-implemented sensing elements that include photosensing arrays on ICs and readout/combine circuitry that reads out photosensed quantities from cells in groups in accordance with cell-group sensing patterns and combines the readout photosensed quantities to obtain the sensing results. Objects can move fluidically as in flow cytometry, through scanning movement as in document scanning, or in other ways.06-24-2010
20100187405PHOTOELECTRIC CONVERSION DEVICE AND MANUFACTURING METHOD THEREOF - It is an object to provide a photoelectric conversion device which detects light ranging from weak light to strong light. The present invention relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer, an amplifier circuit including a thin film transistor and a bias switching means, where a bias which is connected to the photodiode and the amplifier circuit is switched by the bias switching means when intensity of incident light exceeds predetermined intensity, and accordingly, light which is less than the predetermined intensity is detected by the photodiode and light which is more than the predetermined intensity is detected by the thin film transistor of the amplifier circuit. By the present invention, light ranging from weak light to strong light can be detected.07-29-2010
20100200732OPTICAL READING SYSTEM AND METHOD OF OPERATION - An optical sensor for detecting motion or movement in an area of interest and a method of operation is provided. The system includes a CMOS sensor having an array of pixels that captures images in an area of interest. The system monitors the average pixel value for the array to define a first state. If the average pixel value changes beyond a defined threshold, the system defines a second state. For each change in state, a signal is generated. In one embodiment, the optical sensor is used with a meter having a dial with an indicator. The optical sensor generates a signal each time the indicator passes through the area of interest to allow for the remote monitoring of a consumable commodity.08-12-2010
20100207012Multi-stage waveform detector - A waveform detector may include multiple stages.08-19-2010
20100224761LIGHT RECEIVING DETECTION CIRCUIT - A light receiving detection circuit has a light receiving element configured to receive light emitted from a corresponding projection element, a current/voltage conversion circuit that converts a current signal passing through the light receiving element into a voltage signal, and a filter portion that has a plurality of stages. The filter portion has a high-pass filter and an amplifying circuit. The high-pass filter is able to be switched such that a time constant of the high-pass filter increases when the light receiving element receives light emitted by the corresponding projection element such that the time constant decreases when other projection elements except for the corresponding projection element emit the light.09-09-2010
20100230581LIGHT SENSOR - Light sensor, comprising a non-translucent layer (09-16-2010
20100243865Cross-strip charge multiplexing readout for differential detector arrays - An array of two-terminal detectors is configured to provide output signals that provide position sensitive radiation detection (e.g., outputs A and B provide vertical position and outputs C and D provide horizontal position), and which are differential (i.e., signal A+B is equal and opposite to signal C+D). Preferably, a capacitive network is employed to provide the position sensitivity. Array outputs are preferably provided to a low impedance amplifier or opto-electronic coupler.09-30-2010
20100252719Optical Encoder with Code Wheel Misalignment Detection and Automatic Gain Control - According to one embodiment, there is provided a device and method for correcting code wheel misalignment which employs upper and lower code wheel misalignment photodetectors positioned above and below at least first and second motion detection photodetectors. According to other embodiments, there are provided a device and method for automatically setting the gain of an output circuit in an optical encoder. Still further embodiments of optical encoders combine the code wheel misalignment and automatic gain control features of the invention.10-07-2010
20100270460ELECTROMAGNETIC DEVICE WITH INTEGRAL\NON-LINEAR COMPONENT - An optical antenna assembly including multiple optical antenna elements, each of the optical antenna elements are arranged in a regular pattern and carried by a supporting body. The regular pattern of the plurality of optical antenna elements is nonuniform. Certain ones of the optical antenna elements are configured to respond to the one or more waves of light.10-28-2010
20100301194Optical Receiver Comprising Breakdown-Voltage Compensation - The present invention enables the detection of light using an APD that has high gain and/or a wide range of operating temperature. A first APD is biased with a voltage bias that is controlled based on the breakdown voltage of a second APD, which is thermally coupled with the first APD. Changes in the breakdown voltage of the second APD due to aging, temperature chances, and the like, are reflective of changes in the breakdown voltage of the first APD. As a result, the first APD can be operated with greater stability and reliability at high gain and over larger temperature excursions than APDs known in the prior art.12-02-2010
20100308210PHOTOELECTRONIC SENSOR SYSTEM - The present invention relates to a photoelectronic sensor which collectively adjusts light emission intensity of plural light emitting elements and light reception sensitivity of plural light receiving elements automatically or manually.12-09-2010
20110006194METHOD AND DEVICE FOR MEASURING SOLAR IRRADIANCE USING A PHOTOVOLTAIC PANEL - The present invention relates to a measurement method to determine the magnitude and intensity of solar radiation/collected by a photovoltaic solar panel, without the need of using specific sensors for this purpose—With the present method̂ the power conditioning systems used in small photovoltaic panels to charge small rechargeable batteries, will now be able to provide an electrical signal, in the form of a pulse sequence or in any other electrical signal, that represents the value of the quantity that generates the available energy. The present method enables the monitoring the energy transfer between the solar panel and a rechargeable battery using a switched, voltage converter; additionally it indicates the magnitude of the solar radiation falling on the solar panel. It is based on the adaptation of a direct voltage to direct voltage boost converter circuit in. order to provide an electrical signal which is correlated to the magnitude of the solar irradiance falling on the solar panel, which in turn powers the voltage converter circuit. The invention also relates to a device for implementing this method.01-13-2011
20110049334OPTICAL MODULE - An optical module transmits optical signals through a plurality of optical fibers in parallel. The optical module includes a substrate including an electrode pattern, a plurality of optical elements mounted on the electrode pattern of the substrate, and an electronic device mounted on the electrode pattern of the substrate and electrically connected to the optical elements. The optical elements and the electronic device are arranged on the substrate close to each other such that lengths of a plurality of transmission lines each transmitting a signal between each of the optical elements and the electronic device are minimized.03-03-2011
20110062311CIRCUIT AND METHOD FOR TEMPERATURE AND PROCESS INDEPENDENT TRANSIMPEDANCE AMPLIFIER ARRANGEMENT - An integrated circuit transimpedance amplifier arrangement constituted of: a plurality of internal matched resistors; a current multiplier arranged to output a signal whose value is a function of an input current signal, an external resistor and a first set of the plurality of internal matched resistors; and an output transimpedance amplifier coupled to the output of the current multiplier, the output transimpedance amplifier exhibiting a gain whose value is a function of a second set of the plurality of internal matched resistors, wherein the output of the output transimpedance amplifier is a function of the input current signal, the external resistor, the first set of the plurality of internal matched resistors and the second set of the plurality of internal matched resistors, wherein the variations with temperature of the first set of the plurality of internal matched resistors and the second set of the plurality of internal matched resistors cancel.03-17-2011
20110068255PHOTODETECTORS USEFUL AS AMBIENT LIGHT SENSORS - A photodetector includes one or more first photodiode regions that are covered by an optical filter configured to reject infrared (IR) light and that produce a first current (I03-24-2011
20110101207Methods and Apparatus for Swept-Source Optical Coherence Tomography - In one embodiment of the invention, a semiconductor optical amplifier (SOA) in a laser ring is chosen to provide low polarization-dependent gain (PDG) and a booster semiconductor optical amplifier, outside of the ring, is chosen to provide high polarization-dependent gain. The use of a semiconductor optical amplifier with low polarization-dependent gain nearly eliminates variations in the polarization state of the light at the output of the laser, but does not eliminate the intra-sweep variations in the polarization state at the output of the laser, which can degrade the performance of the SS-OCT system.05-05-2011
20110114824APPARATUS AND METHOD FOR PREVENTING CHARGE PUMPING IN SERIES CONNECTED DIODE STACKS - An ambient light sensor includes a first stack of at least two photodiodes, wherein a cathode of one of the at least two photodiodes is electrically connected to an anode of another of the at least two photodiodes. The ALS further includes a bias source for providing a bias voltage to the first stack, and at least one switch electrically connected to the first stack. The at least one switch is operative to periodically apply the bias voltage to and remove the bias voltage from the first diode stack.05-19-2011
20110127410OPTICAL SENSOR, OPTICAL SENSOR ARRAY, OPTICAL SENSOR DRIVING METHOD, AND OPTICAL SENSOR ARRAY DRIVING METHOD - An optical sensor that is a transistor which includes a gate electrode including a semiconductor material where the carrier concentration is 1.0×1006-02-2011
20110139964Systems And Methods That Detect Changes In Incident Optical Radiation - Systems, methods and sensors detect changes in incident optical radiation. Voltage is applied across one or more active areas of a detector while the incident optical radiation illuminates the active areas. Current is sensed across one or more of the active areas, a change in the current being indicative of the changes in incident optical radiation.06-16-2011
20110147568High density array module and connector - In a preferred embodiment of the invention, a high density interconnect structure is provided comprised of a dielectric structure and one or more compressible conductive member for the electrical connection of a plurality of inputs and outputs of a three-dimensional module to external circuitry using a compression frame and a flex connector. The compression frame has a surface equal to or less than the surface area of the module surface upon which it is mounted and permits a plurality of modules to be “butted” together to provide, for instance, a buttable focal plane array module comprising a mosaic of buttable focal plane arrays.06-23-2011
20110155894PROXIMITY SENSOR - A proximity sensor is disclosed. The proximity sensor may be incorporated as part of a water delivery device. A holder which aligns an optical source and sensor of the proximity sensor is disclosed.06-30-2011
20110180691DATA PROCESSING CIRCUIT WITH AN ELEMENTARY PROCESSOR, DATA PROCESSING ASSEMBLY INCLUDING AN ARRAY OF SUCH CIRCUITS, AND MATRIX SENSOR INCLUDING SUCH AN ASSEMBLY - A data processing circuit includes a data processing unit including two signal-conversion circuits and controlled switches connected to inputs and outputs of the conversion circuits. The data processing unit further includes a binary signal inlet, a binary signal outlet, and a memory unit. The memory unit includes capacitors each storing a binary piece of data. The capacitors are connected to a memory bus via switches. The bus is connected to the processing unit. In response to control signals provided to the controlled switches, the data processing unit performs at least the following operations: writing a binary datum in a capacitor, reading from a capacitor a binary datum stored therein and applying the datum to an output, and logically combining binary data stored in at least two capacitors.07-28-2011
20110204211OPTOELECTRONIC SENSOR - An optoelectronic sensor (08-25-2011
20110204212CONFOCAL IMAGING METHODS AND APPARATUS - The invention provides imaging apparatus and methods useful for obtaining a high resolution image of a sample at rapid scan rates. A rectangular detector array having a horizontal dimension that is longer than the vertical dimension can be used along with imaging optics positioned to direct a rectangular image of a portion of a sample to the rectangular detector array. A scanning device can be configured to scan the sample in a scan-axis dimension, wherein the vertical dimension for the rectangular detector array and the shorter of the two rectangular dimensions for the image are in the scan-axis dimension, and wherein the vertical dimension for the rectangular detector array is short enough to achieve confocality in a single axis.08-25-2011
20110215224PHOTOELECTRIC CONVERSION APPARATUS - An apparatus includes a first photoelectric conversion element configured to convert light into a current by a photoelectric conversion, a first current amplification unit configured to amplify the current, a first current monitoring unit configured to monitor the amplified current amplified and output a monitor signal, and a first bias voltage setting unit configured to gain the monitor signal by a factor less than 1 and apply a reverse bias voltage to the first photoelectric conversion element according to the gained monitor signal.09-08-2011
20110215225OPTICAL RECEIVER DEVICE - An optical receiver device including: a light-receiving element having a first electrode acting as an outputting electrode and a second electrode coupled to a potential that is different from a ground potential; an amplifier device having an amplifier element, a connection terminal including a signal electrode and a ground electrode on an upper face thereof; a first conductor coupling a potential of the first electrode of the light-receiving element to the signal electrode, the first conductor being introduced from the upper face side of the amplifier device; and a second conductor coupling a potential of the second electrode of the light-receiving element to the ground electrode, the second conductor introduced from the upper face side of the amplifier device.09-08-2011
20110233384GLARE REDUCTION APPARATUS - The invention provides a glare reduction apparatus disposed in an object illuminated by a light source. The glare reduction device includes an electro-optical device covering a surface of the object. A light sensing device is disposed on a first fixed point of the object. A controller is electrically coupled to the electro-optical device and the light sensing device, wherein the controller calculates a corresponding light sensing position of the electro-optical device according to a light sensing position of the light sensing device which directly receives light from the light source, to reduce the light transmittivity of the corresponding light sensing position of the electro-optical device to generate a light shielding region. The light shielding region attenuates the light from the light source to a second fixed point of the object.09-29-2011
20110240833PARALLEL ANALOG-TO-DIGITAL CONVERSION METHOD, DEVICE IMPLEMENTING SAID METHOD AND IMAGING DETECTOR COMPRISING SAID DEVICE - An ADC includes: 10-06-2011
