Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Automatic focus control

Subclass of:

250 - Radiant energy

250200000 - PHOTOCELLS; CIRCUITS AND APPARATUS

250201100 - Photocell controls its own optical systems

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
250201200 Automatic focus control 88
20080237444Light detection device, focus detection device, imaging apparatus, method of producing light detection device, and method of detecting focus - A light detection device includes a lens array of a plurality of lenses arranged in the form of a honeycomb; and a photoelectric device array of a plurality of photoelectric devices for each of the plurality of lenses. The plurality of photoelectric devices is arranged under each of the plurality of lenses. Also disclosed are a focus detection device provided with the light detection device, and an imaging apparatus provided with the focus detection device as well as a method of producing such a light detection device and a method of detecting a focus.10-02-2008
20090008530Optical Device - An optical device for use with an imaging device for taking photographic images of an object includes a light emitting element capable of emitting light, and a lens arranged so as to direct light from the light emitting element to illuminate the object. The light emitting element may include at least two light emitting zones arranged so that light from the light emitting zones can be directed from the lens in respective corresponding spatial angles, and that the light emitting zones can be individually and selectively controlled to emit a controllable intensity of light.01-08-2009
20090032678IMAGE-PICKUP APPARATUS - The image-pickup apparatus includes a focus detector generating focus detection information using light from an image-pickup optical system, a photometer generating photometry information using the light from the image-pickup optical system, a focus controller performing focus control, and an exposure controller performing exposure control. The photometer includes first and second photoelectric conversion part having different spectral sensitivity characteristics and formed to at least partially overlap each other in a light entrance direction from the image-pickup optical system. The photometer generates the photometry information based on the output from the first photoelectric conversion part. The focus controller performs the focus control using the focus detection information and focus correction information obtained based on the outputs from the first and second photoelectric conversion parts. The exposure controller performs the exposure control using the photometry information and exposure correction information obtained based on the outputs from the first and second photoelectric conversion part.02-05-2009
20090032679MULTI-FOCAL INTRAOCULAR LENS SYSTEM AND METHODS - The invention pertains to methods, components, and operations of multi-focal intraocular lens systems, including range finding for driving same and for discriminating between multiple objects and varying brightness conditions. The invention also pertains to intraocular photosensors and range-finding methods to be used with intra-ocular lens systems, and components, that provide multi-focal IOL capabilities in dynamic visual environments.02-05-2009
20090090841IMAGE SENSOR, FOCUS DETECTING DEVICE, AND IMAGING SYSTEM - Pixels are two-dimensionally arrayed, each of the pixels having a first photoelectric conversion section which is divided into a plurality of regions to perform photoelectric conversions and a second photoelectric conversion section whose outer periphery is surrounded with the plurality of regions of the first photoelectric conversion section and which is divided into a plurality of regions to perform photoelectric conversion. In addition, micro-optical systems are arrayed so as to correspond to the pixels, the micro-optical systems guiding light of an object to the pixels. A division manner of the plurality of regions of the first photoelectric conversion section is different from a division manner of the plurality of regions of the second photoelectric conversion section.04-09-2009
20090095880Autofocus control circuit, autofocus control method and image pickup apparatus - The invention aims to reduce, in performing autofocusing on an autofocus target region determined within a face region obtained by face detection, the risk of misfocusing attributable to a background image included in the autofocus target region. To this end, a face detecting unit firstly performs face detection to determine a face region including a human face image. Then, an AF target region determination unit determines an AF target region within the face region. In this event, the AF target region determination unit can change the area ratio of the AF target region to the face region. Thereafter, based on contrast of a region, corresponding to the AF target region determined by the AF target region determination unit, of captured image data, an AF evaluation value calculation unit, a controller and a lens driving unit adjust a location where a subject image is formed by a shooting optical system.04-16-2009
20090127429APPARATUS AND METHOD FOR DETECTING THE FOCAL POSITION OF AN OPTICAL SYSTEM AND OPTHALMOLOGICAL TREATMENT APPARATUS - An apparatus and a method are presented for detecting the focal position of an optical system (05-21-2009
20090140122Solid-state imaging device, electronic camera - A solid-state imaging device comprises a plurality of pixels disposed in a two-dimensional pattern and each equipped with a photoelectric conversion unit that generates and accumulates a signal charge corresponding to a subject image formed with light entering from an optical system and a readout control unit that executes control under which signals are read out from the plurality of pixels. The plurality of pixels include a plurality of imaging pixels that output imaging signals for forming image signals that represents the subject image and a plurality of focus detection pixels that output focus detection signals for detecting a focusing condition of the optical system through a split-pupil phase difference method.06-04-2009
20090159777FOCUS DETECTING APPARATUS - The focus detecting apparatus comprises an objective lens, a point light source which irradiates illumination light for generating a focusing signal to a transparent substrate through the objective lens, a mask means having a first shading part for shading one of areas of the luminous of the illumination light, and a photodetector having two light receiving parts, wherein the mask means is formed so as to have a shape similar to one of light receiving parts in the photodetector, and has a second shading part that intercepts a part of luminous flux passing through another area so that reflected light from one of the surfaces may enter into the two light receiving parts, and reflected light from another surface may pass through an area which is located off the light receiving part arranged at one of the areas, when a focus of the objective lens is positioned near one of surfaces out of the first or second surface in the transparent substrate.06-25-2009
20090194668IMAGE SENSOR MODULE, CAMERA MODULE INCLUDING THE SAME AND ELECTRONIC DEVICE INCLUDING THE CAMERA MODULE - An image sensor module may include an image sensor, a variable thickness member and a lens member. The image sensor may include a light receiver configured to receive a light. Further, a driving voltage may be applied to the image sensor. The variable thickness member may be arranged on the image sensor adjacent to the light receiver. Further, the variable thickness member may have a variable thickness along an optical axis of the light in accordance with the driving voltage through the image sensor.08-06-2009
20090206234ANALYZER AND USE THEREOF - This invention provides an analyzer for judging whether or not a tangible component is present in a sample in a preparation, and analyzing, if a tangible component is present, the tangible component with efficiency and high accuracy. For this purpose, an analyzer (08-20-2009
