Class / Patent application number | Description | Number of patent applications / Date published |
250390040 | Composition analysis | 12 |
20090114834 | EXPLOSIVES DETECTOR - Apparatus and methods for determining the absence or presence of contraband in an object with a fast neutron source for irradiating the object; a detector for measuring γ-rays emitted by the irradiated object from energy state relaxation as a result of neutron capture, typically after the object has been irradiated. | 05-07-2009 |
20100019164 | Neutron detector - A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained. | 01-28-2010 |
20100148084 | Process for neutron interrogation of objects in relative motion or of large extent - The invention relates to the fact that a common industrial neutron interrogation screening requirement is that a high throughput rate be accommodated by the screening system. The accumulation of elemental abundance ratio spectral data to minimize statistical uncertainty is a function of the neutron flux passing through the subject. If the subject passes through a neutron beam, with a strictly limited time window for exposure, the flux must be sufficient to accumulate the required statistics. The level of neutron flux necessary may exceed the cost effective limits of the selected neutron source means. Exposure time window dilation is disclosed through a class of system configurations which become practical for reduction to practice by utilization of linear neutron source topology neutron generators. This disclosure is concerned with example embodiments which utilize the length, width, thickness and segmentation of the source emission zone within an appropriate neutron source. | 06-17-2010 |
20100224788 | VARIOUS ARRANGEMENTS OF RADIATION AND FISSILE MATERIALS DETECTION SYSTEMS USING SENSOR ARRAYS IN SPREADER BARS, GANTRY CRANES, SELF-PROPELLED FRAME STRUCTURES, AND TRANSPORT VEHICLES - Sensor arrays arranged in a detection system provide high performance detection of the presence of fissile material and radioactive material in cargo containers and at moderate cost. One or more sensor arrays operate to detect gamma and/or neutron radiation from one or more sides of a container that can be in transport relative to at least one of a spreader bar, a gantry crane, a self-propelled frame structure, and a transport vehicle. A combined use of any two or more of the following: a spreader bar radiation detector array, radiation detectors deployed on the frame of a gantry crane, extended radiation detectors, and a detector array deployed on a BOM cart, truck bed, or bottom area of the container, as the container is moved at a port enables comprehensive coverage of the container under inspection. | 09-09-2010 |
20110233419 | REMOTE DETECTION OF EXPLOSIVE SUBSTANCES - Apparatus and methods for effectively detecting and locating explosive substances within remote targets, including improvised explosive devices (IEDs). The detection apparatus includes a neutron beam generator, a gamma ray detector, data collection modules and sensors, and a detection processing module. The neutron beam generator includes a fast neutron source, a neutron moderator to slow some or all of the fast neutrons to thermal energies, a partially enclosing neutron shield, and a rotatable neutron shield surrounding the generated neutrons. The neutron shield has an aperture to form a neutron beam directed at a remote target. If the remote target contains explosive substances, gamma rays radiate isotropically from the remote target when it is bombarded by the neutrons. A portion of these gamma rays are intercepted and detected by the gamma ray detector, which is spaced apart from the neutron source. The detection processing module determines whether the remote target contains explosive substances and further locates the target by processing the collected data from the gamma ray detector, status information collected from the neutron source, and the position sensor(s) associated with the neutron shield. | 09-29-2011 |
20120199753 | Portable Detection Apparatus - A portable detection apparatus for scanning a target object comprises, in an exemplary embodiment, a tower unit, sensor unit and electronics unit, each configured for removable engagement with one another for relatively quick disassembly during transport and storage and reassembly during use. Additionally, each unit is sized and configured for ease of transport and for being able to operate in relatively confined spaces. The sensor unit is configured for selective engagement with a vertically oriented tower column of the tower unit, and is capable of not only traversing the length of the tower column but also rotating both horizontally and vertically thereabout, allowing the sensor unit to articulate and be selectively positionable adjacent the target object regardless of the target object's location. The electronics unit is selectively engagable with the tower unit and provides a portable computing device configured for remotely operating the sensor unit a safe distance away. | 08-09-2012 |
20120235051 | METHOD, APPARATUS, AND SYSTEMS FOR REMOTELY MONITORING THE LOCATION AND USAGE HISTORY OF RADIOACTIVE MATERIALS STORED WITH A SHIELDED CONTAINER OR OVERPACK - A radioactive source information tracking and reporting system and method is disclosed. The system and method include a device operable to detect a presence of a radioactive source contained within a shielded container. The device is further operable to detect a location of the shielded container. A message is generated and transmitted to a central facility. The message includes a shielded container identifier, a location of the shielded container, and an indication of the presence of the radioactive source. | 09-20-2012 |
20130327948 | Methods and Systems for Time-of-Flight Neutron Interrogation for Material Discrimination - The present invention provides a Time-of-Flight based neutron inspection system. The system employs a collimated beam of fast neutrons for targeted interrogation of suspect areas in cargo. Elemental composition is determined as a function of depth. Analysis is then used to determine the presence of contraband. The system may be used for secondary inspection for material discrimination to reduce false alarm rate and high cost and time associated with manual unpacking | 12-12-2013 |
20140284490 | CHEMICAL DETECTION SYSTEM AND RELATED METHODS - A chemical detection system includes a frame, an emitter coupled to the frame, and a detector coupled to the frame proximate the emitter. The system also includes a shielding system coupled to the frame and positioned at least partially between the emitter and the detector, wherein the frame positions a sensing surface of the detector in a direction substantially parallel to a plane extending along a front portion of the frame. A method of analyzing composition of a suspect object includes directing neutrons at the object, detecting gamma rays emitted from the object, and communicating spectrometer information regarding the gamma rays. The method also includes presenting a GUI to a user with a dynamic status of an ongoing neutron spectroscopy process. The dynamic status includes a present confidence for a plurality of compounds being present in the suspect object responsive to changes in the spectrometer information during the ongoing process. | 09-25-2014 |
20150323473 | ELEMENTAL ANALYSIS USING TEMPORAL GATING OF A PULSED NEUTRON GENERATOR - Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing device outputs data that is indicative of elemental composition of the sample based upon the binned pulses. | 11-12-2015 |
20150338356 | AIR SLIDE ANALYZER SYSTEM AND METHOD - Systems and Methods for an air slide analyzer for measuring the elemental content of aerated material traveling by air slide. The air slide analyzer has an analyzer having an entrance opening and an exit opening, and an interior tunnel adapted for aerated material conveyed by an air slide; a radiation detector proximal to the analyzer; a neutron source emitting neutrons into material within the analyzer; and a processor to analyze detected information from the radiation detector, wherein emissions from the material being irradiated with neutrons are detected by the radiation detector and analyzed by the processor to provide elemental information of the material in the analyzer. | 11-26-2015 |
20160025872 | COMPOSITIONS AND METHODS FOR MONITORING ACTINIDES - Compositions and methods for monitoring the quantity of actinides present in a test sample are disclosed. Compositions and methods for monitoring the motion of special nuclear materials through space are also described. Compositions and methods for monitoring the quantity of a fissile special nuclear material present in a test sample are disclosed. Compositions and methods for monitoring actinides during reprocessing of spent nuclear fuel after 30-year cool down are disclosed. Compositions and methods for monitoring actinides during reprocessing of spent nuclear fuel after 180 day cool down are also disclosed. | 01-28-2016 |