20110260040Charged particle multi-beamlet lithography system with modulation device - A charged particle lithography system for transferring a pattern onto the surface of a target. The system comprises a beam generator for generating a plurality of charged particle beamlets, the plurality of beamlets defining a column, a beam stop array having a surface for blocking beamlets from reaching the target surface and an array of apertures in the surface for allowing the beamlets to reach the target surface, and a modulation device for modulating the beamlets to prevent one or more of the beamlets from reaching the target surface or allow one or more of the beamlets to reach the target surface, by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. The modulation device comprises a plurality of apertures arranged in arrays for letting the beamlets pass through the modulation device, a plurality of modulators arranged in arrays, each modulator provided with electrodes extending on opposing sides of an aperture for generating a voltage difference across the aperture, and a plurality of light sensitive elements arranged in arrays, for receiving modulated light beams and converting the light beams into electric signals for actuating the modulators, wherein the light sensitive elements are located within the column, wherein the modulation device is subdivided into a plurality of alternating beam areas and non-beam areas, the arrays of modulators are located in the beam areas, and the arrays of light sensitive elements are located in the non-beam areas and are in communication with the modulators in an adjacent beam area.10-27-2011
20110260041ILLUMINANCE SENSOR - Provided is an illuminance sensor in which a consumption current is independent of an illuminance level of incident light. Amplifiers (10-27-2011
20110266418Charged particle multi-beamlet lithography system, modulation device , and method of manufacturing thereof - The invention relates to a modulation device for use in a charged particle multi-beamlet lithography system. The device includes a body comprising an interconnect structure provided with a plurality of modulators and interconnects at different levels within the interconnect structure for enabling connection of the modulators to one or more pattern data receiving elements. A modulator includes a first electrode, a second electrode, and an aperture extending through the body. The electrodes are located on opposing sides of the aperture for generating an electric field across the aperture. At least one of the first electrode and the second electrode includes a first conductive element formed at a first level of the interconnect structure and a second conductive element formed at a second level of the interconnect structure. The first and second conductive elements are electrically connected with each other.11-03-2011
20110284725MICROLENS ARRAYS FOR ENHANCED LIGHT CONCENTRATION - A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.11-24-2011
20110290986DEVICE FOR DETECTION OF ELECTROMAGNETIC RADIATION WITH LOW SENSITIVITY TO SPATIAL NOISE - An electromagnetic radiation detection device including multiple elementary detectors (12-01-2011
20110303825Active Photosensing Pixel - An active photosensing pixel is disclosed, in which a two-terminal photosensing transistor has a first terminal coupled to a first node, a second terminal coupled to a first selection line and a control terminal connected to the second terminal. A driving transistor has a first terminal coupled to a first reference voltage, a second terminal coupled to an output line and a control terminal connected to the first node. A reset transistor has a first terminal connected to the first node, a second terminal coupled to a second reference voltage and a control terminal coupled to a second selection line.12-15-2011
20110309237LIGHT ABSORPTION AND FILTERING PROPERTIES OF VERTICALLY ORIENTED SEMICONDUCTOR NANO WIRES - A nanowire array is described herein. The nanowire array comprises a substrate and a plurality of nanowires extending essentially vertically from the substrate; wherein: each of the nanowires has uniform chemical along its entire length; a refractive index of the nanowires is at least two times of a refractive index of a cladding of the nanowires. This nanowire array is useful as a photodetector, a submicron color filter, a static color display or a dynamic color display.12-22-2011
20110309238MATERIALS, SYSTEMS AND METHODS FOR OPTOELECTRONIC DEVICES - A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.12-22-2011
20110315856ANALOG SILICON PHOTOMULTIPLIER USING PHASE DETECTION - An analog silicon photomultiplier system includes at least one analog pixel comprising a plurality of analog photodiodes (APDs), and a capacitor, a signal generator, a phase detector, and a compensation network. The signal generator is configured to generate and propagate a sinusoidal signal concurrently along first and second transmission lines. A capacitor is loaded on the first transmission line when an APD corresponding to the capacitor detects a photon. The phase detector is coupled with the first and second transmission lines, determines a phase difference between the first transmission line and the second transmission line and calculates a number of APDs that have fired from the phase difference. The compensation network is coupled with the second transmission line and the phase detector, and comprises a plurality of compensation capacitors, wherein the compensation capacitors are loaded on the second transmission line in proportion to the number of APDs that have fired.12-29-2011
20110315857SOLAR CELL SYSTEM - Disclosed herein is a solar cell system including: a plurality of power generation panels that differ in the range of wavelengths of light they absorb from each other and convert light into power; a voltage detection section adapted to detect the voltage of power generated by each of the plurality of power generation panels; a reproduction section adapted to compare the voltages of the plurality of power generation panels detected by the voltage detection section so as to reproduce an audio or music signal appropriate to the comparison result; and an output section adapted to output audio or music reproduced by the reproduction section.12-29-2011
20120001058MULTI-APERTURE VISUAL SENSOR WITH HYPERACUITY - A multi-aperture passive light sensor and method for detecting motion and edges of an object are described. The sensor may include at least two focusing lenses mounted on a spherical surface for focusing light from the object into the ends of optical fibers, the optical axis for each lens diverging at an angle from that of adjacent lenses depending on the intended application. Each lens is located closer to the end of its associated optical fiber, which is disposed coaxially to the optical axis of the lens, than the natural focal plane of the lens, thereby blurring the light received from the object. Light exiting the fibers is detected by photosensors located at the opposite end of each optical fiber, and voltage differences between the voltages generated in response to the light intensity impinging on the photosensors are used to detect motion and edges of the object.01-05-2012
20120085890Photodetector - An object is to reduce the size and manufacturing cost of a photodetector. In order to reduce the area where a visible light sensor and an infrared light sensor are provided, a first photodiode that detects visible light and a second photodiode that detects infrared light are arranged to overlap with each other so that visible light is absorbed first by the first photodiode, whereby significantly little visible light enters the second photodiode. Further, the first photodiode overlapping with the second photodiode is used as an optical filter for the second photodiode. Therefore, a semiconductor layer included in the first photodiode absorbs visible light and transmits infrared light, and a semiconductor layer included in the second photodiode absorbs infrared light.04-12-2012
20120091318BEAMLET BLANKER ARRANGEMENT - The invention relates to a charged particle multi-beamlet lithography system for exposing a target using a plurality of beamlets. The system has a beam generator, a beamlet blanker, and a beamlet projector. The beam generator is configured to generate a plurality of charged particle beamlets. The beamlet blanker is configured to pattern the beamlets. The beamlet projector is configured to project the patterned beamlets onto the target surface. The system further has a deflection device. The deflection device has a plurality of memory cells. Each memory cell is provided with a storage element and is connected to a switching electrode of a deflector.04-19-2012
20120091319DRIVING METHOD FOR PHOTOSENSOR ARRAY PANEL - A driving method for a photosensor array panel including a plurality of photosensor strips, a plurality of scan lines, at least a dummy photosensor strip, and at least a dummy scan line is provided. The photosensor strips are arranged side by side and located beside the dummy photosensor strip. The scan lines are electrically connected to the photosensor strips, and the dummy scan line is electrically connected to the dummy photosensor strip. The driving method includes the following steps. First, the photosensor strips are turned on in sequence through the scan lines. When none of the photosensor strips is turned on, the dummy photosensor strip will be turned on through the dummy scan line.04-19-2012
20120091320CONFIGURABLE PHOTO DETECTOR CIRCUIT - A configurable photo detector circuit comprises a photo detector array including a plurality of photo detectors coupled to a plurality of amplifiers. A method for programming a detection pattern of the configurable photo detector circuit comprises selecting a first detection pattern for the photo detector array, generating first signals to create the first selected detection pattern, and applying the first generated signals to the photo detector circuit to implement the first selected detection pattern.04-19-2012
20120091321OPTICAL SENSOR AND DISPLAY APPARATUS - Provided are an optical sensor having a wider dynamic range with reduced temperature dependence, and a display apparatus in which these optical sensors are used. An optical sensor includes an accumulation node (INT); a reset signal line (RST); a readout signal line (RWS); a photodiode (D04-19-2012
20120132788RADIATION SENSOR - A radiation sensor is provided comprising: one or more first pixels and one or more second pixels. A first optical element is provided over the first and second pixels, having a first field of view. A second optical element is provided over the one or more second pixels, having a second field of view. The second optical element is positioned between the first optical element and the one or more second pixels, wherein the first field of view is substantially narrower than, and lies substantially within, the second field of view.05-31-2012
20120175502OPTICAL MODULE - Embodiments of the present invention provide an optical module, including an MT-Ferrule and a photoelectric conversion unit. The MT-Ferrule is configured to connect multiple channels of optical channels outside the optical module with multiple channels of optical channels of the photoelectric conversion unit, and implement coupling and transmission of multiple channels of single-mode optical signals between the two. The photoelectric conversion unit is configured to convert multiple channels of single-mode optical signals input from the MT-Ferrule into multiple channels of electrical signals and output the multiple channels of electrical signals, and generate, driven by multiple channels of input electrical signals, multiple channels of single-mode optical signals and output the multiple channels of single-mode optical signals to the MT-Ferrule.07-12-2012
20120193517OPTICAL MICRO-SENSOR - Briefly, embodiments of an optical micro-sensor are described.08-02-2012
20120205521DUAL-POLARIZATION QPSK DEMODULATOR - In an embodiment, a DP-QPSK demodulator includes first, second and third polarization beam splitters (“PBSs”) and first, second and third half waveplates (“HWPs”). The first HWP is positioned to receive an output of the first PBS. The second PBS is positioned to receive an output of the first HWP. The second HWP is positioned to receive an output of the second PBS. The third PBS is positioned to receive an output of the second HWP. The third HWP is positioned to receive an output of the third PBS.08-16-2012
20120211644LIGHT-FIELD PIXEL - A light-field pixel for detecting a wavefront, the light-field pixel comprises an aperture layer, a light detector layer, and a processor. The aperture layer has a non-conventional aperture and a non-conventional aperture. The non-conventional aperture has a higher gradient of transmission at normal incidence than the conventional aperture. The light detector is configured to measure a first intensity of light through the non-conventional aperture and a second intensity of light through the conventional aperture. The processor is configured to detect the wavefront based on the first intensity normalized by the second intensity.08-23-2012
20120228477DETECTOR - A detector contains a housing with at least one window for allowing radiation to enter, at least one outlook sensor for sensing entered radiation, a unit for processing outlook sensor signals, and outlook mirrors that are shaped and mounted in the housing for reflecting onto the outlook sensor radiation from outside detection zones better than radiation from elsewhere. At least some of the outlook mirrors face the window and in operative orientation neighbor each other vertically. The detector further contains one or more window sensors for sensing radiation indicative of the window being masked or having been damaged and a unit for processing window sensor signals. A gap between at least two of the outlook mirrors allows radiation to travel between the window and at least one window sensor or accordant window sender or both.09-13-2012
20120228478PORTABLE ELECTRONIC DEVICE, PARTICULARLY AN ELECTRONIC CARD, PROVIDED WITH AN OPTICAL SWITCH - A portable electronic device, for example an electronic card, includes at least one electronic unit associated to an optical switch which can be actuated by a user and which includes two photo-detectors arranged sufficiently far from each other in the electronic device to enable the user to cover only one of the two photo-detectors with one finger. The switch includes a logical circuit to which are provided a first and a second light reception signal respectively coming from the two photo-detectors. The logical circuit is arranged to supply a signal which only indicates actuation of the optical switch when the first and second light reception signals correspond to two different logical states for the logic circuit.09-13-2012
20120235024COHERENT OPTICAL SIGNAL PROCESSING - Coherent optical signal processing is performed in a coherent receiver (or diagnostic/testing apparatus) that converts an amplitude and/or angle-modulated optical signal into two electrical signals. A simple receiver can only detect one phase of the signal and only the polarization that is aligned with a local oscillator laser polarization. To detect both phases and both polarizations, two sets of two interferometers, one each with a π/2 phase shift are required. Coherent optical signal processing methods, apparatus, techniques, etc. are disclosed that include individual components comprising a polarization combiner, a Savart device and photodetection apparatus with substantially reduced temperature and alignment sensitivity operating in optical communication systems and/or subsystems. The various embodiments can be used alone or in such combinations to provide improved coherent optical signal processing in a receiver.09-20-2012
20120261557DISPLAY DEVICE - Provided is a display device that includes an optical sensor having a high sensitivity in which a potential difference of an accumulation node due to an illuminance difference on a light receiving surface after boosting is set greater than a potential difference of the same at an end of an integration period. The display device includes an optical sensor in a pixel region. The optical sensor includes a diode D10-18-2012
20120267513Light-Sensing Apparatus And Method Of Driving The Same - According to an example embodiment, a light-sensing apparatus may include an array of light-sensing pixels, a first gate driver, and a signal output unit. Each of the light-sensing pixels may include a light sensor transistor configured to sense light, a switch transistor configured to output a light-sensing signal from the light sensor transistor, and a conductive light-shielding film on a light-incident surface of the switch transistor. The light sensor transistor and the switch transistor may have the same oxide semiconductor transistor structure. The first gate driver may be configured to provide a gate voltage and a negative bias voltage to each of the light-sensing pixels. The signal output unit may be configured to receive the light-sensing signal from each of the light-sensing pixels and output a data signal.10-25-2012