20090236495AUTOFOCUS FOR HIGH POWER LASER DIODE BASED ANNEALING SYSTEM - Apparatus for thermally processing a substrate includes a source of laser radiation comprising a plurality diode lasers arranged along a slow axis, optics directing the laser radiation from the source to the substrate, and an array of photodetectors arranged along a fast axis perpendicular to the slow axis and receiving portions of the laser radiation reflected from the substrate through the optics.09-24-2009
20090256057Systems and methods for implementing an interaction between a laser shaped as line beam and a film deposited on a substrate - A laser crystallization apparatus and method are disclosed for selectively melting a film such as amorphous silicon that is deposited on a substrate. The apparatus may comprise an optical system for producing stretched laser pulses for use in melting the film. In still another aspect of an embodiment of the present invention, a system and method are provided for stretching a laser pulse. In another aspect, a system is provided for maintaining a divergence of a pulsed laser beam (stretched or non-stretched) at a location along a beam path within a predetermined range. In another aspect, a system may be provided for maintaining the energy density at a film within a predetermined range during an interaction of the film with a shaped line beam.10-15-2009
20090256058AUTOMATIC FOCUS CONTROL UNIT, ELECTRONIC DEVICE AND AUTOMATIC FOCUS CONTROL METHOD - Disclosed herein is an automatic focus control unit including: a first light-emitting element; a line sensor; a second light-emitting element; a slit member; a shifting mechanism; and a controller.10-15-2009
20090261233Displacement detecting device - A displacement detecting device includes a non-contact sensor having a light source, an objective lens focusing output light from the light source onto a measurement surface, and a light receiving element detecting displacement information based on a focal length of the objective lens by using reflected light from the measurement surface; a control unit adjusting the focal length based on the displacement information; a displacement-amount measuring unit having a linear scale attached to the objective lens with a link member therebetween and measuring an amount of displacement of the linear scale when the focal length is adjusted. A light adjustment member is disposed between the light source and the objective lens or between the objective lens and the light receiving element and has an aperture section transmitting the output and/or reflected light therethrough and a light blocking section that blocks a specific light component of the output and/or reflected light.10-22-2009
20090289169IMAGE SENSOR WITH SIMULTANEOUS AUTO-FOCUS AND IMAGE PREVIEW - Embodiments of the present invention are directed to a plurality of light sensor cells disposed in a substrate in a shared pixel arrangement. Common readout circuitry is used to simultaneously read out image information from a group of light sensor cells. The image information from the group of light sensor cells is added together simultaneously and coupled to auto-focus circuitry and/or preview circuitry to provide for better lens adjustments and preview display.11-26-2009
20100025566Single spot focus control - The present invention discloses methods and systems for improved focusing of imaging systems for the acquisition of high-quality focused tissue image data. A light emitter (L) aims a focusing light beam (FLB) towards an object of interest (O) so that the focusing light beam (FLB) is at an angle relative to the optical axis (OA) of the imager (I). If the object of interest (O) is out of focus, the focusing light spot (FLS) will appear above or below the focal point in the image (I). The pixel difference between the center of the focusing light spot (FLS) and the focal point indicates the range adjustment value. The range between the imager (I) and the object of interest (O) can then be adjusted according to the range adjustment value using a lookup table or calculations.02-04-2010
20100059657System and Method Producing Data For Correcting Autofocus Error in An Imaging Optical System - A new and useful system and method is provided, for correcting autofocus errors in an imaging optical system. In a system or method according to the present invention (a) an optical test assembly with an input portion directs light at a wafer surface under conditions described by ellipsometric input beam conditioning parameters, and an output/detection portion receives reflected light from the wafer under conditions described by ellipsometric output beam conditioning parameters, and produces output based on the received reflected light; and (b) a processing control circuit processes the output of the optical test assembly, and produces autofocus correction data based on ellipsometric analysis of (i) the ellipsometric input and output beam conditioning parameters and (ii) the output of the optical test assembly.03-11-2010
20100116968METHOD OF FOCUS AND AUTOMATIC FOCUSING APPARATUS AND DETECTING MODULE THEREOF - A method of focus and a focusing apparatus and a detecting module are provided. The detecting module includes an ellipse curved-surface reflection device and a light detector. The ellipse curved-surface reflection device has a beam gate, a first focus and a second focus. A light beam is focused by a light focusing device, and is projected on a surface of an object to be detected through the beam gate. The ellipse curved-surface reflection device reflects the light beams reflected or scattered by the object. The light detector is disposed on the second focus for receiving the light beam reflected by the ellipse curved-surface reflection device to generate a detecting result, by which a distance between the light focusing device and the surface of the object to be detected is adjusted, so that the light beam is correctly focused on the surface of the object.05-13-2010
20100200727SYSTEM AND METHOD FOR AUTOFOCUSING AN OPTICAL SYSTEM THROUGH IMAGE SPECTRAL ANALYSIS - A system and method of autofocusing an optical system uses transforms of images or portions of images formed by the optical system. A detector is used to capture images at different positions relative to the optical system. Transforms and blur spread parameters are calculated for the images for use in determining a position to which the detector should be moved to autofocus the system.08-12-2010
20100243862SYSTEM FOR ADJUSTING FOCUS OF A LIQUID LENS IN A MACHINE VISION SYSTEM - A method and apparatus for recalibrating a liquid lens. In one embodiment, a lens holder is provided to adjust the focal length of the lens as a function of temperature. In another embodiment, a recalibration circuit including a second lens of similar characteristics to the imaging lens is used to determine an appropriate focus. In other embodiments, an open loop calibration process is used.09-30-2010
20110017902METHOD AND APPARATUS FOR AUTOFOCUS - An autofocus apparatus and a method achieve a higher level of speed and robustness, and are particularly suited for fluorescence microscopy of biological samples, automated microscopy and scanning microscopy. A high speed is achieved via a light pattern in the sample, detected spatially resolved by a detector generating at least two signals corresponding to a reflex pattern of the light pattern. The two signals are subtracted generating a positioning signal and the focus of the objective in the sample is adjusted depending on the positioning signal.01-27-2011
20110068250AUTO-FOCUSING METHOD, RECORDING MEDIUM RECORDING THE METHOD, AND AUTO-FOCUSING APPARATUS PERFORMING THE METHOD - An auto-focusing method of creating a focus value when a point light source image and an image having a low contrast are focused, a recording medium recording the method, and an auto-focusing apparatus for performing the method are provided. In an embodiment, point light source reference graphs and non-point light source graphs are previously stored in a database, a reference graph having the most similar pattern to a focus graph is created by comparing the focus graph of input images to the point light source and non-point light source reference graphs, and a focus value is created when an image is focused using a different method according to the type of corresponding reference graph.03-24-2011
