Class / Patent application number | Description | Number of patent applications / Date published |
250370140 | Particular detection structure (e.g., MOS, PIN) | 38 |
20090057565 | COSMIC RAY DETECTORS FOR INTEGRATED CIRCUIT CHIPS - A cosmic ray detector includes a cantilever with a first tip. The detector also includes a second tip and circuitry to provide a signal indicative of a distance between the first and second tips being such as would be caused by a cosmic ray interaction event. | 03-05-2009 |
20090166547 | RADIATION IMAGE PICKUP APPARATUS AND ITS CONTROL METHOD - Each pixel is provided with a photoelectric converting device S | 07-02-2009 |
20090218503 | Semiconductor X-Ray Detector Device - A semiconductor X-ray detector device has an i layer configured to substantially a circular cylindrical shape but not a conventional top-hat shape and a p layer provided to substantially cover the circumferential side of the i layer. Both an n+ layer and an n surface electrode are arranged smaller in the area than the bottom at the n surface electrode side of the i layer in order to expose the i layer entirely to the electric field E. Accordingly, the spectrum remains not fractured in the profile when the n+ layer and the n surface electrode are not greater in the area than 33% of the bottom at the n surface electrode side of the i layer, hence permitting the resolving power to stay high. | 09-03-2009 |
20090250622 | DESIGN STRUCTURE FOR ALPHA PARTICLE SENSOR IN SOI TECHNOLOGY AND STRUCTURE THEREOF - The invention relates to a design structure, and more particularly, to a design structure for an alpha particle sensor in SOI technology and a circuit thereof. The structure is a silicon-on-insulator radiation detector which includes: a charge collection node; a precharge transistor that has a source from the charge collection node, a drain at Vdd, and a gate controlled by a precharge signal; an access transistor that has a source from the charge collection node, a drain connecting to a readout node, and a gate controlled by a read-out signal; and a detector pulldown transistor having a drain from the charge collection node, a source to ground, and a grounded gate. | 10-08-2009 |
20090283689 | RADIATION DETECTING APPARATUS, AND RADIATION IMAGE PICKUP SYSTEM - In a radiation detecting apparatus of the invention, plural pixels are arranged, and the pixel has a conversion element converting a radiation into an electric signal and a switching element connected to the conversion element. The conversion element includes a first electrode disposed on a first surface of an insulating substrate, a second electrode disposed on the first electrode, and a semiconductor layer disposed between the first electrode and the second electrode. The first electrode is made of a light-transmitting conductive material which transmits light emitted from a light source, and the first electrode is formed from a light transmitting electroconductive material transmitting light emitted from a light source disposed on a second surface of the insulating substrate opposite to the first surface. The switching element has a light shielding member which prevents incidence of the light from the light source to the switching element. | 11-19-2009 |
20100123084 | Betavoltaic radiation detector - A detector for beta particles emitted from a radioisotope is provided by applying a reverse bias to a betavoltaic cell having a 4H silicon carbide semiconductor and using an outer exposure surface of the p-type layer of the semiconductor as the surface for receiving radiation. | 05-20-2010 |
20100133441 | Semiconductor Radiation Detector With a Modified Internal Gate Structure - A semiconductor radiation detector device comprises a conductive backside layer ( | 06-03-2010 |
20100133442 | X-RAY DETECTOR MODULE WITH A COLLIMATOR - The invention relates an x-ray detector module comprising a plurality of silicium-drift detector cells which are arranged next to each other on a sensor chip. Said sensor chip is arranged in a recess of a frame-shaped base support, such that the sensitive chip surface lies in the opening of said frame-shaped base support. The aim of the invention is to improve the signal/base ratio. As a result, a mask ( | 06-03-2010 |
20100155615 | ROBUST RADIATION DETECTOR COMPRISING DIAMOND - A radiation detector comprises a substrate of diamond material and at least one electrode formed at a surface of the substrate. The electrode comprises electrically conductive material deposited in a cavity in the surface of the substrate so that at least a portion of the material of the electrode is below the surface of the substrate. The cavity will typically be an elongate trench or channel in which electrically conductive material such as boron-doped diamond is deposited. In some embodiments, at least two electrodes are located adjacent to one another at the surface of the substrate. In other embodiments, the device has a plurality of electrodes, at least one of which is located at a first surface and at least one of which is located at an opposed second surface of the substrate. In the latter case, an electrode at one surface of the substrate can be connected to an electrode at the opposed surface of the substrate by means of a conductive via, which consists of a through-hole filled or coated with conductive material. Typically, the electrodes are arranged in an interdigitated configuration, each electrode having a plurality of elongate electrode elements. Each such electrode element extends parallel to at least one adjacent electrode element of another electrode. | 06-24-2010 |