20120267514OPTICAL SENSING DEVICE FOR DETECTING AMBIENT LIGHT IN MOTOR VEHICLES - An optical sensor device for the detection of ambient light is adapted to be coupled to a pane (10-25-2012
20120273658MODULATION DEVICE AND CHARGED PARTICLE MULTI-BEAMLET LITHOGRAPHY SYSTEM USING THE SAME - The invention relates to a charged-particle multi-beamlet lithography system. The system comprises a beam generator for generating a plurality of beamlets, a beamlet blanker array for patterning the plurality of beamlets, an optical fiber arrangement, and a projection system. The beamlet blanker array comprises a substrate provided with a first area comprising one or more modulators and a second area free of modulators. The beamlet blanker array comprises one or more light sensitive elements, electrically connected to the one or more modulators, and arranged to receive light beams carrying pattern data. The optical fiber arrangement comprises a plurality of optical fibers for guiding the light beams carrying pattern data towards the one or more light sensitive elements. The projection of the optical fiber arrangement onto a surface of the beamlet blanker array in a direction perpendicular to the surface falls entirely within the second area.11-01-2012
20120298843NANOWIRE PHOTO-DETECTOR GROWN ON A BACK-SIDE ILLUMINATED IMAGER SENSOR - An embodiment relates to a device comprising a substrate having a front side and a back-side that is exposed to incoming radiation, a nanowire disposed on the substrate and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.11-29-2012
20130001405Optoelectronic-Device Wafer Probe and Method Therefor - A probe card for wafer-level testing a plurality of optoelectronic devices on a wafer is provided. The probe card has both electrical and optical functionality. The probe card comprises a plurality of lenslets aligned with the plurality of optoelectronic devices to improve the optical coupling efficiency between each of the plurality of optoelectronic devices and a plurality of optical waveguides located on a probe head.01-03-2013
20130015330DEVICE FOR AMBIENT LIGHT COMPENSATION FOR OPTICAL SENSORS EXPOSED TO BOTH USEFUL LIGHT AND AMBIENT LIGHTAANM Budde; WolframAACI DortmundAACO DEAAGP Budde; Wolfram Dortmund DEAANM Busser; WolfgangAACI MandelAACO DEAAGP Busser; Wolfgang Mandel DE - The device for ambient light compensation for use in optical sensors exposed to both useful light and ambient light comprises at least one first photodiode and at least one second photodiode, the at least one first photodiode being adapted to be exposed to substantially the same useful light and ambient light as the at least one second photodiode. The device further comprises a current mirror circuit having an input and an output, the at least one first photodiode being connected to the input of the current mirror circuit, and the at least one second photodiode being connected to the output of the current mirror circuit. The current mirror circuit comprises a lowpass filter connected between the input and the output of the current mirror circuit. The output of the current mirror circuit provides an output signal representing the useful signal compensated for ambient light.01-17-2013
20130015331DEVICE AND METHOD FOR DETECTING LIGHTAANM Birk; HolgerAACI MeckesheimAACO DEAAGP Birk; Holger Meckesheim DEAANM Seyfried; VolkerAACI NusslochAACO DEAAGP Seyfried; Volker Nussloch DE - A device for detecting light includes at least one silicon photomultiplier (SiPM) having an array of a plurality of single-photon avalanche diodes (SPADs), the array being larger in area than an incident light. The device is configured so as to at least one of activate and analyze only the SPADs upon which a specific minimum intensity of light impinges.01-17-2013
20130020472PHOTODETECTOR DEVICE - Provided is a photodetector device for detecting light intensity based on a detection signal of a difference circuit, the photodetector device including: a first light receiving element which generates an electric charge based on incident light; a second light receiving element, which includes a light blocking part for blocking incident light and generates an electric charge being a reference; and a storage detection circuit for detecting that an output voltage of the first light receiving element or the second light receiving element has reached a predetermined potential and outputting the detection signal when the difference does not reach a predetermined value even though sufficient incident light is provided.01-24-2013
20130037700OPTICAL SENSOR - An optical sensor includes: first and second light receiving elements on a semiconductor substrate; a light blocking film over the semiconductor substrate via a light transmitting film; and first and second openings corresponding to the light receiving elements and disposed in the light blocking film. First and second virtual lines are defined to extend from the centers of the first and second light receiving elements and pass through the centers of the first and second openings, respectively. At least one of elevation angles and left-right angles of the first and second virtual lines are different. The photosensitive area of the first light receiving element is larger than the aperture area of the first opening. The photosensitive area of the second light receiving element is larger than the aperture area of the second opening.02-14-2013
20130043374METHOD AND APPARATUS FOR INSPECTING BIOLOGICAL SAMPLES - A method of selecting for analysis a sample of a biological material anisotropically distributed on a substrate is disclosed, comprising the steps of directing a beam of radiation onto the substrate, said radiation being selected to interact with the biological material to an extent corresponding to the anisotropy; measuring the interaction at plurality of locations; and selecting the sample by reference to the measurements.02-21-2013
20130048834INPUT DEVICE - The input device includes a frame-shaped optical waveguide having a hollow input-use interior, and a control means provided on the outside of one of the sides of the optical waveguide. The optical waveguide and the control means are provided on a surface of a frame-shaped retainer plate. The control means includes: a light-emitting element connected to ends of light-emitting cores of the optical waveguide; a light-receiving element connected to ends of light-receiving cores of the optical waveguide; and a CPU incorporating a program. Upon sensing a first light-shielded area where light is intercepted by the tip of a pen and a second light-shielded area where light is intercepted by user's hand that holds the pen, the program recognizes the second light-shielded area larger than the first light-shielded area as unnecessary information, based on a difference in light-shielded area.02-28-2013
20130048835VEHICLE REARVIEW MIRROR SYSTEM - A vehicle interior rearview mirror system includes an interior rearview mirror assembly having a reflective element and ambient and glare light sensors. A control circuit is operable to establish a reflectance level of the reflective element. At least one of (a) the mirror system includes a charge accumulation device selectively connected with the ambient or glare light sensor and the control circuit establishes the ambient and glare light levels as a function of time for an output of the charge accumulation device to reach a reference level when connected to the respective light sensor, (b) a common element is used to measure outputs of the light sensors sequentially to correspond errors due to component variations, and (c) the mirror system includes temperature compensation of the glare and/or ambient light sensor and the temperature compensation is responsive to a reference light sensor that is substantially not exposed to light.02-28-2013
20130056620DEVICE FOR LIGHTING AN OBJECT, WITH LIGHT SOURCE PROVIDED WITH A MEMBER FOR SAMPLING A PORTION OF SAID LIGHT, APPLICATION TO THE MEASUREMENT OF FLUX VARIATIONS OF THE SOURCE - A device for lighting an object, with light source provided with a member for sampling a portion of the light, application to the measurement of flux variations of the source. The device includes at least one light source emitting an illuminating light around an illumination axis, for lighting the object, and a photodetector.03-07-2013
20130056621SIGNS-OF-DETERIORATION DETECTOR FOR SEMICONDUCTOR LASER - A signs-of-deterioration detector for a semiconductor laser includes a first light receiving section that acquires first information relating to an optical output of the semiconductor laser and a second light receiving section that acquires second information relating to an intensity distribution of the emission pattern below the lasing threshold of the semiconductor laser. The detector also includes a holding section that holds the first information and the second information at a predetermined time point T03-07-2013
20130062506MULTI-SPECTRUM PHOTOSENSITIVE DEVICE - A multi-spectrum photosensitive device comprises two, three, or four composite sensing pixels arranged in layers up and down in a base layer of P-type or N-type silicon by means of single-sided processing or double-sided processing, each composite sensing pixels can sense respectively spectrum orthogonal or complementary to each other in visible light or visible and infrared light. The basic sensing pixels on different layers of the composite sensing pixels can be designed to sense different colors or spectrums, so that a multi-spectrum photosensitive chip can be achieved by repeatedly arranging the macro units consisting of more than one composite sensing pixel. The present disclosure also includes a new multi-layer sensing pixel, and examples of which used in a single-sided double-layer, or a double-sided double-layer, or a double-sided three-layer, or a double-sided four-layer, or a single-sided mixed double-layer, or a double-sided mixed with double-layer or a multi-layer multi-spectrum sensing device. A multi-spectrum photosensitive device according to the present disclosure has the advantage of better color sensing performance, integration of color sensing and infrared sensing, and a simple processing technique.03-14-2013
20130068933Flame Detector Using Optical Sensing - A multi-sensor fire detector includes first and second flame sensors which are coupled to an external environment by a rigid, tapered, optical coupling element. An external end of the coupling element has a cured hemispherical shape with a viewing angle approaching one hundred eighty degrees. Processing and control circuits coupled to the sensors make a determination as to the presence of a fire condition.03-21-2013
20130068934MULTI-SPECTRUM PHOTOSENSITIVE DEVICES AND METHODS FOR SAMPLING THE SAME - A multi-spectrum photosensitive device and method for sampling the same, the method includes a first combining process for combining-and-sampling two adjacent pixels in same row different column, or in different row same column, or in different row different column in the pixel array to obtain a sampling data of a first combined pixel; a second combining process for combining-and-sampling the sampling data of the first combined pixel obtained from the first combining unit to obtain a sampling data of a second combined pixel; and a third combining process, a sampling data of a third combined pixel is obtained by a method for color conversion and image scaling in a digital space. The application is applied for a multi-pixel sharing reading and amplifying circuit of a single-layer color photosensitive chip, a single-sided multi-layer photosensitive chip, and a double-sided double-layer photosensitive chip. In the basis of the spirit of the existing pixel reading circuit, the application has orders of magnitude breakthrough in principle, basic circuit and performance, and implements a YUV format output of a sub-sampling image in a photosensitive device at the same time of implementing sub-sampling with high performance.03-21-2013
20130099100SILICON PHOTOMULTIPLIER AND READOUT METHOD - Silicon photomultiplier and readout method A silicon photomultiplier device is provided which comprises a first electrode arranged to provide a bias voltage to the device, a second electrode arranged as a ground electrode for the device, and a third electrode arranged to provide an output signal from the device using the second electrode as the output signal ground.04-25-2013
20130099101RADIATION SENSOR - A radiation sensor of the type having a packaged radiation source and detector, which includes an isolator that blocks propagation within the package of radiation from the source to the detector, in order to improve signal to noise ratio of the sensor. The isolator is formed by appropriately formed surfaces of the package.04-25-2013
20130099102INTEGRATING SPHERE PHOTOMETER AND MEASURING METHOD OF THE SAME - Provided are an integrating sphere photometer and a measuring method of the same. The integrating sphere photometer includes a plurality of photodetectors, an integrating sphere having through-holes formed to correspond to the photodetectors, baffles disposed inside the integrating sphere in front of the photodetectors to be spaced apart from the photodetectors, a photometer disposed at a through-hole, and an adjustment unit adjusting output signals of the photodetectors to have the same output signal with respect to light illuminated from a point-like standard light source disposed at a center region in the integrating sphere.04-25-2013
20130112855AMBIENT LIGHT SENSING SYSTEM AND METHOD - A sensor for range finding and ambient light measurement wherein the sensor includes an array of pixels capable of sensing illumination in a plurality of wavelengths and generating a response thereto for each wavelength; the sensor including an ambient light sensing system which includes a module for adjusting the response from the ambient light sensor, such that the response for each wavelength is independent of the wavelength of the illumination.05-09-2013
20130126713COMMUNICATION APPARATUS AND METHOD - A detection system for use with a communications system and an associated communication systems, methods, portable electronics devices and geolocation and/or reporting devices, the detection system having at least one radiation detector for receiving a radiation signal, wherein the at least one radiation detector includes a plurality of sensing elements, and the detection system is configured to detect the radiation signal using differing subsets of sensing elements at differing times and determine data encoded in the radiation signal based on the radiation detected by the different subsets of sensing elements.05-23-2013
20130140440PHOTOELECTRIC CONVERTING APPARATUS - A photoelectric converting apparatus has: a first photoelectric conversion element for outputting a current to a first terminal by a photoelectric conversion; a first detecting unit for detecting an electric potential of the first terminal of the first photoelectric conversion element; a first feedback unit for feeding back a signal based on the electric potential detected by the first detecting unit to the first terminal of the first photoelectric conversion element and output a current based on the electric potential of the first terminal of the first photoelectric conversion element to a first current output terminal; and a current supplying unit for supplying the current to the first terminal of the first photoelectric conversion element.06-06-2013
20130153752ELECTRONIC DEVICE - An electronic device according to one or more embodiments of the invention comprises a plurality of first output lines and a plurality of current to voltage convertors. Current signals from a plurality of signal sources are output to the first output lines. Each of the current to voltage convertors are electrically connected to a corresponding one of the first output lines. The current to voltage convertor includes a first amplification unit. An offset reduction unit in a subsequent stage of the current to voltage convertor is provided for each of the first output lines.06-20-2013