20110095166AUTO FOCUS ADJUSTMENT APPARATUS AND IMAGE PICKUP APPARATUS - An auto focus adjustment apparatus includes: a correction unit which corrects a defocus amount detected by a defocus amount detection unit, correspondingly to a focus area selected from a plurality of focus areas; a storage unit which stores a correction value to be used by the correction unit at a time of correcting the defocus amount; and a correction value changing unit configured to change the correction value, wherein the correction value changing unit is arranged to be capable of changing the correction value for a plurality of selected focus areas and at a plurality of zoom positions.04-28-2011
20110133054WEIGHTING SURFACE FIT POINTS BASED ON FOCUS PEAK UNCERTAINTY - A machine vision inspection system acquires a plurality of images of a workpiece region of interest at various focus heights, and determines a Z-height (e.g., the best focus height) for the region of interest based on a focus peak determining data set for the region of interest. The focus peak determining data set is derived from the plurality of images. The machine vision inspection system also determines Z-height quality meta-data based on data derived from the plurality of images (e.g., based on the focus peak determining data set), and associates the Z-height quality meta-data with the corresponding Z-heights. The Z-height quality meta-data are usable to establish weighting factors that are used in association with the corresponding best focus Z-heights in subsequent operations that fit a workpiece surface representation to a plurality of the best focus Z-heights.06-09-2011
20110309231SYSTEM AND METHOD FOR CONTINUOUS, ASYNCHRONOUS AUTOFOCUS OF OPTICAL INSTRUMENTS USING MULTIPLE CALIBRATION CURVES - The current application is directed to autofocus subsystems within optical instruments that continuously monitor the focus of the optical instruments and adjust distances within the optical instrument along the optical axis in order to maintain a precise and stable optical-instrument focus at a particular point or surface on, within, or near a sample. Certain autofocus implementations operate asynchronously with respect to operation of other components and subsystems of the optical instrument in which they are embedded. The described autofocus subsystems employ multiple calibration curves to precisely adjust the z-position of an optical instrument.12-22-2011
20120068048METHOD AND APPARATUS FOR ADJUSTING AND TESTING AN IMAGE SENSOR MODULE - A method for adjusting and testing an image sensor module is provided. The method of the present invention includes steps of: (1) calculating longitudinal and transverse deviation values of a center point of a lens relative to a standard reference position specified on a lens barrel, and an angle deviation value of the lens according to position signals of the lens on the image sensor module; (2) compensating the longitudinal and transverse deviation values of the center point of the lens, and the angle deviation value of the lens for exactly positioning the lens; and (3) adjusting focus of the image sensor module. The method of the present invention can compensate the mechanism errors produced in the mounting process of the image sensor module for conveniently and exactly adjusting the focus of the image sensor module. An apparatus for adjusting and testing an image sensor module is also provided.03-22-2012
20120193511AUTOFOCUS DEVICE - Provided is an autofocus device comprising: an optical source; an optical unit that allows emitted light from the optical source and object light from a measurement target to pass through the same optical path, the optical unit being arranged between the optical source and the measurement target; and a detection unit that performs focus detection by using the object light passed through the optical unit, wherein the optical unit comprises: a tube lens that forms the emitted light into parallel light; a line-like image forming unit that forms a line-like image on a surface of the measurement target by the parallel light from the tube lens; and a rotation unit that rotates the line-like image.08-02-2012
20120211638VISION MEASURING DEVICE AND AUTO-FOCUSING CONTROL METHOD - A vision measuring device includes: a camera which images a workpiece and transfers image information of the workpiece; a position control unit which controls an in-focus position of the camera and outputs the in-focus position as position information representing a position in a Z-axis direction; and a vision measuring machine which performs vision measurement on the workpiece based on image information and position information. The position control unit acquires and retains position information in response to a trigger signal output from the camera or the position control unit to the other at a certain timing of an imaging period during which the camera images the workpiece. The vision measuring machine calculates position information representing a position of image information in the Z-axis direction based on image information transferred from the camera and position information output from the position control unit, and performs auto-focusing control.08-23-2012
20120305746AUTO-FOCUSING APPARATUS AND AUTO-FOCUSING METHOD USING THE SAME - An auto-focusing apparatus and method, the apparatus including an emission unit, the emission unit being configured to irradiate light on the organic light-emitting display apparatus; an optical system between the organic light-emitting display apparatus and the emission unit, the optical system being configured to adjust a position of the optical system on an optical axis and focus the irradiated light on the pixel unit; a light-receiving unit, the light-receiving unit being configured to receive light reflected by the organic light-emitting display apparatus and measure an intensity and a wavelength of the reflected light; and a controller, the controller being configured to receive the intensity of light measured by the light-receiving unit, control the position of the optical system, determine that the auto-focusing apparatus is focusing light onto the pixel unit when the intensity of light received by the light-receiving unit is a maximum value, and determine the position of the optical system as an optimal focal length.12-06-2012
20130037693OPTICAL SYSTEM AND EXTREME ULTRAVIOLET (EUV) LIGHT GENERATION SYSTEM INCLUDING THE OPTICAL SYSTEM - An optical system used with a laser apparatus may include a focusing optical system, a beam splitter, and an optical sensor. The focusing optical system has one or more focus, for focusing a laser beam outputted from the laser apparatus. The beam splitter is disposed between the focusing optical system and the one or more focus of the focusing optical system. The optical sensor is disposed on a beam path of a laser beam split by the beam splitter.02-14-2013
20130062501Autofocus Device and Autofocussing Method For An Imaging Device - There is provided an autofocus device for an imaging device which has an imaging lens system with a first focal plane, an object stage for holding an object, and a first movement module for the relative movement of object stage and imaging lens system. The autofocus device comprises an image-recording module with a second focal plane, a second movement module for the relative movement of object stage and image-recording module, and a control module which controls the image-recording module for focusing the imaging device. The control module controls the first movement module such that evaluated change in distance between the object stage and the imaging lens system is carried out, and controls the second movement module such that, during the first exposure time for recording the first two-dimensional image, the object stage is moved relative to the image-recording module in a plane parallel to the second focal plane.03-14-2013