20100163741 | RADIATION DETECTOR - In the radiation detector of this invention, the second common electrode is formed on the incidence surface of the seat so as to cover at least a portion of the seat and the second common electrode is connected to the first common electrode. Thus, the second common electrode is bent at the periphery of the semiconductor and the seat, and a bent portion thereof is formed sharp. The first common electrode formed along the incidence surface of the semiconductor is disposed under the sharp portion of the second electrode (i.e., opposite to the incidence surface). Consequently, the common electrode seen from a bottom (opposite to the incidence surface) has a uniform shape, which avoids occurrence of irregular concentration of the electric fields. As a result, dark current due to concentration of the electric fields may be suppressed. | 07-01-2010 |
20100252744 | RADIATION DETECTOR WITH A PLURALITY OF ELECTRODE SYSTEMS - The invention relates to a radiation detector that comprises a converter element and a plurality of electrode systems arranged on said element, wherein each electrode system comprises a primary electrode and a supplementary electrode, which are connected to a readout circuitry. The primary and the supplementary electrodes may particularly be realized by planar, parallel stripes extending in a common plane, wherein said stripes are electrically connected above said plane. | 10-07-2010 |
20110012023 | DEVICE FOR DETECTING RADIATION WITH IMPROVED ARRANGEMENT - The invention relates to a device for detecting electromagnetic radiation, in particular ionizing radiation, consisting of an assembly of juxtaposed parallelepipedic semiconductor detection blocks ( | 01-20-2011 |
20110017919 | RADIATION DETECTING APPARATUS, AND RADIATION IMAGE PICKUP SYSTEM - In a radiation detecting apparatus of the invention, plural pixels are arranged, and the pixel has a conversion element converting a radiation into an electric signal and a switching element connected to the conversion element. The conversion element includes a first electrode disposed on a first surface of an insulating substrate, a second electrode disposed on the first electrode, and a semiconductor layer disposed between the first electrode and the second electrode. The first electrode is made of a light-transmitting conductive material which transmits light emitted from a light source, and the first electrode is formed form a light transmitting electroconductive material transmitting light emitted form a light source disposed on a second surface of the insulating substrate opposite to the first surface. The switching element has a light shielding member which prevents incidence of the light from the light source to the switching element. | 01-27-2011 |
20110049377 | CHARACTERIZING RADIOTHERAPY BEAMS BASED ON IMAGE DETECTION ARRAY DATA - A method for determining parameters of a beam is disclosed. As a part of a disclosed method, a beam is received at an image detection array where charges are generated and collected, at a plurality of pixels. Values associated with at least one of a plurality of parameters of the beam are determined by integrating information supplied from each of the pixels. Feedback is generated that represents the values. | 03-03-2011 |
20110089331 | Neutron Detector Cell Efficiency - Neutron detection cells and corresponding methods of detecting charged particles that make efficient use of silicon area are set forth. Three types of circuit cells/arrays are described: state latching circuits, glitch generating cells, and charge loss circuits. An array of these cells, used in conjunction with a neutron conversion film, increases the area that is sensitive to a strike by a charged particle over that of an array of SRAM cells. The result is a neutron detection cell that uses less power, costs less, and is more suitable for mass production. | 04-21-2011 |
20110155918 | SYSTEMS AND METHODS FOR PROVIDING A SHARED CHARGE IN PIXELATED IMAGE DETECTORS - Systems and methods for providing a shared charge in pixelated image detectors are provided. One method includes providing a plurality of pixels for a pixelated solid state photon detector in a configuration such that a charge distribution is detected by at least two pixels and obtaining charge information from the at least two pixels. The method further includes determining a position of an interaction of the charge distribution with the plurality of pixels based on the obtained charge information. | 06-30-2011 |
20110233418 | RADIATION DETECTOR - A radiation detector is disclosed. The detector includes a detector element on which electrodes are formed. First and second electrodes are provided at a first surface of the detector element, and are arranged such that, on application of an electric field between the first and second electrodes, a first detector region is formed adjacent the first surface of the detector element. A third electrode is provided on a second surface of the detector element, and is arranged such that, on application of an electric field between the first and third electrodes, a second detection region is formed between the first and second surfaces of the detector element. The first and second detection regions are differently sized for the detection of different types of radiation. Device for detecting radiation, and handheld devices containing such device, are also disclosed. | 09-29-2011 |