20130153753LIGHT SENSING APPARATUS AND ADJUSTMENT METHOD THEREOF - A light sensing apparatus includes a light sensing module, a signal conversion module and a processing module. The light sensing module is configured to output a first and second sense signals according to a light intensity emitting thereon. The signal conversion module is electrically coupled to the light sensing module and configured to receive the first and second sense signals and output a sense value according to a relative difference between the first and second sense signals, The comparison module is electrically coupled to the signal conversion module and configured to adjust a light sensing characteristic of the light sensing module according to the sense value so as to adjust a light sensing characteristic of the light sensing module. An adjustment method for a light sensing apparatus is also provided.06-20-2013
20130153754DEVICE HAVING SPAD PHOTODIODES FOR DETECTING AN OBJECT - The disclosure relates to a method for detecting the presence of an object near a detection device, comprising: reverse biasing single photon avalanche photodiodes, at a bias voltage greater than a breakdown voltage of a PN junction of each photodiode, emitting pulses of an incident photon beam, detecting photodiodes which avalanche trigger after the reception by the photodiode of at least one photon of a reflected photon beam produced by a reflection of the incident beam on an object near the detection device, determining the object presence as a function of the existence of at least one avalanche triggering in one of the photodiodes, and selecting a number of photodiodes to be reverse biased in relation to the detection device, as a function of a load of a circuit for generating the bias voltage.06-20-2013
20130168534METHOD FOR TIMING-PICK-OFF OF UNDERSAMPLED PULSES FROM RADIATION DETECTORS - A process and device for generating a prototype waveform and a weighting function. The process including obtaining waveforms generated by a detector having at least one photosensor, generating an initial estimate for the prototype waveform and the weighting function and parameterizing the prototype waveform and the weighting function and determining for each waveform an optimal amplitude and an optimal time offset of the prototype waveform. Included are steps of pairing waveforms based on the determined time offsets of the waveforms, calculating an arrival time difference for each pair of waveforms and determining a timing resolution value based on the calculated arrival time differences, determining whether the timing resolution value meets predetermined minimization criteria, and updating the set of parameters for the prototype waveform and the weighting function and repeating the determining, pairing, calculating, and determining, when the timing resolution value fails to meet the predetermined minimization criteria.07-04-2013
20130175434INDICATOR TESTING SYSTEM - An indicator testing system for testing a plurality of indicators disposed on an electronic product and adapted to display a status includes a plurality of light sensors, a holder for holding the light sensors, and a signal processing module. The light sensors correspond in position to the indicators on the electronic product, respectively, and each generate a corresponding light testing signal whereby the signal processing module generates a brightness testing signal related to each indicator. The indicator testing system speeds up an indicator test, enhances the precision of the indicator test, and ensures the quality of the electronic product.07-11-2013
20130175435DEVICE FOR DETECTING AN OBJECT USING SPAD PHOTODIODES - The disclosure relates to a method for detecting the presence of an object near a detection device, comprising: emitting pulses of an incident photon beam, detecting photodiodes which trigger avalanche after the reception by the photodiode of at least one photon of a reflected photon beam produced by a reflection of the incident beam on an object near the detection device, determining a distance between the photodiodes and an object in a detection area, as a function of the time between a transmit time of the incident beam and avalanche triggering times of the photodiodes, and correcting the distance determined as a function of a calibration measurement obtained in the absence of object in the detection area, to compensate for photon reflections on a transparent plate arranged between the photodiodes and the detection area.07-11-2013
20130187029PHOTODETECTOR CONTROL CIRCUIT - A photodetector control circuit in a photodetector for detecting light from a photodiode using a phototransistor and controls drive of the photodiode and detection of a current of the phototransistor has a received light amount detecting unit that detects a detection current, which flows through the phototransistor in accordance with a received light amount, by converting the detection current into a detection voltage, and compares the detection voltage with a reference voltage detected during reception of a reference light amount, to thereby detect a change in the received light amount, a diode current control unit for controlling a diode current that is caused to flow through the photodiode, and a control unit that detects a temperature based on a forward drop voltage of the photodiode and estimates a current change rate of the phototransistor based on the detected temperature.07-25-2013
20130187030SENSE CIRCUIT AND METHOD OF OPERATION THEREOF AND PHOTOELECTRIC CONVERSION ARRAY - A sense circuit includes a differential amplifier circuit including an inverting input section, a non-inverting input section and an output section, an electrical capacitor connected between the inverting input section and the output section, and a field effect transistor including a source, a drain, and a gate. One of the source and the drain is connected to the inverting input section, and the other of the source and the drain is connected to the output section. A reference potential is supplied to the non-inverting input section, and an output section of a photoelectric conversion cell having an added switching function is connected to the inverting input section.07-25-2013
20130200254A PRESENCE DETECTION SYSTEM AND A LIGHTING SYSTEM - A presence detection system (08-08-2013
20130214133CONFIGURABLE PHOTO DETECTOR CIRCUIT - A configurable photo detector circuit comprises a photo detector array including a plurality of photo detectors coupled to a plurality of amplifiers. A method for programming a detection pattern of the configurable photo detector circuit comprises selecting a first detection pattern for the photo detector array, generating first signals to create the first selected detection pattern, and applying the first generated signals to the photo detector circuit to implement the first selected detection pattern.08-22-2013
20130221203DIRECTIONAL SENSORS FOR AUTO-COMMISSIONING LIGHTING SYSTEMS - Systems and methods for spatial commissioning of a lighting system are provided. A determination of which sensors receive a light signal from one or more emitter devices may be made. Each one of the sensors and/or each one of the emitter devices may provide a direction of the light signal detected by a respective one of the sensors. The direction of the light signal detected by the respective one of the sensors may be detected. A sensor graph based on the direction of the light signal may be generated, where nodes of the sensor graph represent the sensors and/or the emitter devices. Each one of the sensors and/or the emitter devices may be mapped to a corresponding location in a site model based on the sensor graph and on the site model, where locations of the sensors and/or the emitter devices are indicated by the site model.08-29-2013
20130221204SENSOR ARRANGEMENT - A sensor arrangement comprises an arrangement of light curtains, and a trigger generator which cyclically generates trigger signals. Each trigger signal is transmitted to the light curtains, wherein a measuring operation is started following a delay time in each light curtain as a result of the trigger signal that is received.08-29-2013
20130234006PHOTOELECTRIC CONVERSION ELEMENT AND PHOTOELECTRIC CONVERSION ELEMENT ARRAY - A photoelectric conversion element which converts incident light to an electrical signal and detects the signal, the element including: a lower electrode; an insulating layer, provided on the lower electrode; a light-receiving section, which is provided on the insulating layer and receives incident light on the surface; and a groove-like slit, provided such that the insulating layer is exposed from a surface of the light-receiving section, wherein the incident light is converted by the slit to surface plasmons which are wave-guided along the insulating layer, and the surface plasmon is detected as an electrical signal between the light-receiving section and the lower electrode.09-12-2013
20130256513OPTICAL SENSOR AND OUTPUT CIRCUIT THEREOF - An optical sensor is provided according to an embodiment of the present disclosure. The optical sensor includes a first photodiode, a second photodiode having characteristics different from characteristics of the first photodiode, filters configured to block or transmit a specific wavelength range of the light, and an output circuit configured to correct a sensitivity deviation, which may be caused when one of the filters is used for the first photodiode, based on a sensitivity deviation, which may be caused when the other filter of the same kind as the one filter is used for the second photodiode, and output only the specific wavelength range of the light.10-03-2013
20130270422Method and Apparatus for a Dual Matrix Sensor Array - The subject matter disclosed herein describes an optical sensor used in a safety system. The sensor includes two pixel matrices on a single substrate. Each of the pixel matrices are arranged in a row and column format, and pixels from one matrix are interspersed with pixels from the other matrix such that alternating pixels in each row and column belong to separate matrices. Two sets of selection logic allow each matrix to be enabled separately. Additional monitoring logic is included to detect shorted pixels and/or shorted selection lines. In addition, the frames generated by each pixel array may be compared to detect variation in performance between arrays.10-17-2013
20130270423Multiple Optical-Axis Photoelectric Sensor - A demand for downsizing of a multiple optical-axis photoelectric sensor can be coped with, and various state displays are performed.10-17-2013
20130284894Devices Having One or More Integrated Computational Elements and Methods for Determining a Characteristic of a Sample by Computationally Combining Signals Produced Therewith - Optical computing devices containing one or more integrated computational elements may be used to produce two or more detector output signals that are computationally combinable to determine a characteristic of a sample. The devices may comprise a first integrated computational element and a second integrated computational element, each integrated computational element having an optical function associated therewith, and the optical function of the second integrated computational element being at least partially offset in wavelength space relative to that of the first integrated computational element; an optional electromagnetic radiation source; at least one detector configured to receive electromagnetic radiation that has optically interacted with each integrated computational element and produce a first signal and a second signal associated therewith; and a signal processing unit operable for computationally combining the first signal and the second signal to determine a characteristic of a sample.10-31-2013
20130284895Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284896Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284897Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284898Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.10-31-2013
20130284899Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.10-31-2013
20130284900Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.10-31-2013
20130284901Methods and Devices for Optically Determining A Characteristic of a Substance - Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.10-31-2013
20130292550Motion Detection System and Associated Methods - A lighting system which includes a light source to emit illuminating light and sense reflected light from an environment. The light source may be included in an array to be selectively enabled and disabled by the controller. The array may include a plurality of light sources, each of which may be sensitive to a wavelength respective to each light source, thus providing the array sensitivity to one or more wavelength. Each of the plurality of light sources in the array may be selectively operable between a sensing operation and an emitting operation. The sensing operation may be defined by the light source sensing the environmental light, and the emitting operation being defined by the light source emitting the illuminating light. The controller may selectively operate the light source between the passive operation and the active operation.11-07-2013
20130313412SEMICONDUCTOR DEVICE - A semiconductor device obtains highly accurate image data regardless of the intensity of incident light. The semiconductor device includes a first photo sensor provided in a pixel, a second photo sensor provided around the pixel, and a controller for setting the drive condition of the first photo sensor in accordance with the intensity of outside light obtained by the second photo sensor. An image is taken after the sensitivity of the first photo sensor is changed in accordance with the drive condition set by the controller. Thus, in the semiconductor device, an image can be taken using the first photo sensor whose sensitivity is optimized in accordance with the intensity of incident light.11-28-2013
20130320198DROP DETECTION - A drop detector assembly is provided including an ejection element to eject a fluid drop, a light guide to selectively receive light scattered off of the fluid drop, and a light detector formed in the light guide to detect light received by the light guide.12-05-2013
20130334404Method and System for Coupling Optical Signals Into Silicon Optoelectronic Chips - A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip in a photonic transceiver, wherein photonic, electronic, or optoelectronic devices may be integrated in a front surface of the CMOS photonic chip. Optical couplers, such as grating couplers, may receive the optical signals in the front surface of the chip. The optical signals may be coupled into the back surface of the chips via optical fibers and/or optical source assemblies. The optical signals may be coupled to the optical couplers via a light path etched in the chips, which may be refilled with silicon dioxide. The chips may be flip-chip bonded to a packaging substrate. Optical signals may be reflected back to the optical couplers via metal reflectors, which may be integrated in dielectric layers on the chips.12-19-2013
20140001341INTEGRATED OPTICAL BIOSENSOR ARRAY01-02-2014
20140001342REPORTING CONNECTION FAILURE01-02-2014
20140021334HYBRID PHOTODETECTOR - A hybrid photodetector employing both transmissive and reflective detection techniques for detecting objects having differing light transmission and reflection properties are in conveyance.01-23-2014
20140027621PHOTOELECTRIC CONVERSION DEVICE - A photoelectric conversion device in which a parasitic capacitance between an optical signal common output line for commonly transmitting an optical signal and a control signal line and a parasitic capacitance between an initial voltage common output line for commonly transmitting an initial voltage and the control signal line in a plurality of photoelectric conversion units are substantially equal is provided. The control signal line is arranged so that the length of the wiring part of the control signal line in parallel with the optical signal common output line and the length of the wiring part of the control signal line in parallel with the initial voltage common output line are substantially equal and the distance between the control signal line and the optical signal common output line and the distance between the control signal line and the initial voltage common output line are substantially equal.01-30-2014