20140284449IMAGING APPARATUS AND METHOD FOR CONTROLLING SAME - An imaging element includes pixel portions each having a first sub-pixel and a second sub-pixel and outputs a phase difference detection-type focus detecting signal. An image signal A includes information for the first sub-pixel and an image signal AB includes information for the second sub-pixel. A level determining unit compares the image signal A with a threshold value SHA and compares the image signal AB with a threshold value SHAB. A correlation calculation processing unit performs correlation calculation for a signal excluding the image signal A having a level exceeding the threshold value SHA and the image signal AB having a level exceeding the threshold value SHAB so as to output the result of calculation to a CPU. The CPU calculates a focal shift amount in accordance with the result of calculation and performs a focus adjusting operation by drive-controlling a focus lens.09-25-2014
20150323760FOCUS ADJUSTMENT APPARATUS, CONTROL METHOD FOR FOCUS ADJUSTMENT APPARATUS, AND STORAGE MEDIUM - A focus adjustment apparatus includes an imaging unit, a focus detection unit configured to detect a focusing state based on a signal output from the imaging unit, a determination unit configured to determine whether an in-focus position is present within a predetermined range from a current position of a focus lens based on the detected focusing state, a control unit configured to perform control to correct the position of the focus lens moved by a manual operation according to a result of the determination made by the determination unit, and an acquisition unit configured to acquire from a storage unit a movement speed of the focus lens corresponding to the manual operation, wherein the control unit performs control to move the focus lens at a speed determined based on the movement speed acquired from the storage unit.11-12-2015
20160050359IMAGE SENSOR AND ELECTRONIC APPARATUS - The present technology relates to an image sensor and an electronic apparatus which enable higher-quality images to be obtained. Provided is an image sensor including a plurality of pixels, each pixel including one on-chip lens, and a plurality of photoelectric conversion layers formed below the on-chip lens. Each of at least two of the plurality of photoelectric conversion layers is split, partially formed, or partially shielded from light with respect to a light-receiving surface. The pixels are phase difference detection pixels for performing AF by phase difference detection or imaging pixels for generating an image. The present technology can be applied to a CMOS image sensor, for example.02-18-2016
20160065836FOCUS DETECTION APPARATUS, ELECTRONIC APPARATUS, MANUFACTURING APPARATUS, AND MANUFACTURING METHOD - There is provided a focus detection apparatus including: microlenses; light reception units that receive light which is incident through the microlenses; waveguides that cause light, which is incident to the microlenses at a predetermined angle, to be received by the light reception units and that are provided between the microlenses and the light reception units; and a detection unit that detects focusing using output values from the light reception units.03-03-2016
20160088245SOLID-STATE IMAGING DEVICE, ELECTRONIC APPARATUS, LENS CONTROL METHOD, AND IMAGING MODULE - There is provided a solid-state imaging device including: a pixel region that includes a plurality of pixels arranged in a two-dimensional matrix pattern. Some of the plurality of pixels are configured to be phase difference detection pixels that include a photoelectric conversion section disposed on a semiconductor substrate and a light blocking film disposed above a portion of the photoelectric conversion section. In particular a location of the light blocking film for the phase difference detection pixels varies according to a location of the phase difference detection pixel. For example, the location of the light blocking film for a phase difference detection pixel positioned at a periphery of the pixel region is different than a location of the light blocking film for a phase difference detection pixel positioned in a center portion of the pixel region.03-24-2016
20160156859PHOTOELECTRIC CONVERSION APPARATUS, FOCUS DETECTION APPARATUS, AND IMAGE CAPTURING SYSTEM06-02-2016
250201300 Of a microscope 18
20080251689SCANNING OPTICAL DEVICE AND OBSERVATION METHOD - A clear fluorescence image is easily obtained irrespective of variation of scattering due to variation of the depth of a focus position in a specimen. A scanning optical device includes a laser light source for emitting laser light, a scanning unit for scanning the laser light emitted from the laser light source on the specimen, a focus depth adjusting unit for adjusting the depth of the focus position in the specimen of the laser light to be scanned, a fluorescence detector for detecting fluorescence generated from the focus position of the laser light in the specimen, a reference depth information storage unit for storing the absolute height of a predetermined reference depth of the focus position of the laser light in the specimen by the focus depth adjusting unit, and a hardware setting storage unit for storing the relative height to the absolute height of the reference depth at each focus position of the laser light and at least one set value of the laser light source, the scanning unit, and the fluorescence detector in association with each other.10-16-2008
20080272273Apparatus and Method for Rapid Microscope Image Focusing - A method of capturing a focused image of a continuously moving slide/objective arrangement is provided. A frame grabber device is triggered to capture an image of the slide through an objective at a first focus level as the slide continuously moves laterally relative to the objective. Alternatingly with triggering the frame grabber device, the objective is triggered to move to a second focus level after capture of the image of the slide. The objective moves in discrete steps, oscillating between minimum and maximum focus levels. The frame grabber device is triggered at a frequency as the slide continuously moves laterally relative to the objective so multiple images at different focus levels overlap, whereby a slide portion is common to each. The image having the maximum contrast value within overlapping images represents an optimum focus level for the slide portion, and thus the focused image. Associated apparatuses and methods are also provided.11-06-2008
20080272274Apparatus and Method for Rapid Microscopic Image Focusing - A method of capturing a focused image of a continuously moving slide/objective arrangement is provided. A frame grabber device is triggered to capture an image of the slide through an objective at a first focus level as the slide continuously moves laterally relative to the objective. Alternatingly with triggering the frame grabber device, the objective is triggered to move to a second focus level after capture of the image of the slide. The objective moves in discrete steps, oscillating between minimum and maximum focus levels. The frame grabber device is triggered at a frequency as the slide continuously moves laterally relative to the objective so multiple images at different focus levels overlap, whereby a slide portion is common to each. The image having the maximum contrast value within overlapping images represents an optimum focus level for the slide portion, and thus the focused image. Associated apparatuses and methods are also provided.11-06-2008
20080283722Autofocus Device and Microscope Using the Same - A microscope apparatus 11-20-2008
20100001171MICROSCOPE EQUIPPED WITH AUTOMATIC FOCUSING MECHANISM AND ADJUSTMENT METHOD THEREFOR - Provided is a microscope equipped with an automatic focusing mechanism, comprising an illumination light source; an objective lens for focusing first light emitted from the illumination light source onto an object to be detected; an illumination light source for imaging the first light that is reflected by the object to be detected and passes through the objective lens; and a focal-point detector for detecting a positional shift of a microtiter plate from a focal position of the objective lens, wherein the focal-point detector includes a focal-point-detection light source for emitting focal-point-detection light serving as second light, a focal-point detection light acquisition unit on which the focal-point-detection light is focused, and a region setting unit which can set an in-focus assessable region of the focal-point-detection light acquired by the focal-point detection light acquisition unit to any position on the focal-point detection light acquisition unit.01-07-2010