20110272590 | REMOTE DETECTION OF EXPLOSIVE SUBSTANCES - Apparatus and methods for effectively detecting and locating explosive substances within remote targets, including improvised explosive devices (IEDs). The detection apparatus includes a neutron beam generator, a pixilated gamma ray detector, data collection modules and sensors, and a detection processing module. The neutron beam generator includes a fast neutron source, a neutron moderator to slow some or all of the fast neutrons to thermal energies, a partially enclosing neutron shield, and a rotatable neutron shield surrounding the generated neutrons. The neutron shield has an aperture to form a neutron beam directed at a remote target. If the remote target contains explosive substances, gamma rays radiate isotropically from the remote target when it is bombarded by the neutrons. A portion of these gamma rays are intercepted and detected by a plurality of discrete gamma sensing elements contained in the gamma ray detector, which is spaced apart from the neutron source. The detection processing module determines whether the remote target contains explosive substances and further locates the target by processing the collected data from the gamma ray detector, status information collected from the neutron source, and the position sensor(s) associated with the neutron shield. | 11-10-2011 |
20120032088 | DETECTION APPARATUS AND RADIATION DETECTION SYSTEM - A stacked-type detection apparatus including a plurality of pixels arranged at small intervals is configured to have low capacitance associated with signal lines and/or driving lines. With this novel configuration, small time constant and high-speed driving capability can be achieved in the signal lines and/or driving lines. The plurality of pixels in the detection apparatus are arranged in a row direction and a column direction on an insulating substrate. Each pixel includes a conversion element and a switch element, the conversion element is disposed above the switch element. A driving line disposed below the conversion elements is connected to switch elements arranged in the row direction, and a signal line is connected to switch elements arranged in the column direction. The signal line includes a conductive layer embedded in an insulating member, the insulating member is disposed in a layer lower than an uppermost surface portion of the driving line. | 02-09-2012 |
20120061578 | X-Ray Detector Panel - An X-ray detector panel comprises: a substrate; a transistor including a gate electrode disposed on the substrate, a gate insulating layer disposed on the gate electrode, an active layer disposed on the gate insulating layer, and a source electrode and a drain electrode disposed on the active layer and separated from each other; a photodiode including a first electrode connected to the drain electrode of the transistor, a photoconductive layer disposed on the first electrode, and a second electrode disposed on the photoconductive layer; an interlayer insulating layer including a first interlayer insulating layer covering the transistor and the photodiode, the first interlayer insulating layer being formed of an insulating material having a band gap energy of about 8 eV to about 10 eV; a data line disposed on the interlayer insulating layer and contacting the source electrode of the transistor via the interlayer insulating layer; a bias line disposed on the interlayer insulating layer and contacting the second electrode of the photodiode via the interlayer insulating layer; and a passivation layer disposed on the data line, the bias line, and the interlayer insulating layer. | 03-15-2012 |
20120161020 | X-Ray Detector and Driving Method Thereof - An X-ray detector and a method of driving the X-ray detector. Each of a plurality of light sensing pixels of the X-ray detector includes: a photodiode which generates an electric detection signal corresponding to an emitted X-ray in an X-ray detection section; a first switching device which transmits the electric detection signal to the outside; a second switching device which applies a voltage for making both ends of the photodiode equipotential to a node to which the photodiode and the first switching device are connected, in an idle section; and a third switching device which applies a voltage for maintaining a constant potential difference at the both ends of the photodiode to the node in the idle section. | 06-28-2012 |
20120228513 | NEUTRON DETECTOR CELL EFFICIENCY - Neutron detection cells and corresponding methods of detecting charged particles that make efficient use of silicon area are set forth. Three types of circuit cells/arrays are described: state latching circuits, glitch generating cells, and charge loss circuits. An array of these cells, used in conjunction with a neutron conversion film, increases the area that is sensitive to a strike by a charged particle over that of an array of SRAM cells. The result is a neutron detection cell that uses less power, costs less, and is more suitable for mass production. | 09-13-2012 |