20140048692MULTICHANNEL DETECTOR HAVING A REDUCED NUMBER OF OUTPUT CHANNELS - The present disclosure relates to a multi-channel detector having a reduced number of output channels and including: a linear amplifier linearly amplifying an input signal; an offset correcting unit configured by a circuit that is independent from the linear amplifier, including an operational amplifier inside, and correcting an offset level that changes in accordance with an amplification rate of the operational amplifier; a uniformity correcting unit reducing a non-uniform characteristic of the input signal by finely adjusting a gain of an output signal of the linear amplifier; a signal delay unit delaying an output signal of the uniformity correcting unit until a time point when output signals are generated from a comparison unit and a signal determining unit, and a switch circuit receives a trigger from the signal determining unit; a comparison unit comparing the output signal of the uniformity correcting unit with a signal of a predetermined level with each other; a signal determining unit receiving a trigger signal from the comparison unit, determining channel position information of a channel in which an event occurs, transmitting a trigger signal to a switch circuit located at the determined channel position, and outputting the determined position information; and a channel information processing unit receiving energy information, time information, or the channel position information of a channel in which an event occurs as input when a trigger signal is input from the signal determining unit to the switch circuit located at the determined channel position.02-20-2014
20140061440Ambient Light Sensing Device and Method - The invention provides an ambient light sensing device and an ambient light sensing method. The ambient light sensing device includes at least one pixel, a read out circuit, and a combination unit. The invention detects ambient light to obtain plural lower resolution exposure values corresponding to different dynamic ranges respectively, and combines the plural lower resolution exposure values to generate a higher resolution code combination, indicating the result of ambient light detection.03-06-2014
20140077070UNIT FOR DETERMINING THE TYPE OF A DOMINATING LIGHT SOURCE BY MEANS OF TWO PHOTODIODES - The invention relates to a unit (03-20-2014
20140091206PROXIMITY SENSOR AND ASSOCIATED METHOD, COMPUTER READABLE MEDIUM AND FIRMWARE - A proximity detector may include an array of single photon avalanche diodes (SPADs) and an illumination source. Illumination from the illumination source may be reflected by a target to the array of single photon avalanche diodes. The SPADs may be operable to detect events. A number of events detected may be dependent on a level of illumination incident on the SPADs. The proximity detector may then determine a quality metric and calculate an output when the quality metric is at a predetermined level. A related method may include regulating the quality of the data on which such a proximity detector apparatus calculates its output.04-03-2014
20140103196LIGHT DETECTOR - There is provided a light detector having a light-receiving unit including a light-receiving element of a photon-counting type that receives incident light and outputs a binary pulse indicating presence or absence of photon incidence, and an integrating unit that calculates an output value in which a total of pulse widths of pulses is integrated over a measurement period.04-17-2014
20140117212SEMICONDUCTOR DEVICE - A semiconductor device that includes: a first trans-impedance amplifier that converts a first current signal generated by a first photodiode, into which an optical signal is input, into a first voltage signal; a second trans-impedance amplifier that converts a second current signal generated by a second photodiode, to which an optical signal is blocked, into a second voltage signal; a peak hold circuit that holds the peak value of the first voltage signal; a comparator that outputs a pulse on the basis of the first and second voltage signals; and a threshold current setting circuit that draws out a threshold current, which is proportional to a reference current generated on the basis of a voltage difference between a peak voltage output by the peak hold circuit and a reference voltage at the output node of the second photodiode, from the connection between the second photodiode and the second trans-impedance amplifier.05-01-2014
20140124656LIGHT SENSING METHOD - A light detecting method is provided. The light detecting method includes following steps. A light beam is sensed to generate a photocurrent. A predetermined current is subtracted from the photocurrent. The photocurrent is converted to a voltage.05-08-2014
20140131555SENSOR SYSTEM - In a sensor system including a plurality of photoelectric sensor units, a light projecting period arbitrarily determined in each type is provided and mutual interference is prevented between identical types. The sensor system includes the plurality of sensor units coupled by a connector unit while a signal can be transmitted. Each of the sensor units retains type information thereof, and sets a unique identification number by transmitting the signal to each other. Each sensor unit operates after a delay time determined according to the identification number thereof elapses with a synchronous signal as a starting point. The synchronous signal is transmitted with a predetermined period from the sensor unit having a specific identification number in the plurality of sensor units. The delay time of each sensor unit is determined such that an operating period is matched with a predetermined period determined in each piece of the type information.05-15-2014
20140131556IMAGING APPARATUS, AND IMAGING SYSTEM - An embodiment is an imaging apparatus including a plurality of unit cells. The imaging apparatus includes a first conductive member electrically connected to gates of the plurality of first transfer transistors, a second conductive member electrically connected to gates of the plurality of second transfer transistors, a third conductive member disposed adjacently to the first conductive member in a same wiring layer as the first conductive member and electrically connected to a plurality of nodes each included in respective one of the plurality of unit cells, and a fourth conductive member disposed adjacently to the second conductive member in a same wiring layer as the second conductive member. An opposing length of the first conductive member and the third conductive member is longer than an opposing length of the second conductive member and the fourth conductive member.05-15-2014
20140131557METHOD AND APPARATUS FOR SENSING - A method of and apparatus for, detecting an intrusion into a volume defined relative to a path across an opening along which path a closure member for the opening can be controllably displaced to define a gap in the opening, the gap being bounded on one side by the closure member and on the other side to the one side by a boundary member; the volume including at least one threshold region on at least one side of the path; the volume having as a base the threshold region and rising above the threshold region; a first group of at least two emitters of electromagnetic signals located on either the closure member or the boundary and directed into the volume and a second group of at least two receivers for electromagnetic signals located on the opposite side of the gap to the emitters; emissions from the emitters being directed into the volume but not directly towards the receivers; the emitters and receivers forming part of a network including processing means which form a compound sensor for use in monitoring operation of the closure member and for defining sensitivity to an intrusion into a region or regions of the volume; each emitter being adapted to direct a primary beam of e.m. radiation into the volume; each receiver being adapted to receive a secondary beam generated by the reflection of a primary beam from a target intruding into the volume; the method comprising the steps of: causing at least one of the emitters to emit a primary beam along a first axis into the volume; allowing at least one of the receivers to receive a secondary beam of radiation along a second axis from the volume; the secondary beam being generated by reflection of a primary beam from a target intruding into the volume; the secondary beam being generated in the volume by way of but not constituted by, the or any primary beam from an emitter; and enabling one or more of the receivers to provide an output signal into the network of the compound receiver characteristic of the, or each, secondary beam detected by at least one of the receivers in the second group; and providing that where the compound sensor serves to establish: that when an excess gain ratio is relatively small in an output signal from a single receiver caused by reception by the receiver of a secondary beam and the size of the gap is relatively large then the compound sensor functions so as to increase sensitivity of detection existing within a given predetermined region of the volume by comparison with sensitivity in another region or regions in the volume; that when an excess gain ratio is relatively large in an output signal from a single receiver caused by reception by the receiver of a secondary beam and the size of the gap is reducing or small then the sensor functions so as to increase sensitivity of detection within more than one region of the volume by comparison with sensitivity in another region or regions in the volume.05-15-2014
20140166861SINGLE PHOTON COUNTING DETECTOR SYSTEM HAVING IMPROVED COUNTER ARCHITECTURE - A single photon counting detector system has a layer of photosensitive material and an N×M array of photo-detector diodes. Each photo-detector diode has a bias potential interface and a diode output interface. The bias potential interface is connected to bias potential. An N×M array of high gain, low noise readout unit cells is provided, one readout unit cell for each photo-detector diode. Each readout unit cell has an input interface connected to the diode output interface, a high-gain voltage amplifier with an integration capacitor at least two parallel lines of digital counters, each having a comparator with an individually selectable threshold and a gateable section to determine the counting intervals of the digital counters. A multiplexer allows access to the readout cell unit either on a per pixel basis or for several pixels in parallel to read out the digital counter to a data processor transferring the data off chip.06-19-2014
20140166862TWO DIMENSIONAL OPTICAL DETECTOR WITH MULTIPLE SHIFT REGISTERS - Methods and systems for enhancing the throughput of a metrology system generating measurement signals based on at least two different optical properties of the illumination light are presented. A detector having a two dimensional photosensitive area is subdivided into multiple photosensitive stripes by multiple, independent linear arrays of shift register elements located within the photosensitive area. Charge transfer from pixels within each stripe is directed to a distinct linear array of shift register elements. Each photosensitive stripe is able to resolve an optical property dispersed across the length of each stripe with relatively high resolution. In addition, the detector is able to resolve another optical property dispersed across several photosensitive stripes in a direction orthogonal to each linear array of shift registers at a relatively low resolution.06-19-2014
20140175266CIRCUIT BOARD ASSEMBLY EMPLOYED IN OPTICAL CONNECTOR - A circuit board assembly includes a printed circuit board (PCB), at least two laser diodes, a number of first bonding wires, at least two photo diodes and a number of second bonding wires. The PCB includes a mounting surface, a first connecting pad, and a second connecting pad, both the first connecting pad and the second connecting pad are positioned on the mounting surface. The at least two laser diodes and the driving chip mounted on the first connecting pad. The first bonding wires each electrically connects the laser diodes to the driving chip. The photo diodes and the transimpedance amplifier mounted on the second connecting pad. The second bonding wires each electrically connects the photo diodes to the transimpedance amplifier.06-26-2014
20140183339Solid State Photomultiplier With Improved Pulse Shape Readout - Exemplary embodiments are directed to shaping a readout pulse from a solid state photomultiplier (SSPM). A readout pulse can be received from the SSPM at an input of a buffer amplifier. The readout pulse can have a discharge portion with a discharge rate and a recharge portion with a recharge rate. A magnitude of the readout pulse increasing for the discharge portion and decreasing for the recharge portion. A frequency dependent input impedance circuit can be employed in electrical communication with the input of the buffer amplifier to shape the discharge portion of the readout pulse.07-03-2014
20140191114PROXIMITY SENSOR AND METHOD OF SENSING A DISTANCE OF AN OBJECT FROM A PROXIMITY SENSOR - A proximity sensor may include an array of Geiger mode avalanche photodiodes, each including an anode contact and a cathode contact. A common cathode contact may be coupled to the cathode contacts of the array to define a first connection lead at a back side of the array. A common anode collecting grid contact may be coupled to the anode contacts of the array to define a second connection lead of the array. Circuitry may be coupled with the first and second connection leads and configured to sense at least one of a dark current and a rate of current spikes generated in dark conditions, and generate an output signal representing, an estimated distance of an object from the array upon the sensing.07-10-2014
20140197305OPTICAL APPARATUS, LIGHT SENSITIVE DEVICE WITH MICRO-LENS AND MANUFACTURING METHOD THEREOF - There is provided an optical apparatus including a substrate, a light emitting device, a light sensitive device and a plurality of micro-lenses. The light emitting device is disposed on the substrate and adapted to provide a light beam. The light sensitive device is disposed on the substrate and adapted to receive a light beam reflected from an object, wherein the light sensitive device has a plurality of photosensitive units arranged in matrix. The micro-lenses are disposed above the light sensitive device and respectively opposite to the associated photosensitive units. There is further provided a light sensitive device with micro-lens and a manufacturing method thereof.07-17-2014
20140203172ROTARY LASER LEVEL WITH LASER DETECTION - A method of detecting a laser beam emitted by a laser tool includes receiving light via an optical window of a receiver unit, and directing the light received via the optical window onto a first light sensor array and a second light sensor array. At least one signal is output from the first light sensor array indicating a characteristic of the light incident upon the first light sensor array. At least one signal is output from the second light sensor array indicating a characteristic of the light incident upon the second light sensor array. The at least one signal from the first light sensor array and the at least one signal from the second light sensor array are processed with respect to each other to produce a measurement signal. A determination is then made whether the received light is a laser beam emitted by the laser tool based on the measurement signal.07-24-2014
20140209787LIQUID DROP DETECTION - A system includes a photodetector, a first amplifier, a second amplifier, and a filter. The photodetector is to detect backscattered light from liquid drops to provide a current signal. The first amplifier is to convert the current signal into a first voltage signal. The second amplifier is to amplify the first voltage signal to provide a second voltage signal, and the filter is to filter the second voltage signal to provide an output signal to indicate the presence or absence of liquid drops.07-31-2014
20140209788SPECTRUM SPLITTING USING OPTICAL RECTENNAS - Systems and methods for an improved solar/infrared conversion efficiency using multiple rectennas, one for each band of the spectrum. Each rectenna is optimally efficient for each spectrum band. An antenna receives at least one of a visible or infrared spectrum. Rectifying circuits coupled to the antenna generate a current based on a portion of the spectrum received by the at least one antenna. Each rectenna operates efficiently using a different operating voltage. The operating voltages are based on the selected load resistor and the current-voltage characteristics for the diode of the rectifying circuit at the associated spectrum portion.07-31-2014