20100264294MULTI-FOCAL SPOT GENERATOR AND MULTI-FOCAL MULTI-SPOT SCANNING MICROSCOPE - The invention relates to a spot-generator (10-21-2010
20100308205METHOD FOR AUTO FOCUS SEARCHING OF OPTICAL MICROSCOPE - A method for auto focus searching of optical microscopes is revealed. At first, sample a plurality of image signals according to a plurality of sampling positions. Then process the plurality of image signals to get a plurality of energy values. Next calculate a plurality of sharpness values of adjacent energy values and also calculate an absolute value corresponding to the sharpness value. Later check and find out a maximum value of the absolute values to get a sampling position corresponding to the image with the maximum value and use that position as the optimal focus position of the optical microscopes. By the sampling way, the energy values of the image signals are captured so as to save calculation time. Moreover, a sharpness value of adjacent energy value is also calculated so as to check the image captured at the best focus position quickly and reduce focus searching time of the optical microscope. Therefore, the focusing efficiency of the optical microscope is improved.12-09-2010
20110127406AUTO FOCUS APPARATUS AND MICROSCOPE - An reference light emitted from an LED for auto focus enters a glass cover, on which a sample is adhered to, via a half mirror to an objective lens. The reference light that entered the glass cover is reflected by the boundary surface to be reflected light, and this reflected light enters a dichroic mirror via an objective lens. A part transmits the reflected light and allows the light to enter the camera via the dichroic mirror to the lens. A user rotates a motor-operated mirror while viewing the image of the reference light captured by a camera, so as to shift the reference light image position on the boundary surface.06-02-2011
20110284720FLUORESCENCE MICROSCOPY IMAGING SYSTEM - A fluorescence microscopy imaging system is used for detecting a fluorescence signal of a sample, and includes a module for detecting fluorescence and a module for focusing control. The module for detecting fluorescence includes a fluorescence excitation light source generator (FELSG) and a fluorescence detector. The FELSG is capable of generating an excitation light beam having a first wavelength to excite the sample to emit fluorescence. The fluorescence detector is used to read the fluorescence signal of the sample. The module for focusing control generates a servo light beam having a second wavelength. A servo light beam reflecting film disposed on an observation plane is used to reflect the servo light beam. A return beam signal is analyzed using a focusing detection method. An actuator is used to move the objective for focusing, so as to enable the fluorescence excitation light beam to excite the sample to emit fluorescence.11-24-2011
20110315851FOCUS INFORMATION GENERATING DEVICE AND FOCUS INFORMATION GENERATING METHOD - It is possible to generate image data of a biological tissue in a short time.12-29-2011
20120097835DEVICES AND METHODS FOR DYNAMIC DETERMINATION OF SAMPLE POSITION AND ORIENTATION AND DYNAMIC REPOSITIONING - Provided are devices and methods for determining the spatial orientation of a target sample, which devices and methods are useful in auto focus systems. The devices and methods function by correlating (a) the location of radiation on a radiation detector of radiation reflected by the sample with (b) the position of the sample, and in some embodiments, adjusting the position of the sample, the position of an optical device, or both, in accordance with the location of radiation reflected by the sample onto the detector so as to maintain the sample in focus.04-26-2012
20120312957IMAGING SYSTEM AND TECHNIQUES - Systems and techniques for an optical scanning microscope and/or other appropriate imaging system includes components for scanning and collecting focused images of a tissue sample and/or other object disposed on a slide. The focusing system described herein provides for determining best focus for each snapshot as a snapshot is captured, which may be referred to as “on-the-fly focusing.” The devices and techniques provided herein lead to significant reductions in the time required for forming a digital image of an area in a pathology slide and provide for the creation of high quality digital images of a specimen at high throughput.12-13-2012
20130075578INVERTED MICROSCOPE - An inverted microscope includes: a microscope main body; a stage that is supported by the microscope main body; and an observation optical system that allows observing a sample placed on the stage from underneath, the microscope main body, in which an optical device can be attached between an objective lens and a tube lens which constitute the observation optical system including a plurality of stage supporting parts that support the stage; and a beam part that connects, in a manner of locating between the tube lens and the objective lens, at least a pair of stage supporting parts at front and back sides together among the plurality of stage supporting parts.03-28-2013
20130134294SYSTEM AND METHOD FOR CONTINUOUS, ASYNCHRONOUS AUTOFOCUS OF OPTICAL INSTRUMENTS - Embodiments of the present invention are directed to autofocus subsystems within optical instruments that continuously monitor the focus of the optical instruments and adjust distances within the optical instrument along the optical axis in order to maintain a precise and stable optical-instrument focus at a particular point or surface on, within, or near a sample. Certain embodiments of the present invention operate asynchronously with respect to operation of other components and subsystems of the optical instrument in which they are embedded.05-30-2013
20140246560OPTICAL SCANNING APPARATUS AND SCANNING MICROSCOPE APPARATUS - Provided is an optical scanning apparatus including: a deflector capable of deflecting an entering beam while switching an advancing direction thereof among a plurality of direction at a predetermined switching timing; a mirror array including a plurality of angle setting mirrors that are placed at angles different from one another on respective optical paths of the beams deflected by the deflector, each of the angle setting mirrors reflecting the beam while giving thereto a relative angle on the same plane for each optical path, and gathering the beam on the same point; and a first scanner that is provided so as to be swingable about an axial line perpendicular to the plane in synchronization with the switching timing, the first scanner reflecting each beam that is caused by the mirror array to enter the same point from a different direction and applying for scanning the beam along the same trajectory.09-04-2014
20140252200POLYFOCAL INTERFEROMETRIC IMAGE ACQUISTION - A microscope-based system and method for simultaneous imaging of several object planes, of a three-dimensional (3D) sample, associated with different depths throughout the sample. The system includes a polyfocal optical portion, adapted to create a plurality of optical channels each of which is associated with an image of a corresponding object plane, and a spectrally-selective portion, adapted to transform the spectral distribution of the image-forming beam of light to a corresponding spatial distribution. The image, registered by a detector, includes an image of an object plane and an image of the spatially-coded spectral distribution. The method effectuates the simultaneous multispectral imaging of the several object planes. The required data-acquisition time is several fold shorter than that taken by a conventional multispectral microscope-based imaging system.09-11-2014