20130032726 | APPARATUS FOR DETECTING SOFT X-RAY RADIATION AND X-RAY DETECTION SYSTEM INCLUDING SUCH APPARATUS - A soft X-ray detection apparatus includes a semiconductor substrate. The semiconductor substrate has a plurality of detection units disposed thereon, each including a conversion unit and a circuit unit. The conversion unit is formed from, for example, a photodiode. The conversion unit collects electric charge generated upon incidence of soft X-ray radiation. A first conductive type (e.g., N-channel type) amplifier transistor is disposed in the circuit unit. The amplifier transistor serves as an amplifier unit that amplifies and outputs a signal supplied from the conversion unit. A first conductive type transistor is not disposed between the conversion units that are immediately adjacent to each other. Alternatively, transistors included in the detection units that are immediately adjacent to each other are disposed so as to be in close proximity to each other. | 02-07-2013 |
20130062529 | INCIDENT CAPACITIVE SENSOR - A capacitive sensor device for measuring radiation. The device includes two sensor regions and top plate structure. The sensor regions are of a material that generates electron-hole pairs when radiation strikes the material. A separation region is located between the two sensor regions. The capacitance between a sensor region and top plate is dependent upon radiation striking the sensor region. A blocking structure selectively and differentially blocks radiation having a parameter value in a range from the sensor region so as to differentially impact electron-hole pair generation of one sensor region with respect to electron-hole pair generation of the other sensor region at selected angles of incidence of the radiation. | 03-14-2013 |
20130146778 | ELECTRON MULTIPLIER DETECTOR FORMED FROM A HIGHLY DOPED NANODIAMOND LAYER - A system for detecting electromagnetic radiation or an ion flow, including an input device for receiving the electronic radiation or the ion flow and emitting primary electrons in response, a multiplier of electrons in transmission, for receiving the primary electrons and emitting secondary electrons in response, and an output device for receiving the secondary electrons and emitting an output signal in response. The electron multiplier includes at least one nanocrystalline diamond layer doped with boron in a concentration of higher than 5ยท10 | 06-13-2013 |
20130193337 | SYSTEMS AND METHODS FOR PROVIDING A SHARED CHARGE IN PIXELATED IMAGE DETECTORS - Systems and methods for providing a shared charge in pixelated image detectors are provided. One method includes providing a plurality of pixels for a pixelated solid state photon detector in a configuration such that a charge distribution is detected by at least two pixels and obtaining charge information from the at least two pixels. The method further includes determining a position of an interaction of the charge distribution with the plurality of pixels based on the obtained charge information. | 08-01-2013 |
20130240746 | ION SENSOR AND DISPLAY DEVICE - The present invention provides an ion sensor and a display device which are capable of detecting positive ions and negative ions with high precision, at low cost. The ion sensor includes: a field effect transistor; an ion sensor antenna; and a capacitor, the ion sensor antenna and one terminal of the capacitor connected to a gate electrode of the field effect transistor, the other terminal of the capacitor receiving voltage. | 09-19-2013 |
20130256546 | METHOD AND SYSTEM FOR DEMODULATING SIGNALS - A demodulation sensor ( | 10-03-2013 |
20130299711 | DETECTION DEVICE, DETECTION SYSTEM, AND METHOD OF MANUFACTURING DETECTION DEVICE - A detection device includes conversion elements, each including a first electrode disposed on a substrate, a semiconductor layer disposed on the first electrode, an impurity semiconductor layer disposed on the semiconductor layer and including at least a first region and a second region, and a second electrode disposed on the first region of the impurity semiconductor layer in contact with the impurity semiconductor layer. Sheet resistance in the second region disposed at a position where the impurity semiconductor layer is not contacted with the second electrode is less than sheet resistance in the first region. | 11-14-2013 |
20130341520 | LEAKAGE CURRENT COLLECTION STRUCTURE AND A RADIATION DETECTOR WITH THE SAME - A radiation detector comprises a piece of semiconducting material. On its surface, a number of consecutive electrode strips are configured to assume electric potentials of sequentially increasing absolute value. A field plate covers the most of a separation between a pair of adjacent electrode strips and is isolated from the most of said separation by an electric insulation layer. A bias potential is coupled to said field plate so that attracts surface-generated charge carriers. | 12-26-2013 |