20140209789HYBRID MULTI-SPECTRUM PHOTOSENSITIVE PIXEL GROUP, PHOTOSENSITIVE DEVICE, AND PHOTOSENSITIVE SYSTEM - The present invention relates to a mixed multi-spectrum light-sensing pixel group, a light-sensing device, and a light-sensing system. The mixed multi-spectrum light-sensing pixel group includes at least one chemical coating light-sensing pixel and at least one semiconductor light-sensing pixel. In the present invention, the chemical coating light-sensing pixel and the semiconductor light-sensing pixel are combined to generate a mixed multi-spectrum light-sensing pixel, numerous color signals and other spectral signals may be simultaneously obtained, energy of incident photons can be maximally utilized, and the theoretical upper limit of photoelectric conversion efficiency is achieved or approximately achieved; colors may be completely reconstructed, and meanwhile images of other spectrums including an ultraviolet image, a near-infrared image, and a far-infrared image are obtained.07-31-2014
20140209790DRIVE CIRCUIT FOR AN ELECTRO-OPTIC REARVIEW MIRROR SYSTEM - An electro-optic rearview mirror system is provided. The electro-optic rearview mirror system includes an inside electro-optic rearview mirror element and an outside electro-optic rearview mirror element in series with the inside electro-optic rearview mirror element. A drive circuit is in electrical communication with the inside electro-optic rearview mirror element and the outside electro-optic rearview mirror element and includes a first power operational amplifier and a second power operational amplifier, both of which are configured as voltage followers. The drive circuit is configured to apply overvoltage to the inside electro-optic rearview mirror element if the outside electro-optic rearview mirror element is shorted.07-31-2014
20140231627OPTO-ELECTRONIC INTEGRATED CIRCUIT, ARRAY ANTENNA TRANSMITTER, ARRAY ANTENNA RECEIVER, AND TRANSMITTER - An opto-electronic integrated circuit includes an optical splitter (08-21-2014
20140252209PROXIMITY SENSOR WITH COMBINED LIGHT SENSOR HAVING AN INCREASED VIEWING ANGLE - A proximity and light sensing device including a radiation emitter for proximity sensing positioned on a substrate. The device further includes a radiation detector positioned on the substrate, the radiation detector configured to detect radiation from the emitter. An ambient light detector is also positioned on the substrate and around the radiation emitter so as to form a border around the radiation emitter and detect off-axis ambient light rays.09-11-2014
20140252210PROXIMITY SENSOR - A proximity sensor for detecting non-contact detection of a target using a fibre optic strain sensor and a system for operating multiple such proximity sensors is disclosed. The proximity sensor includes an optic fibre that has an optic fibre strain sensor that is coupled to a mass that moves in response to the target. The mass can be a magnet that moves when a ferrous target is within the magnetic field of the magnet causing the magnet to move and apply strain to the optic fibre strain sensor. The optic strain sensor can include periodic variation in the refractive index of the optic fibre, such as a fibre Bragg grating. The proximity sensor can include a second fibre optic sensor that is sensitive to temperature or a second fibre optic strain sensor coupled to a second magnet that operates in opposition to the first magnet. A system coupling multiple proximity sensors can include an interrogator that has an optical power source and a detector, each coupled to a processor. The processor compares frequency information from the proximity sensor to a threshold to determine whether a target is in proximity to its corresponding proximity sensor.09-11-2014
20140263970Actively Aligned Detectors for Optical and Optoelectronic Arrays - A multi-channel optical device and method of making the same are disclosed. The optical device includes a plurality of detectors on a detector mounting substrate, and a corresponding plurality of lenses on an interior surface of the optical device. Each detector detects light having a unique center wavelength. Each center wavelength corresponds to a channel of the optical device. Each lens focuses light towards a corresponding detector. Each detector has a location corresponding to a focal point of the light focused by a corresponding lens. The method of making the optical device includes placing lenses on a surface of the optical device housing, transmitting light having a plurality of center wavelengths through the lenses, determining locations on a detector mounting substrate where each light beam is focused by a lens, and placing a detector at each location.09-18-2014
20140263971ACTIVE MONITORING OF MULTI-LASER SYSTEMS - A monitoring system for a multi-laser module includes detectors corresponding to each laser and situated to receive a portion of the associated laser beam uncombined with other beams. Laser characteristics are measured and stored, and in operation are used to identify device failures. A comparator receives a reference value and compares the reference value with a current operational value. If the current value is less that the reference value, a possible failure is indicated. Signal cross-coupling among the detectors is also used to identify undesirable scattering that can be associated with surface contamination or device failure.09-18-2014
20140263972AMBIENT LIGHT SENSING WITH STACKED PHOTODIODE - A stacked photodiode structure comprises a first-conductivity-type substrate, a second-conductivity-type well region and a first-conductivity-type well region. The first-conductivity-type substrate has a first surface for light incidence and a grounding terminal. The second-conductivity-type well region is formed in the first-conductivity-type substrate and adjacent to the first surface. The first-conductivity-type well region is formed in the second-conductivity-type well region and adjacent to the first surface. A PN junction between the first-conductivity-type well region and the second-conductivity-type well region generates free electrons responsive to visible light spectrum. A PN junction between the second-conductivity-type well region and the first-conductivity-type substrate generates free holes and free electrons responsive to mainly IR light. The difference between a first photocurrent generated from an anode terminal of the first-conductivity-type well region and a second photocurrent generated from a cathode terminal of the second-conductivity-type well region represents the intensity of incident IR light.09-18-2014
20140263973INTEGRATED MODULE HAVING MULTIPLE LIGHT EMITTERS OR SENSORS FOR TELEVISIONS AND OTHER APPLIANCES - Compact optoelectronic modules are described and can be used in various electronic or other appliances, such as television units. For example, a light emitting device, a first sensor or sensor module such as an infra-red sensor or an infra-red receiver module, and a second sensor or sensor module such as an ambient light sensor or ambient light sensor module, can be integrated into a single compact optoelectronic module. Multiple such optoelectronic modules can be fabricated in a wafer-level process.09-18-2014
20140263974Methods and Devices for Optically Determining a Characteristic of a Substance - Using an optical computing device includes optically interacting electromagnetic radiation with a sample and a first integrated computational element arranged within a primary channel, optically interacting the electromagnetic radiation with the sample and a second integrated computational element arranged within a reference channel, producing first and second modified electromagnetic radiations from the first and second integrated computational elements, respectively, receiving the first modified electromagnetic radiation with a first detector, and receiving the second modified electromagnetic radiation with a second detector, generating a first output signal with the first detector and a second output signal with the second detector, and computationally combining the first and second output signals with a signal processor to determine the characteristic of interest of the sample.09-18-2014
20140263975LIGHT DETECTION DEVICE - A semiconductor light detection element includes a plurality of avalanche photodiodes operating in Geiger mode and formed in a semiconductor substrate, quenching resistors connected in series to the respective avalanche photodiodes and arranged on a first principal surface side of the semiconductor substrate, and a plurality of through-hole electrodes electrically connected to the quenching resistors and formed so as to penetrate the semiconductor substrate from the first principal surface side to a second principal surface side. A mounting substrate includes a plurality of electrodes arranged corresponding to the respective through-hole electrodes on a third principal surface side. The through-hole electrodes and the electrodes are electrically connected through bump electrodes, and a side surface of the semiconductor substrate and a side surface of a glass substrate are flush with each other.09-18-2014
20140284456RADIATION DETECTION APPARATUS AND RADIATION DETECTION SYSTEM - A radiation detection apparatus includes a substrate; a pixel area constituted of one or more pixels including a sensor element on the substrate; and a light source, wherein the light source is disposed at a side of the substrate in which the pixel area is disposed and outside of the pixel area, and light from the light source is incident on the sensor element.09-25-2014
20140284457METHOD, APPARATUS, AND MANUFACTURE FOR A TRACKING CAMERA OR DETECTOR WITH FAST ASYNCHRONOUS TRIGGERING - An image projection device for displaying an image onto a remote surface. The image projection device employs a scanner to project image beams of visible light and tracer beams of light onto a remote surface to form a display of the image. The device also employs a light detector to sense at least the reflections of light from the tracer beam pulses incident on the remote surface. The device employs the sensed tracer beam light pulses to predict the trajectory of subsequent image beam light pulses and tracer beam light pulses that form a display of the image on the remote surface in a pseudo random pattern. The trajectory of the projected image beam light pulses can be predicted so that the image is displayed from a point of view that can be selected by, or automatically adjusted for, a viewer of the displayed image.09-25-2014
20140291486LIGHT DETECTION DEVICE - A light detection device 10-02-2014
20140306096METHODS AND DEVICES FOR OPTICALLY DETERMINING A CHARACTERISTIC OF A SUBSTANCE - An exemplary optical computing device includes an electromagnetic radiation source that optically interacts with a sample having a characteristic of interest, a first integrated computational element arranged within a primary channel to optically interact with the electromagnetic radiation source and produce a first modified electromagnetic radiation, wherein the first integrated computational element is configured to be positively or negatively correlated to the characteristic of interest, a second integrated computational element arranged within a reference channel to optically interact with the electromagnetic radiation source and produce a second modified electromagnetic radiation, wherein the second integrated computational element is configured to correlated to the characteristic of interest with an opposite sign relative to the first integrated computational element, and a first detector arranged to generate a first signal from the first modified electromagnetic radiation and a second signal from the second modified electromagnetic radiation.10-16-2014
20140306097CONTACTLESS USER INTERFACE HAVING ORGANIC SEMICONDUCTOR COMPONENTS - The invention relates to a tactile or contactless user interface device (10-16-2014
20140312209MUZZLE FLASH DETECTION - A device that may include a narrowband filter that is arranged to pass radiation within a main signal waveband in which a muffle flash is expected to include energy above a first energy threshold; a first single photon avalanche diode (SPAD) arranged to detect photons of the main signal waveband during different points in time and to output first digital detection signals representative of the photons of the main signal waveband; and a signal processor that is arranged to receive the first digital detection signals and to detect, in response to at least the first digital detection signals, the muffle flash.10-23-2014
20140319326AMBIENT LIGHT BASED GESTURE DETECTION - A gesture sensing device includes one or more sensors and a processor for processing sensed voltages output from the sensors based on ambient light and/or reflected light received by the sensors. The processor determines an ambient light level and/or a distance between the target and the sensors such that, if the ambient light level exceeds an ambient light threshold and/or the distance is less than a distance threshold, the processor determines the motion of a target relative to the sensors based on the ambient light instead of the reflected light.10-30-2014
20140332670PHOTODETECTING CIRCUIT, OPTICAL RECEIVER, AND PHOTOCURRENT MEASUREMENT METHOD FOR PHOTO DETECTOR - The present invention is a photodetecting circuit comprising a plurality of operational amplifiers provided so as to correspond to respective photo detectors disposed on a common semiconductor substrate, each operational amplifier having an inverting input terminal connected to a cathode of the photo detector and a non-inverting input terminal supplied with a voltage to be applied to the photo detector; a plurality of resistances connected between output terminals and inverting input terminals of the respective operational amplifiers; and a terminal, disposed on at least the inverting input terminal side in both ends of the resistance, for connecting with a meter for measuring a photocurrent of the photo detector.11-13-2014
20140339398AVALANCHE PHOTODIODE OPERATING IN GEIGER MODE INCLUDING A STRUCTURE FOR ELECTRO-OPTICAL CONFINEMENT FOR CROSSTALK REDUCTION, AND ARRAY OF PHOTODIODES - An avalanche photodiode includes a cathode region and an anode region. A lateral insulating region including a barrier region and an insulating region surrounds the anode region. The cathode region forms a planar optical guide within a core of the cathode region, the guide being configured to guide photons generated during avalanche. The barrier region has a thickness extending through the planar optical guide to surround the core and prevent propagation of the photons beyond the barrier region. The core forms an electrical-confinement region for minority carriers generated within the core.11-20-2014
20140346323RECEIVER OPTICAL MODULE FOR RECEIVING WAVELENGTH MULTIPLEXED OPTICAL SIGNALS - A receiver optical module to facilitate the assembling is disclosed. The receiver optical module includes an intermediate assembly including the optical de-multiplexer and the optical reflector each mounted on the upper base, and the lens and the PD mounted on the sub-mount. The latter assembly is mounted on the bottom of the housing; while, the former assembly is also mounted on the bottom through the lower base. The upper base is apart from the bottom and extends in parallel to the bottom to form a surplus space where the amplifying circuit is mounted.11-27-2014
20140346324COMPENSATED OPTICAL DETECTION APPARATUS, SYSTEMS, AND METHODS - In some embodiments, apparatus and systems, as well as methods, may operate to receive radiation at an active detector of a pair of radiation detectors to provide a first signal proportional to an intensity of the radiation, to receive none of the radiation at a blind detector of the pair of radiation detectors to provide a second signal proportional to the reception of no radiation, and to combine the first signal and the second signal to provide an output signal representing the difference between the first signal and the second signal. The pair of radiation detectors may comprise thermopile detectors. Combination may occur via differential amplification. Additional apparatus, systems, and methods are disclosed.11-27-2014
20150028192COUPLING OPTICAL SIGNALS INTO SILICON OPTOELECTRONIC CHIPS - A method and system for coupling optical signals into silicon optoelectronic chips are disclosed and may include coupling one or more optical signals into a back surface of a CMOS photonic chip in a photonic transceiver, wherein photonic, electronic, or optoelectronic devices may be integrated in layers on a front surface of the CMOS photonic chip. Optical couplers, such as grating couplers, may receive the optical signals in the front surface. The optical signals may be coupled into the back surface of the chips via optical fibers and/or optical source assemblies. The optical signals may be coupled to the optical couplers via a light path etched in the chips, which may be refilled with silicon dioxide. The chips may be bonded to a second chip. Optical signals may be reflected back to the optical couplers via metal reflectors, which may be integrated in dielectric layers on the chips.01-29-2015