20140299742PATTERN IRRADIATION APPARATUS - A pattern irradiation apparatus includes a light source unit, an objective that irradiates a sample plane with light emitted from the light source unit, a spatial light modulator of a phase modulation type that is arranged at a position conjugate with a pupil position of the objective and that modulates a phase of the light emitted from the light source unit, a light blocking member that is arranged in an optical path between the spatial light modulator and the objective and that is configured to block 0-order light generated by the spatial light modulator, and a control device that makes a correspondence between a focusing position of the 0-order light generated by the spatial light modulator and a position of the light blocking member.10-09-2014
20160041366AUTOFOCUS DEVICE AND SAMPLE OBSERVATION DEVICE - The autofocus device for a sample observation device provided with an objective is provided with a photodetector, an autofocus optical system that includes a tube lens, that guides light to one of two regions of a pupil plane of the objective that has been divided into two, and that guides light that has passed through the other region after being reflected by a sample to the photodetector, and a light shielding member which is arranged between the tube lens and a light receiving plane of the photodetector and on which an aperture has been formed. The autofocus device satisfies 2.1<ΦAP/(2·ΦLD), where ΦAP represents a diameter of the aperture and ΦLD represents a light flux diameter, on the light shielding member, of light reflected by the sample in a state in which the light is condensed on the light receiving plane.02-11-2016
250201400 Active autofocus 22
20080283723OPTICAL CHARACTERISTIC MEASURING APPARATUS USING LIGHT REFLECTED FROM OBJECT TO BE MEASURED AND FOCUS ADJUSTING METHOD THEREFOR - An observation light generated by an observation-purpose light source has a beam cross section where the light intensity (light quantity) is substantially uniform. A mask portion masks a part of the observation light so that the light intensity of a region corresponding to a reticle image at the beam cross section is substantially zero. The observation light including a shadow region formed corresponding to the reticle image is reflected from a beam splitter and applied to an object to be measured. Based on the contrast (difference between light and dark parts) of a reflected image corresponding to the reticle image projected on the object to be measured, the focus state of the measurement light on the object to be measured is determined.11-20-2008
20090014624PORTABLE ILLUMINATION DEVICE - The present invention relates to a portable illumination device (01-15-2009
20090146045IMAGING APPARATUS WITH AUTOFOCUS FUNCTION, IMAGING METHOD, STORAGE MEDIUM, AND INTEGRATED CIRCUIT - An imaging apparatus executes AF control without affecting a video signal and prevents video signal qualities in an in-focus state from decreasing. An optical path separation unit 06-11-2009
20090152440EXTENDED RANGE FOCUS DETECTION APPARATUS - An extended range focus sensor is provided. In various embodiments, the focus sensor may include a relay lens assembly to image a plane between an objective lens and the relay lens arrangement to a plane near an entrance pupil of a focus detector arrangement of the focus sensor. In some embodiments, the objective lens pupil is imaged onto the focus detector entrance pupil. In some embodiments, an illumination beam passes through the relay lens arrangement and is magnified on its way to be output by the objective lens, and the reflected focus detection beam passes back through the objective lens and the relay lens arrangement and is reduced prior to being input to the focus detector arrangement. In some embodiments, the focus detector arrangement may comprising a broad range focus detector combined with a high resolution Shack-Hartmann focus detector, and in others a single extended range Shack-Hartmann focus detector is used.06-18-2009
20090250590LASER IRRADIATION METHOD AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE SAME - The present invention is to provide a laser irradiation method for performing homogeneous laser irradiation to the irradiation object even when the thickness of the irradiation object is not even. In the case of irradiating the irradiation object having uneven thickness, the laser irradiation is performed while keeping the distance between the irradiation object and the lens for condensing the laser beam on the surface of the irradiation object constant by using an autofocusing mechanism. In particular, when the irradiation object is irradiated with the laser beam by moving the irradiation object relative to the laser beam in the first direction and the second direction of the beam spot formed on the irradiation surface, the distance between the irradiation object and the lens is controlled by the autofocusing mechanism before the irradiation object is moved in the first and second directions.10-08-2009
20090302197LIQUID LENS DRIVING METHOD, LIGUID LENS DRIVER, AND IMAGE PICKUP METHOD AND IMAGE PICKUP DEVICE USING LIQUID LENS - A liquid lens driver 12-10-2009
20100133417AUTOFOCUS DEVICE - An autofocus device includes an objective lens, an observation optical system, a driving mechanism that displaces the objective lens in an optical axis direction thereof, an illumination-optical-system optical path used to illuminate a measurement surface of a measurement object through the objective lens with light, and a pattern-projection-optical-system optical path. An electronic control shutter, a pattern projection plate having a predetermined pattern formed thereon, and a projection lens are provided in the pattern-projection-optical-system optical path.06-03-2010
20100264295BEAM SHAPER, OPTICAL SYSTEM AND METHODS USING THE SAME - An optical beam shaper comprises a polarization-dependent phase adjustment member which applies a phase pattern of equal magnitude and opposite sign to two orthogonal polarization states. In a preferred embodiment the beamer shaper is a dif tractive element made of a birefringent material, such as a photo-polymerizable liquid crystal polymer frozen in a uniaxial alignment, said dif tractive element comprising a plurality of zones, each zone having a stepped thickness defining a plurality of steps. The beam shaper can be used to introduce astigmatism to a polarized light beam or to undo the astigmatism to a beam with an orthogonal polarization state. The beam shaper is advantageously used within a detection device, such as a fluorescence scanner.10-21-2010
20110006189DOUBLE-LENS OPTICAL SCANNING DEVICE AND METHOD OF USING THE SAME - A double-lens optical scanning device and method of using the same. Wherein, a housing of said optical scanning device is provided with a photograph cartridge insertion slot and a negative cartridge insertion slot, that can be inserted photograph-, negative-, or slide-to-be-scanned. Said housing comprises a light source, two optical lenses, and at least an image sensor. Said two optical lenses are provided with different light paths, such that said image sensor is utilized to determine a category of an object-to-be-scanned, in selecting said optical lens to be used and a direction of said light source. A switching circuit is utilized to switch said optical lens to be used, fetch an image of said object-to-be-scanned, and then focus it onto said image sensor to form said image, and convert it into digital data for output.01-13-2011
20110101203SYSTEM AND METHOD FOR CONTINUOUS, ASYNCHRONOUS AUTOFOCUS OF OPTICAL INSTRUMENTS - Embodiments of the present invention are directed to autofocus subsystems within optical instruments that continuously monitor the focus of the optical instruments and adjust distances within the optical instrument along the optical axis in order to maintain a precise and stable optical-instrument focus at a particular point or surface on, within, or near a sample. Certain embodiments of the present invention operate asynchronously with respect to operation of other components and subsystems of the optical instrument in which they are embedded.05-05-2011
