Entries |
Document | Title | Date |
20080197288 | SEPARATION OF GEOMETRIC SYSTEM RESPONSE MATRIX FOR THREE-DIMENSIONAL IMAGE RECONSTRUCTION - An image-reconstruction method in which interactions with particular crystal pairs are detected and a trans-axial component of a geometric system response matrix is retrieved from a storage medium. This component provides an estimate of an axial component of the geometric system response matrix. At least in part on the basis of the axial component and the trans-axial component, an annihilation site distribution of annihilations most likely to have resulted in the interaction with the particular crystal pair is estimated. | 08-21-2008 |
20080217540 | Incorporation of axial system response in iterative reconstruction from axially compressed data of cylindrical scanner using on-the-fly computing - A method and system for reconstructing PET image data from a cylindrical PET scanner by incorporation of axial system response. The method includes the steps of: assuming the decomposition of axial components into individual line-of-response (LOR) contributions, approximating each LOR spreading in image space as depth-independent, implementing each LOR response, combining the LORs to produce large span projection data, implementing the back projector as a transposed matrix, and assembling the LOR projections and spans for each azimuthal angle. | 09-11-2008 |
20080230703 | RAPID MULTI-TRACER PET IMAGING SYSTEMS AND METHODS - Methods are provided for recovering component signals or estimates of component signals from combined signals of multiple tracers in the context of imaging multiple PET tracers, a single tracer injected repeatedly, or a combination of tracers using multiple-timepoint or dynamic scanning, where the tracer administrations are simultaneous or staggered in time such that some or all of the PET timeframes, images, data, and/or datasets contain overlapping signals from more than one of the tracer administrations. | 09-25-2008 |
20080230704 | NOVEL POSITRON EMISSION DETECTORS AND CONFIGURATIONS - A three-dimensional detector module for use in detecting annihilation photons generated by positrons emitted from radio-labeled sites within a body is formed from multiple solid state photo-detectors attached to one or more scintillators. Each photo-detector can be attached to a scintillator to form a photo-detector/scintillator combination and multiple photo-detector/scintillator combinations can be arranged in an array. Alternatively, multiple photo-detectors can be attached to the surface of a single scintillator to form an array. Multiple arrays are then stacked to form a photo-detector module. The modules can then be assembled to form a sheet of photo-detector modules. Multiple sheets or multiple modules can then be arranged around a body to detect emissions from radio-labeled sites in the body. Multiple position sensors attached to the photo-detectors, arrays or modules provide the ability to locate the source of the positron emissions from the labeled sites in the body and generate an image of the emission site. A series of novel PET configurations can be constructed from these detector modules, making PET scanners portable, more sensitive and flexible to be used in numerous different operational configurations, such as operating room, emergency rooms, critical care units, or battlefield. | 09-25-2008 |
20080237475 | Digital Identification and Vector Quantization Methods and Systems for Detector Crystal Recognition in Radiation Detection Machines - A digital method and system allowing crystal identification in radiation detector machines is described. The crystal identification is based on recognition of radiation detector signal shape through discrimination of detector signal's dynamic characteristics. The digital method is based on recursive and non-recursive algorithms, such as adaptive filtering combined or not with quantization methods. These digital algorithms, commonly used in other engineering applications, were modified and tailored for radiation detection. Although the method was specially designed for crystal identification measurement, which is exemplified here, it can effectively recognize the detector signal shape in any radiation detection context. | 10-02-2008 |
20080265166 | Techniques for 3-D Elastic Spatial Registration of Multiple Modes of Measuring a Body - Techniques for registration of multiple measurement modes of a body include receiving first and second data from different modes. Each includes measured values with coordinate values. For two mechanically aligned modes, any nonrigid registration is performed. For some modes, the nonrigid registration includes a coarse transformation and multiple fine scale transformations. The coarse transformation maximizes a coarse similarity measure. The second data is subdivided into contiguous subregions. Fine transformations are determined between the subregions and corresponding portions of the first data to maximize a fine similarity measure. Subdividing and determining fine transformations repeats until stop conditions are satisfied. Transformations between the last divided subregions are interpolated. Any of the fine similarity measure, a search region, interpolation method, sub-division location, and the use of rigid or non-rigid fine transformations are adaptive to properties of the first or second data so that the registration is automatic without human intervention. | 10-30-2008 |
20080283759 | Positron emission tomography module - A positron emission tomography module is disclosed. In at least one embodiment, the positron emission tomography module includes a gamma ray detector arrangement designed such that it can alternately be combined with a magnetic resonance tomograph and with a computed tomograph. | 11-20-2008 |
20080290281 | Method for data acquisition and/or data evaluation during a functional brains examination with the aid of a combined magnetic resonance/PET unit - A method is disclosed for data acquisition and/or data evaluation during a functional brain examination with the aid of a combined magnetic resonance/PET unit. In at least one embodiment, functional image data of the brain are acquired in at least two activity states with the aid of both modalities. Further, magnetic resonance image data and PET image data are acquired within time windows determined by the activity states, the acquisition mode and/or the image data being synchronized as a function of a timing of stimulations determining the activity states. | 11-27-2008 |