20150034804INTEGRAL OPTICAL SENSOR PACKAGE - The present invention relates to an integral optical sensor package. More particularly, the present invention relates to an integral optical sensor package in which a light sensor for receiving a visible light band and a remote control sensor for receiving a light signal of an IR band are integrated such that the two sensors may receive the light of the unique light bands thereof without mutual interference. Further, a light-emitting means for indicating the operation of the remote control sensor can be integrated with the light sensor and the remote control sensor, thus reducing the number of processes and costs for manufacturing an apparatus.02-05-2015
20150034805PHOTOELECTRIC CONVERTOR - An photoelectric convertor comprises an optical coupler, a circuit board and two restricting posts fixed on the circuit board. The optical coupler defined two restricting grooves passing through its bottom surface and top surface. When the optical coupler is positioned on the circuit board, the two restricting posts are respectively engaged in the two restricting grooves. Each restricting groove has a sidewall opposite to a front surface of the optical coupler.02-05-2015
20150041627PARTITIONED SILICON PHOTOMULTIPLIER WITH DELAY EQUALIZATION - A photon detection device includes a first wafer having an array of photon detection cells partitioned into a plurality of photon detection blocks arranged in the first wafer. A second wafer having a plurality of block readout circuits arranged thereon is also included. An interconnect wafer is disposed between the first wafer and the second wafer. The interconnect wafer includes a plurality of conductors having substantially equal lengths. Each one of the plurality of conductors is coupled between a corresponding one of the plurality of photon detection blocks in the first wafer and a corresponding one of the plurality of block readout circuits such that signal propagation delays between each one of the plurality of photon detection blocks and each one of the plurality of block readout circuits are substantially equal.02-12-2015
20150053847SILICON PHOTOMULTIPLIER - One embodiment of the disclosure includes an A-D conversion circuit connected to a photodiode for providing a silicon photomultiplier that with enhanced detection accuracy and a time resolution. A current generated upon photon detection by the photodiode partially flows into another photodiode adjacent to the photodiode arranged in parallel via a resistor. At this time, the current is charged into a parasitic capacitance adjacent to the photodiode, and thereafter is discharged. However, the discharged current cannot flow toward an output terminal by the A-D conversion circuit, and also cannot switch the A-D conversion circuit. Consequently, the construction of the disclosure can detect light with no influence of the current discharged from the parasitic capacitance. As a result, the disclosure achieves a silicon photomultiplier with high detection accuracy and a satisfactory time resolution.02-26-2015
20150060647URINE SAMPLE ANALYZING METHOD AND SAMPLE ANALYZER - Disclosed is a urine sample analyzing method comprising: flowing a measurement specimen prepared by mixing a urine sample and reagent through a flow cell; irradiating epithelial cells in the measurement specimen flowing through the flow cell with linearly polarized light and thereby producing scattered light; detecting a change of polarization condition of the scattered light produced by each of the epithelial cells; and classifying the epithelial cells into at least two types based on the change of polarization condition.03-05-2015
20150060648CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES - This disclosure provides systems, methods, and apparatus for controlling transitions in an optically switchable device. In one aspect, a controller for a tintable window may include a processor, an input for receiving output signals from sensors, and instructions for causing the processor to determine a level of tint of the tintable window, and an output for controlling the level of tint in the tintable window. The instructions may include a relationship between the received output signals and the level of tint, with the relationship employing output signals from an exterior photosensor, an interior photosensor, an occupancy sensor, an exterior temperature sensor, and a transmissivity sensor. In some instances, the controller may receive output signals over a network and/or be interfaced with a network, and in some instances, the controller may be a standalone controller that is not interfaced with a network.03-05-2015
20150076328WAFER-SHAPED TOOL CONFIGURED TO MONITOR PLASMA CHARACTERISTICS AND PLASMA MONITORING SYSTEM USING THE SAME - Provided are tools and systems to monitor plasma characteristics. The tool may include a housing, and a sensor array, a signal processor, and a data-transferring device provided in the housing. The sensor array may include a plurality of measurement sensors two-dimensionally arranged in the housing, each of the measurement sensors including a shielding layer configured to prevent an electrical interaction with charged particles in plasma, the signal processor may be configured to process electrical signals produced by the measurement sensors, and thereby generate measurement data, and the data-transferring device may be configured to transmit the measurement data to the outside.03-19-2015
20150090864OPTICALLY ENABLED MULTI-CHIP MODULES - An optically enabled multi-chip module has an optical engine transceiver and a host system chip. The optical engine transceiver has an optical engine front-end and an optical engine macro. The optical engine front-end has multiple laser diodes, laser driver circuitry electrically interfaced with each of the laser diodes, multiple photodiodes, amplifier circuitry electrically interfaced with each of the photodiodes, and at least one optical element optically positioned between the laser diodes and at least one optical fiber and between the photodiodes and the at least one optical fiber. The at least one optical element optically interfaces the laser diodes and photodiodes with the optical fiber. The optical engine macro is both electrically interfaced with and physically segregated from the optical engine front-end. The optical engine macro provides a subset of optical transceiver functionality to the optical engine front-end. The host system chip is electrically interfaced with the optical engine transceiver.04-02-2015
20150102208WEARABLE SYSTEM AND METHOD TO MEASURE AND MONITOR ULTRAVIOLET, VISIBLE LIGHT, AND INFRARED RADIATIONS IN ORDER TO PROVIDE PERSONALIZED MEDICAL RECOMMENDATIONS, PREVENT DISEASES, AND IMPROVE DISEASE MANAGEMENT - A wearable sensor device, system, and methods for electronically monitoring safe ultraviolet and infrared radiations and beneficial visible light exposure based on sensor data and clinical information data relevant to estimate a personalized radiation pattern for disease prevention, a personalized radiation pattern for an evolution in disease activity or skin aging from radiation exposure of the user of the wearable sensor device and other users of the wearable sensor device. The wearable sensor device includes one or more UV sensors, an ambient light sensor, one IR sensor, and the wearable sensor device is in communication with remote computing devices to communicate sensor data and to calculate, send, and receive recommendations regarding beneficial radiation exposure and safe UV and IR exposure at the wearable sensor device, or remote computing devices paired with or connected to the wearable sensor device.04-16-2015
20150136957OPTICAL RECEIVER MODULE AND OPTICAL TRANSMITTER MODULE - An optical receiver module includes: a lens array including a plurality of condenser lenses arranged in one direction to define a plane with optical axes in parallel to each other; and a light receiving element array including a plurality of light receiving elements each configured to receive light emitted from each of the condenser lenses. The light receiving element array includes: a semiconductor substrate to which the light from each of the condenser lenses is input and through which the light is transmitted; and light receiving portions each configured to receive the light transmitted through the semiconductor substrate and convert the light into an electrical signal. A shift of the optical axis of each of the condenser lenses from a center of each corresponding one of the light receiving portions is larger in a direction perpendicular to the one direction within the plane than in the one direction.05-21-2015
20150144772Light Grid - The invention relates to a light grid having divergent light beams so that cross-beams can also be evaluated beside parallel beams, wherein not only a light beam interruption, but also the intensity of the light incidence on a light reception unit is evaluated. To provide an improved light grid with which in particular smaller objects can be detected and possibly also located, it is proposed that the light transmission units have a transmission optics in whose focus an extended light source is arranged. Furthermore, each beam contains an effective beam, with an effective beam being defined in that a part shading of this effective beam effects a measurable intensity change in the associated light receiver corresponding to the shading. Finally, the effective beams define at least one detection zone in the monitored plane, with an illumination by at least one effective beam being present in the total detection zone.05-28-2015
20150296648Interconnect Structure For Coupling An Electronic Unit And An Optical Unit, And Optoelectronic Module - An optoelectronic module is provide and includes an electronic unit, an optical unit, and an interconnect structure. The electronic unit is capable of outputting and/or receiving electric signals, while the optical unit is capable of converting the electric signals into optical signals. The interconnect structure connects the electronic unit and the optical unit, and includes an electrically conducting substrate and a pair of transmission leads connecting electronic unit and the optical unit. The pair of transmission leads includes a signal lead and a ground lead having lower impedance than the signal lead.10-15-2015
20150300875LIGHT SENSING DEVICE FOR SENSING AMBIENT LIGHT INTENSITY - The invention relates to a light sensing device for sensing ambient light intensity, comprising at least one ambient light sensor and an occlusion detector for detecting an object occluding the ambient light sensor. The invention is further related to a corresponding method for sensing ambient light intensity.10-22-2015
20150301221MULTIPLE OPTICAL AXIS PHOTOELECTRIC SENSOR - A multiple optical axis photoelectric sensor capable of performing muting processing adapted to a plurality of kinds of workpieces having different heights without the need for complicated pre-setting according to the kinds of workpieces, is provided. The multiple optical axis photoelectric sensor is provided with a light projecting device and a light receiving device, which forms a plurality of optical axes together with the light projecting device. In at least one portion of a detection area, which is set according to the optical axes, a muting area for nullifying the result of detection of blocked light is set up. A sensor system acquires a range of blocked light corresponding to the blocked optical axis during passage of a workpiece, and alters the muting area of the multiple optical axis photoelectric sensor from a first range to a second range.10-22-2015
20150303335ENERGY HARVESTING DEVICES, SYSTEMS, AND RELATED METHODS - Energy harvesting devices include a substrate and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to collect energy in the visible and infrared light spectra and to reradiate energy having a wavelength in the range of about 0.8 μm to about 0.9 μm. The resonance elements are arranged in groups of two or more resonance elements. Systems for harvesting electromagnetic radiation include a substrate, a plurality of resonance elements including a conductive material carried by the substrate, and a photovoltaic material coupled to the substrate and to at least one resonance element. The resonance elements are arranged in groups, such as in a dipole, a tripole, or a bowtie configuration. Methods for forming an energy harvesting device include forming groups of two or more discrete resonance elements in a substrate and coupling a photovoltaic material to the groups of discrete resonance elements.10-22-2015
20150308962MULTI-SENSOR OPTICAL DEVICE FOR DETECTING CHEMICAL SPECIES AND MANUFACTURING METHOD THEREOF - An optical device for detecting a first chemical species and a second chemical species contained in a specimen, which includes: a first optical sensor, which may be optically coupled to an optical source through the specimen and is sensitive to radiation having a wavelength comprised in a first range of wavelengths; and a second optical sensor, which may be optically coupled to the optical source through the specimen and is sensitive to radiation having a wavelength comprised in a second range of wavelengths, different from the first range of wavelengths.10-29-2015
20150323381ARRANGEMENT AND METHOD FOR DETERMINING THE SPATIAL DIRECTION OF RADIATION INCIDENCE - The present disclosure relates to an optical receiver. The optical receiver has a first photosensor and a second photosensor disposed within a substrate. The first photosensor has a first angled surface located on a first side of a depression within the substrate, and the second photosensor has a second angled surface located on a second side of the depression, opposite the first side of the depression. A plurality of blocking structures are disposed over the substrate. The plurality of blocking structures block radiation that is not incident on the first and second angled surfaces. By receiving incident radiation on the first and second angled surfaces, the first and second photosensors are able to generate directional-dependent photocurrents that vary depending upon an angle of incident radiation. Based upon the directional-dependent photocurrents, an angle of incident radiation can be determined.11-12-2015
20150338269OFFSET CURRENT COMPENSATION FOR PHOTODIODES - A dark photodiode that is optically isolated from the signal photodiode and having a dark current in the absence of photons. A reference generating circuit configured to produce a reference voltage based on voltage at an anode of the signal photodiode. A voltage regulator circuit configured to regulate dark photodiode voltage at an anode of the dark photodiode based on the reference voltage. A current mirror circuit configured to produce, at an anode connecting to the signal photodiode, a mirrored current that is a mirrored version of a portion of the dark current.11-26-2015
20150338271LIGHT SENSING SYSTEM, AND METHOD FOR CALIBRATING A LIGHT SENSING DEVICE - The present invention relates to a light sensing system for sensing ambient light intensity, comprising a light sensing device with at least one light sensor and a calibration device for calibrating the sensor. The calibration device comprises at least one light source that emits light with a standard intensity. The invention is further related to a corresponding method for calibrating a light sensing device, comprising the illumination of the light sensor of the light sensing device with light that has a standard intensity, the comparison of the output intensity signal of the sensor with an expected signal that corresponds to the standard intensity, and the matching of the output intensity signal of the sensor to the expected signal by adjusting a gain parameter of the sensor.11-26-2015
20150338274OFFSET CURRENT COMPENSATION FOR PHOTODIODES - A dark photodiode that is optically isolated from the signal photodiode and having a dark current in the absence of photons. A reference generating circuit configured to produce a reference voltage based on voltage at an anode of the signal photodiode. A voltage regulator circuit configured to regulate dark photodiode voltage at an anode of the dark photodiode based on the reference voltage. A current mirror circuit configured to produce, at an anode connecting to the signal photodiode, a mirrored current that is a mirrored version of a portion of the dark current.11-26-2015