20120175495AUTOFOCUS SYSTEM WITH STRAY LIGHT COMPENSATION - An autofocus system adaptable for use in microscopes or other optical systems incorporates an auxiliary photodetector that measures light only from a reference light source. An outgoing reference beam, incident upon a target to be inspected, is reflected to become an incoming reference beam incident on a photodetector. The photodetector generates a focus error signal proportional to the displacement of the target from the ideal focal point. The auxiliary photodetector generates a correction signal proportional to the output of the reference light source. The correction signal is used to compensate the focus error signal for stray light generated by the reference light source. The compensated focus error signal may be used to drive a servomechanism to displace either the target or the microscope objective lens to bring the target into focus. The correction signal may also be used to compensate the reference light source gain to control the reference light source output.07-12-2012
20120187275VISION MEASURING DEVICE - A vision measuring device includes: an imaging device which images a workpiece; an illumination device which irradiates the workpiece with light; a position control system which controls an in-focus position of the imaging device and outputs the in-focus position as information representing a position in an in-focus axis direction; and a control device which, when the position control system controls the in-focus position, controls the frame rate of the imaging device, and controls at least one of the imaging device and the illumination device such that an amount of light to be received by the imaging device becomes substantially constant.07-26-2012
20120235016System, Method, and Product for Scanning of Biological Materials - An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.09-20-2012
20130015320METHOD AND APPARATUS FOR GENERATING FOCUS ERROR SIGNAL, OPTICAL HEAD AND OPTICAL DRIVING APPARATUSAANM KAWAMURA; TomotoAACI YokohamaAACO JPAAGP KAWAMURA; Tomoto Yokohama JPAANM Oishi; KotaroAACI FujisawaAACO JPAAGP Oishi; Kotaro Fujisawa JPAANM Nakamura; ToshiteruAACI YokohamaAACO JPAAGP Nakamura; Toshiteru Yokohama JP - In a method and apparatus for generating a focus error signal, an optical head and an optical driving apparatus are configured such that a light beam is divided into at least two light beams, coma aberration of a predetermined direction is added to one of the divided light beams, and coma aberration of a direction different from the predetermined direction of the coma aberration is added to the other divided light beam to thereby generate the focus error signal.01-17-2013
20130161484AUTO-FOCUSING APPARATUS AND METHOD WITH TIMING-SEQUENTIAL LIGHT SPOTS - An auto-focusing apparatus with timing-sequential light spots includes a light source, a lens, a timing-sequential light dividing module, a focusing element and a processing module. The light source produces an incident beam. The lens collimates the incident beam that is an unsymmetrical beam relative to the lens to a collimation beam. The timing-sequential light dividing module divides the collimation beam into multiple sub-beams in timing sequence. The focusing element focuses the sub-beams to an observed object. The processing module senses energy distribution of multiple reflected beams of the observed object corresponding to the sub-beams to accordingly calculate energy centroids of the reflected beams.06-27-2013
20130214121POSITION DETECTOR AND AUTOFOCUS CONTROL APPARATUS - An autofocus control apparatus includes a beam splitter, a condenser lens and a detector. The beam splitter directs light beams from a light source toward a sample and passes light beams reflected from the sample to the condenser lens. The condenser lens condenses the light beams, and the detector detects a focal point deviation of the sample relative to a focal point of the condenser lens. The focal point deviation is detected based on an intersection of a focal line passing through different focal points of the condenser lens and a light receiving plane configured to receive the light beams passing through the condenser lens.08-22-2013
20130256505IMAGING DEVICE, IMAGING METHOD, PROGRAM, IMAGING SYSTEM, AND ATTACHMENT DEVICE - There is provided an imaging device including a lighting unit whose lighting directions to a subject are able to be switched, and a control unit that performs focus adjustment on the subject for every lighting directions to calculate evaluation values in accordance with focus states, and determines a direction in which a focus state becomes best as a lighting direction based on the evaluation values to capture the subject.10-03-2013
20150349011PHOTOELECTRIC CONVERSION APPARATUS AND IMAGING SYSTEM - A photoelectric conversion apparatus has light receiving elements disposed on an imaging plane. The light receiving element includes a plurality of photoelectric conversion portions arrayed in a first direction parallel to the imaging plane, across an isolation portion, and a light guide portion extending over the plurality of photoelectric conversion portions. In a first plane which is parallel to the imaging plane and which traverses the light guide portion, a greatest width of the light guide portion in the first direction is larger than a greatest width of the light guide portion in a second direction parallel to the imaging plane and orthogonal to the first direction.12-03-2015
250201500 With optical storage medium; e.g., optical disc, etc. 4
20080277562Information Processing Device - Light emitted from alight source (11-13-2008
20080315069OPTICAL HEAD DEVICE - An optical head device includes a light source which emits a light beam, an objective lens which condenses the light beam on the optical disk, a condensing lens which condenses reflected light from the optical disk, a liquid crystal panel disposed near a focal point of the condensing lens and having pixels, a driver which drives the pixels of the liquid crystal panel to pass the reflected light from a reproduction layer of the optical disk and partially interrupt the reflected light from a non-reproduction layer of the optical disk, and a photodetector which detects light passed through the liquid crystal panel.12-25-2008
20090121117Optical Head Device, Optical Information Recording/Reproducing Apparatus and Operation Method of Optical Information Recording/Reproducing Apparatus - An optical head device is provided with an objective lens (05-14-2009
20090278029PICKUP DEVICE - A pickup device includes an irradiation optical system containing an objective lens for forming a spot by converging a light beam onto a track of a recording surface of an optical recording medium having a plurality of laminated recording layers; and a detection optical system containing a photodetector for receiving, through the objective lens, return light which was reflected and returned from the spot to perform a photoelectric conversion, in which a position of the objective lens is controlled in response to an electric signal arithmetically operated from an output of the photodetector. The photodetector includes a plurality of photosensing element groups which are arranged away from each other on a plane to which an optical axis of the return light penetrates perpendicularly and each of the groups is composed of a plurality of photosensing elements. The pickup device further comprises a dividing element disposed on another plane to which the optical axis of the return light penetrates perpendicularly. The dividing element has: at least two division regions which are formed so as to be line-symmetrical with respect to a track directional line which intersects with the optical axis of the return light and extends in parallel with the track; at least two division regions which are formed so as to be line-symmetrical with respect to a track vertical line which intersects with the optical axis of the return light and extends in the direction perpendicular to the track; and a center division region which includes the optical axis of the return light and is formed so as to be point-symmetrical with respect to the optical axis of the return light. The dividing element divides the return light into a plurality of partial light beams at respective division regions to deflecting the partial light beams from the division regions other than the center division region to the photosensing element groups.11-12-2009