20130341521 | INTEGRATED COMPARATIVE RADIATION SENSITIVE CIRCUIT - This disclosure is directed to devices, integrated circuits, and methods for sensing radiation. In one example, a device includes a radiation sensitive oscillator, configured to deliver a first output signal at intervals defined by a first oscillation frequency that alters in resistance in response to radiation. The device includes a reference oscillator, configured to deliver a reference output signal at a constant reference oscillation frequency. A controller records a first instance of the count from the radiation sensitive oscillator for a duration of time defined by the count from the reference counter; compares a second instance of the count from the radiation sensitive oscillator with the first instance of the count from the radiation sensitive oscillator; and performs a selected action in response to the second instance of the count from the radiation sensitive oscillator varying from the first instance of the count from the radiation sensitive oscillator. | 12-26-2013 |
20130341522 | INTEGRATED RADIATION SENSITIVE CIRCUIT - This disclosure is directed to devices, integrated circuits, and methods for sensing radiation. In one example, a device includes an oscillator, configured to deliver a signal via an output at intervals defined by an oscillation frequency, and a counter, connected to the output of the oscillator and configured to count a number of times the comparator delivers the output signal. The oscillator includes a radiation-sensitive cell that applies a resistance. The resistance of the radiation-sensitive cell is configured to vary in response to incident radiation, wherein the oscillation frequency varies based at least in part on the resistance of the radiation-sensitive cell. | 12-26-2013 |
20140264049 | SMALL ANODE GERMANIUM (SAGe) WELL RADIATION DETECTOR SYSTEM AND METHOD - A small anode germanium well (SAGe well) radiation detector system/method providing for low capacitance, short signal leads, small area bottom-oriented signal contacts, enhanced performance independent of well diameter, and ability to determine radiation directionality is disclosed. The system incorporates a P-type bulk germanium volume (PGEV) having an internal well cavity void (IWCV). The external PGEV and IWCV surfaces incorporate an N+ electrode except for the PGEV external base region (EBR) in which a P+ contact electrode is fabricated within an isolation region. The PGEV structure is further encapsulated to permit operation at cryogenic temperatures. Electrical connection to the SAGe well is accomplished by bonding or mechanical contacting to the P+ contact electrode and the N+ electrode. The EBR of the PGEV may incorporate an integrated preamplifier inside the vacuum housing to minimize the noise and gain change due to ambient temperature variation. | 09-18-2014 |
20150034834 | Radiation Detector Based on Charged Self-Assembled Monolayers on Nanowire Devices - Radiation detectors having nanowires with charged, radiation-labile coatings configured to change the electrical properties of nanowires are provided. In one aspect, a radiation detection device is provided. The radiation detector device includes at least one nanowire having a radiation-labile coating with charged moieties on a surface thereof, wherein the radiation-labile coating is configured to degrade upon exposure to radiation such that the charged moieties are cleaved from the radiation-labile coating upon exposure to radiation and thereby affect a transconductance of the nanowire. | 02-05-2015 |
20160061967 | GAMMA RAY DETECTOR AND METHOD OF DETECTING GAMMA RAYS - In various embodiments, a gamma ray detector is provided. The gamma ray detector may include a converter element, configured to release an electron when a gamma ray moves at least partially through the converter element. The gamma ray detector may further include a semiconductor detector, arranged to receive the electron and configured to produce a signal when the electron moves at least partially through the semiconductor detector; and an amplifier circuit, coupled to the semiconductor detector and configured to amplify the signal produced by the semiconductor detector. In the gamma ray detector, the converter element may be arranged to at least partially shield the amplifier circuit from electromagnetic radiation. | 03-03-2016 |
20160084970 | SOLID STATE PHOTOMULTIPLIER - Embodiments of a solid state photomultiplier are provided herein. In some embodiments, a photosensor may include a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics. In some embodiments, a solid state photomultipler may include a microcell having; a sensing element; and readout electronics, wherein the sensing element is AC coupled to the readout electronics. | 03-24-2016 |
20160116610 | METHOD FOR PRODUCING A SENSOR BOARD FOR A DETECTOR MODULE - A method is disclosed for producing a hybrid, incorporable into a sensor board, for a detector module including a plurality of reader units. An embodiment of the method includes positioning the reader units in a stacked construction, each on a common sensor layer. The method further includes, after all of the reader units are positioned, fixing the reader units together on the sensor layer, thereby forming the hybrid. An embodiment of the invention further relates to a detector module for an X-ray detector including a number of sensor boards arranged adjacent to one another on a module carrier. The sensor boards are produced by an embodiment of the method. | 04-28-2016 |
20160172524 | METHOD, A SEMICONDUCTOR DETECTOR, AND A DETECTOR ARRANGEMENT, FOR THE DETECTION OF SUNLIGHT | 06-16-2016 |