20150346024ULTRAVIOLET LIGHT SENSING - A method of measuring ultraviolet light includes observing an ultraviolet portion of ambient light with an ultraviolet light sensor, measuring an intensity of a visible portion of the ambient light with a visible light sensor, and estimating an intensity of the ultraviolet portion of the ambient light based on the measured intensity of the visible portion of the ambient light if the observed ultraviolet portion of the ambient light exceeds a threshold intensity.12-03-2015
20150349728CURRENT-VOLTAGE CONVERSION AMPLIFIER CIRCUIT INCLUDING MULTIPLIER AND MULTI INPUT AMPLIFIER - Provided is a current-voltage conversion amplifier circuit including: a plurality of light receiving devices generating a current signal proportional to an amount of light by receiving the light; multipliers amplifying the current signal, converting the amplified current signal into a first voltage signal, outputting the amplified current signal, or outputting the converted first voltage signal; multi input amplifiers outputting first and second output voltage pairs through a process for receiving output values of multipliers and an offset voltage and amplifying the received output values and offset voltage; a multiplexing unit selecting and outputting one first and second output voltage pair among the first and second output voltage pairs outputted from multi input amplifiers; and a signal conversion unit converting a difference value between first and second output voltages outputted from the multiplexing unit and outputting the converted digital signal.12-03-2015
20150355019SYSTEMS AND METHODS FOR READOUT OF EVENT-DRIVEN PIXELS - Methods and systems for reading out a pixel array are provided. An example system may be configured to represent the activity of at least two pixels in the array as at least two digital signals. Further, the example system may be configured to dynamically aggregate the at least two digital signals into one representative analog signal corresponding to the activity of the at least two pixels.12-10-2015
20150357360LAYOUT AND OPERATION OF PIXELS FOR IMAGE SENSORS - Various embodiments include methods and apparatuses for forming and using pixels for image sensors. In one embodiment, an image sensor having at least two pixel electrodes per color region, and having at least two modes is disclosed. The example image sensor includes a first, unbinned, mode; and a second, binned, mode. In the first, unbinned mode, the at least two pixel electrodes per color region are to be reset to substantially similar levels. In the second, binned mode, a first pixel electrode of the at the least two pixel electrodes is to be reset to a high voltage that results in efficient collection of photocharge, and a second pixel electrode of the at the least two pixel electrodes is to be reset to a low voltage that results in less efficient collection of photocharge. Other methods and apparatuses are disclosed.12-10-2015
20150377695Emitter Module for an LED Illumination Device - An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.12-31-2015
20150377699Illumination Device and Method for Calibrating an Illumination Device over Changes in Temperature, Drive Current, and Time - An illumination device and method is provided herein for calibrating individual LEDs in the illumination device, so as to obtain a desired luminous flux and a desired chromaticity of the device over changes in drive current, temperature, and over time as the LEDs age. The calibration method may include subjecting the illumination device to a first ambient temperature, successively applying at least three different drive currents to a first LED to produce illumination at three or more different levels of brightness, obtaining a plurality of optical measurements from the illumination produced by the first LED at each of the at least three different drive currents, obtaining a plurality of electrical measurements from the photodetector and storing results of the obtaining steps within the illumination device to calibrate the first LED at the first ambient temperature. The plurality of optical measurements may generally include luminous flux and chromaticity, the plurality of electrical measurements may generally include induced photocurrents and forward voltages, and the calibration method steps may be repeated for each LED included within the illumination device and upon subjecting the illumination device to a second ambient temperature.12-31-2015
20150381278LOW-PROFILE OPTICAL TRANSCEIVER SYSTEM WITH TOP AND BOTTOM LENSES - An optical communications module includes a module housing, a printed circuit board (PCB), a device mounting block, at least one opto-electronic device, at least one signal processing integrated circuit (IC), and a top lens device. The opto-electronic device is mounted on the device mounting block. An upper surface of the signal processing IC has a signal contact array in electrical contact with a corresponding signal pad array on the PCB lower surface. The top lens device has a fiber port configured to communicate optical signals with a fiber-optic cable at the forward end of the module housing, a device port configured to communicate the optical signals with the opto-electronic device, and a reflector portion configured to redirect the optical signals at a non-zero angle between the fiber port and the device port.12-31-2015
20160003671METHOD FOR CONTROLLING THE GAIN AND ZERO OF A MULTI-PIXEL PHOTON COUNTER DEVICE, AND LIGHT-MEASURING SYSTEM IMPLEMENTING SAID METHOD - A method for controlling the gain and zero of a multiple pixel photon counter device, and light-measuring system implementing said method.01-07-2016
20160003672MULTIPLEXER FOR SINGLE PHOTON DETECTOR, PROCESS FOR MAKING AND USE OF SAME - An multiplexer includes: a plurality of single photon detectors arranged in a two-dimensional array; a plurality of first bias lines in electrical communication with the single photon detectors; a plurality of second bias lines in electrical communication with the single photon detectors; a plurality of first readout lines in electrical communication with the single photon detectors; and a plurality of second readout lines in electrical communication with the single photon detectors, wherein, for every single photon detector, the first bias line is in electrical communication with the first readout line in a first common line, and for every single photon detector, the second bias line is in electrical communication with the second readout line in a second common line such that the multiplexer is configured for resistive current splitting.01-07-2016
20160041030TUNABLE PHOTOCAPACITIVE OPTICAL RADIATION SENSOR ENABLED RADIO TRANSMITTER AND APPLICATIONS THEREOF - A sensor system, device and method for generating a wireless signal in response to a sensed illumination. A sensor is disclosed having: a photosensitive element; a device that converts a sensed illumination detected by the photosensitive element into a corresponding impedance response; and a wireless signal generator that generates a wireless output based on a characteristic of the corresponding impedance response, wherein the wireless output correlates to the sensed illumination.02-11-2016
20160043242PHOTOSENSOR INCLUDING MULTIPLE DETECTION MODE AND METHOD OF OPERATING THE SAME - Provided are a photosensor and a method of operating the same. The photosensor includes a lower electrode, a semiconductor layer, a 2-dimensional material layer, and an upper electrode. Photocurrent generated due to externally radiated light may be operated in a multiple detection mode including a lateral detection mode and a vertical detection mode. The upper electrode may include a plurality of electrode elements, which may be formed of the same conductive material or different conductive materials.02-11-2016
20160054172IMAGE SENSOR FOR PRODUCING VIVID COLORS AND METHOD OF MANUFACTURING THE SAME - An image sensor and a method of manufacturing the same are provided. The image sensor includes a photoelectric conversion layer; a color filter disposed on the photoelectric conversion layer; a low refractive index layer disposed on the color filter; a beam splitter disposed within the low refractive index layer; and a lens layer disposed on the low refractive index layer and covering the beam splitter. The beam splitter extends in a diagonal direction of a pixel area of the color filter, in a plan view.02-25-2016
20160054174MINIMIZING GRAZING INCIDENCE REFLECTIONS FOR RELIABLE EUV POWER MEASUREMENTS - A light source includes a light generating chamber and a collector disposed in the light generating chamber. A target material generator configured to propel a quantity of target material toward an irradiation region is disposed in front of a reflective surface of the collector. A plurality of photodetector modules is disposed external to the light generating chamber, with each of the photodetector modules being directed toward the irradiation region. A plurality of tubes is disposed between a corresponding photodetector module and the irradiation region. Each tube has a centerline directed toward the irradiation region, and each tube has a roughened inner surface. The surface roughness of the roughened inner surface is sufficient to cause grazing incidences of light to be eliminated rather than to be reflected off the roughened inner surface. A method of generating light and a method of measuring light energy also are described.02-25-2016
20160072453FEMTOWATT NON-VACUUM TUBE DETECTOR ASSEMBLY - In one embodiment, a femtowatt sensitivity optical detector is provided using one or more photodiodes, intended as a replacement for the photomultiplier based photon counting unit.03-10-2016
20160084713SOLID-STATE PHOTODETECTOR - A solid-state photodetector with variable spectral response that can produce a narrow or wide response spectrum of incident light. Some embodiments include a solid-state device structure that includes a first photodiode and a second photodiode that share a common anode region. Bias voltages applied to the first photodiode and/or the second photodiode may be used to control the thicknesses of depletion regions of the photodiodes and/or a common anode region to vary the spectral response of the photodetector. Thickness of the depletion regions and/or the common anode region may be controlled based on resistance between multiple contacts of the common anode region and/or capacitance of the depletion regions. Embodiments include control circuits and methods for determining spectral characteristics of incident light using the variable spectral response photodetector.03-24-2016
20160091363OPTICAL SENSOR - An optical sensor includes a first light-receiving element with one of a first polygonal ring shape and a first circular ring shape, a second light-receiving element with one of a second polygonal ring shape and a second circular ring shape, the second light-receiving element being provided separately from the first light-receiving element and concentrically with the first light-receiving element, and a subtraction device configured to conduct subtraction between an output from the first light-receiving element and an output from the second light-receiving element.03-31-2016
20160109287OPTICAL SENSOR AND OUTPUT CIRCUIT THEREOF - An optical sensor is provided according to an embodiment of the present disclosure. The optical sensor includes a first photodiode, a second photodiode having characteristics different from characteristics of the first photodiode, filters configured to block or transmit a specific wavelength range of the light, and an output circuit configured to correct a sensitivity deviation, which may be caused when one of the filters is used for the first photodiode, based on a sensitivity deviation, which may be caused when the other filter of the same kind as the one filter is used for the second photodiode, and output only the specific wavelength range of the light.04-21-2016
20160146938MULTI-SENSOR PROXIMITY SENSING - An apparatus includes a light source to generate source light through an optically transmissive medium to an object. A receiver includes a near zone light sensor and a far zone light sensor positioned on a substrate with the light source. The near zone light sensor is positioned on the substrate to, in response to the generated source light, receive reflected source light from the object and the optically transmissive medium. The far zone light sensor is positioned on the substrate to, in response to the source light, receive the reflected source light from the object and to receive a reduced quantity of the reflected source light from the optically transmissive medium compared to the near zone light sensor.05-26-2016
20160161245Spectroscopic Beam Profile Metrology - A spectroscopic beam profile metrology system simultaneously detects measurement signals over a large wavelength range and a large range of angles of incidence (AOI). In one aspect, a multiple wavelength illumination beam is reshaped to a narrow line shaped beam of light before projection onto a specimen by a high numerical aperture objective. After interaction with the specimen, the collected light is passes through a wavelength dispersive element that projects the range of AOIs along one direction and wavelength components along another direction of a two-dimensional detector. Thus, the measurement signals detected at each pixel of the detector each represent a scatterometry signal for a particular AOI and a particular wavelength. In another aspect, a hyperspectral detector is employed to simultaneously detect measurement signals over a large wavelength range, range of AOIs, and range of azimuth angles.06-09-2016
20160161332IMAGE SENSOR USING PIXELS WITH COMBINED RGB AND IR SENSING - A sensor system includes an array of pixels, each pixel including a first pixel and a second pixel. A first color filter provided over the first pixel is configured to pass a first color portion within and less than a visible portion of the spectrum. An infra-red color filter provided over the second pixel is configured to pass a near infra-red portion and an infra-red portion of the spectrum, but not the visible portion of the spectrum. An interference filter is provided over the first and second pixels, wherein the interference filter is configured to pass the visible portion of the spectrum and the near infra-red portion of the spectrum. The first pixel detects light sensed in the first color portion and the second pixel detects light sensed in the near infra-red portion. A processing circuit corrects the sensed first color portion as a function of the sensed near-infra-red portion.06-09-2016
20160169734PHOTODETECTOR AND ELECTRONIC APPARATUS06-16-2016
20160190257GRAPHENE OPTOELECTRONIC DETECTOR AND METHOD FOR DETECTING PHOTONIC AND ELECTROMAGNETIC ENERGY BY USING THE SAME - A graphene optoelectronic detector is disclosed, which comprises: an insulating substrate with a graphene layer disposed thereon; a first electrode disposed on the graphene layer or between the graphene layer and the insulating substrate; and a second electrode disposed on the graphene layer or between the graphene layer and the insulating substrate, wherein there is a predetermined distance between the first electrode and the second electrode, and the first electrode and the second electrode are at different electrical potentials, wherein a high-drift carrier moving region is disposed between the first electrode and the second electrode, and a low-drift carrier moving region is disposed outside the high-drift carrier moving region. In addition, the present invention further provides a method for detecting photons and electromagnetic energy using the aforementioned graphene detector.06-30-2016
20160195429IMAGE SENSORS WITH MULTI-FUNCTIONAL PIXEL CLUSTERS07-07-2016
20160254782SMART SENSOR DEVICES FOR MEASURING AND VERIFYING SOLAR ARRAY PERFORMANCE09-01-2016
20170234727Method and Apparatus for Testing Optical Outputs08-17-2017
20170237496OPTICALLY ENABLED MULTI-CHIP MODULES08-17-2017
20180024001INTEGRATED BOUND-MODE SPECTRAL/ANGULAR SENSORS01-25-2018
20180026058CIRCUIT AND METHOD FOR CONTROLLING A SPAD ARRAY01-25-2018

Patent applications in class Plural photosensitive nonimage detecting elements

Patent applications in all subclasses Plural photosensitive nonimage detecting elements

Website © 2023 Advameg, Inc.