250201600 Based on triangulation 2
20080283724Focus detection optical system, and imaging apparatus incorporating the same - The invention relates to a focus detection optical system used with the so-called autofocus (AF) system mounted on single-lens reflex cameras (SLRs) or the like, and an imaging apparatus incorporating it. The focus detection optical system comprises at least n focus detection areas that are adjacent to or intersect each other on a predetermined imaging plane, where n≧2. A re-imaging lens group comprises n+1 re-imaging lenses, A (n−1)th re-imaging lens and an nth re-imaging lens are a pair of re-imaging lenses that correspond to a (n−1)th focus detection area and are adjacent to each other. An nth re-imaging lens and a (n+1)th re-imaging lens are a pair of re-imaging lenses that correspond to the nth focus detection area and are adjacent to each other. The (n−1)th re-imaging lens and (n+1)th re-imaging lens are located at different positions.11-20-2008
20090146046IMAGE-CAPTURING ELEMENT AND IMAGE-CAPTURING APPARATUS - An image-capturing element includes a pair of photoelectric conversion cells that pupil-divide object light in a first direction and in a second direction and that output a ranging signal. The photoelectric conversion cells include a photoreceiving element configured to receive the object light and generate a ranging signal, a first light-shielding layer having a first light-transmitting area, and a second light-shielding layer having a second light-transmitting area. The photoelectric conversion cells include a first photoelectric conversion cell in which the first light-transmitting area is offset in the first direction on the first light-shielding layer and the second light-transmitting area is offset in the second direction on the second light-shielding layer, and a second photoelectric conversion cell in which the first light-transmitting area is offset in the second direction on the first light-shielding layer and the second light-transmitting area is offset in the first direction on the second light-shielding layer.06-11-2009
250201700 Based on contrast 3
20090146047Apparatus and method for resonant lens focusing - A method and apparatus for focusing an image on a pixel array. The method includes the steps of continuously changing the distance between a lens and a pixel array between a first distance and a second distance and obtaining an image projected onto the pixel array through the distance is changing. The apparatus includes a lens and an electromechanical structure to continuously change the distance between the lens and the pixel array between the first distance and the second distance.06-11-2009
20140191109Assay Apparatuses, Methods and Reagants - Apparatuses, systems, method, reagents, and kits for conducting assays as well as process for their preparation are described. They are particularly well suited for conducting automated analysis in a multi-well plate assay format.07-10-2014
20140332661FOCUS ADJUSTMENT APPARATUS, FOCUS ADJUSTMENT METHOD, STORAGE MEDIUM STORING FOCUS ADJUSTMENT PROGRAM, AND IMAGING APPARATUS - A focus adjustment apparatus has: an imaging unit that is capable of outputting a pair of focus detection signals by photoelectrically converting rays of light which pass through different pupil areas of a focusing optical system; a focus detection unit for detecting a first defocus amount by executing a first filter processing to the pair of focus detection signals; a determination unit for determining a focus state on the basis of the first defocus amount; an evaluation value generation unit for generating an evaluation value of the first defocus amount by executing a second filter processing to the pair of focus detection signals in accordance with a result of the determination; and a control unit for evaluating the result of the determination about the focus state on the basis of the evaluation value and controlling a focus adjustment in accordance with a result of the evaluation.11-13-2014
250201800 Based on image shift 5
20080258039Focus detection device, focus detection method and imaging apparatus - A focus detection device comprises: an image shift detection unit that detects a relative shift amount of a pair of images formed by a pair of light fluxes having passed through an optical system; and a conversion unit that converts the shift amount to a defocus amount based upon dimensional information of an exit pupil corresponding to an aperture restricting light flux in the optical system and distance information of the exit pupil indicating distance to the exit pupil from a predetermined imaging plane of the optical system.10-23-2008
20080302947Focus detection device and image pick-up device - A focus detection device includes a micro lens array having a plurality of micro lenses, a light receiving element array having a plurality of light receiving elements for each micro lens and that receives light rays from a plurality of partial areas in which pupils of an imaging optical system are different from each other, in a plurality of light receiving elements respectively through each micro lens and a focus detection calculation circuit. The device generates at least three signal strings respectively corresponding to images of light rays which have been transmitted through at least three of the partial areas, based on signals output from the plurality of light receiving elements of the light receiving element array. The device obtains, from the at least three signal strings, shift amounts of two signal strings corresponding to two partial areas, and detects a focus adjustment state of an imaging optical system based on the obtained plurality of shifts amounts.12-11-2008
20090039233Image data processing method and imaging apparatus - An image data processing method for sharpening a captured image; the method defines a first transformation equation to change the pixel values of a defocused image into a focused image using the coordinates of the defocused image and the focused image as arguments, calculates a DetailedFocus function from the optimal solution of the first transformation equation by giving the pixel values of the focused image and the defocused image as educational data, extracts a predetermined number of important points on the DetailedFocus function, defines a second transformation equation to change the pixel values of the important points of a defocused image into a focused image using the coordinates of the defocused image and the focused image as arguments, calculates a SmartFocus function from the second transformation equation, and produces a focused image from a defocused image using the SmartFocus function.02-12-2009
20090127430COMPOUND-EYE IMAGING APPARATUS - A plurality of imaging optical lenses (05-21-2009
20100181462OPTICAL TOMOGRAPHIC IMAGING APPARATUS - Provided is an optical tomographic imaging apparatus that is capable of shortening a period of time of focusing at multiple focus positions when images split in a depth direction are obtained by zone focusing. The optical tomographic imaging apparatus includes: a focus position setting device for splitting a zone within a predetermined imaging depth range into multiple focus zones so as to set multiple focus positions; a reference position setting device for setting at least two reference positions in an imaging depth direction within the predetermined imaging depth range; and a focus controlling device for performing focusing at the multiple focus positions sequentially based on focus position information generated by the focus position setting device and determining a focus condition of an in-focus state for the at least two reference positions set in advance by the reference position setting device.07-22-2010

Patent applications in class Automatic focus control

Patent applications in all subclasses Automatic focus control

Website © 2025 Advameg, Inc.