20090065699 | Tomography Scanner with Axially Discontinuous Array - A tomography scanner has intentionally designed, well defined gaps between detector rings with image reconstruction obtained with the use of conventional tomography data processing. The scanner is particularly advantageous as a small animal PET scanner. | 03-12-2009 |
20090072151 | Parameter Adjustment for Medical Device - A medical device with a high voltage connection line for carrying a high DC supply voltage has a control unit generating said high DC supply voltage which is fed through a first AC block unit to said high voltage connection line and generating a digital control signal fed through a first AC coupling unit to said high voltage connection line, and a remotely located unit a second AC block unit coupled to said high voltage connection line for receiving said high DC supply voltage and a second AC coupling unit coupled to said high voltage connection line for receiving said digital control signal. | 03-19-2009 |
20090072152 | Apparatus For Automatic Calibration of PET/CT Systems - A calibration system for a combined Positron Emission Tomography (PET)/Computed Tomography scanner system, may have a support structure carrying a rotation motor driving a phantom, wherein the phantom has at least two phantom rods and the rods are positioned such that they are neither parallel nor connected to each other. | 03-19-2009 |
20090072153 | Signal Acquisition in PET Scanners - A Positron Emission Tomography (PET) scanner has a plurality of photo detector blocks. Each photo detector block or region has a plurality of photo detectors, a multiplexer receiving output signals from the plurality of photo detectors and generating a multiplexer output signal, a multiplexer control unit controlling switching of the multiplexer, and an analog-to-digital converter receiving the multiplexer output signal and generating a digital output signal. | 03-19-2009 |
20090072154 | Hybrid Method for Randoms Variance Redcution - A method for reducing randoms variance in a Positron Emission Tomograph (PET) or Positron Emission Tomograph combined with another Medical Imaging device is disclosed. An average of an element of the randoms event (delayeds) sinogram may be estimated by dividing fan sums in delayeds sinogram by singles rates taken from headers of the delayeds sinogram. | 03-19-2009 |
20090072155 | TIME-OF-FLIGHT (TOF) POSITRON EMISSION TOMOGRAPHY (PET) RECONSTRUCTION FROM TIME-TRUNCATED PROJECTION DATA - A method of TOF-PET image reconstruction using time-truncated TOF-PET projection data. The time-truncated TOF-PET data is obtained by narrowing the scanner time window to a smaller “time window field of view,” which reduces the field of view of a TOF-PET scanner. This results in a lower list mode stream transfer rate, which can be useful in high count rate data acquisitions, in particular | 03-19-2009 |
20090108206 | MR-Compatible Blood Sampling System For PET Imaging Applications in Combined PET/MR Imaging System - An automated blood sampling system for PET imaging applications that can be operated in or very near to the field of view (FOV) of an MR scanner, such as in a combined MR/PET imaging system. A radiation detector uses APDs (avalanche photo-diodes) to collect scintillation light from crystals in which the positron-electron annihilation photons are absorbed. The necessary gamma shielding is made from a suitable shielding material, preferably tungsten polymer composite. Because the APDs are quite small and are magnetically insensitive, they can be operated in the strong magnetic field of an MR apparatus without disturbance. | 04-30-2009 |
20090114826 | NUCLEAR MEDICAL DIAGNOSIS APPARATUS - A PET apparatus comprises a plurality of detector units in the circumferential direction, wherein the detector unit includes a plurality of unit substrates therein, and wherein the unit substrate includes: a plurality of detectors upon which a γ-ray is incident; and an analog ASIC and digital ASIC for processing a γ-ray detection signal outputted by each of the detectors. The analog ASIC includes two slow systems having mutually different time constants, each of which outputs a pulseheight value. A noise determination part of the digital ASIC determines whether a relevant detection signal is an intended γ-ray detection signal or a noise based on a correlation between the pulseheight values, and a noise counting part counts the number of times of noise determination, and a detector output signal processing control part controls the signal processing with respect to an output signal from a relevant detector based on the count. | 05-07-2009 |
20090127467 | Modular Signal Processing Backbone For Pet - An imaging system ( | 05-21-2009 |
20090159804 | Positron emission tomography scanner and radiation detector - A positron emission tomography (PET) scanner is provided which uses information on the time-of-flight difference (TOF) between annihilation radiations for image reconstruction. The scanner has detection time correction information (memory) corresponding to information on coordinates in a radiation detection element (e.g., scintillator crystal), in the depth and lateral directions, at which an interaction has occurred between an annihilation radiation and the crystal. Reference is made to the detection time correction information, thereby providing information on time-of-flight difference with improved accuracy. As such, an improved signal to noise ratio and spatial resolution are provided for image reconstruction using time-of-flight (TOF) difference. | 06-25-2009 |
20090309031 | POSITRON CT APPARATUS - Whether a phenomenon of photon incidence on detectors is a double event or a single event is determined (step S | 12-17-2009 |
20100025589 | High energy photon detection using pulse width modulation - Methods and systems for processing an analog signal that is generated by a high energy photon detector in response to a high energy photon interaction. A digital edge is generated representing the time of the interaction along a first path, and the energy of the interaction is encoded as a delay from the digital edge along a second path. The generated digital edge and the delay encode the time and energy of the analog signal using pulse width modulation. | 02-04-2010 |
20100108895 | Background signal suppression in pet spectrums - A method and a facility are disclosed for imaging a PET spectrum with a PET detector, especially a PE-MR tomograph, and evaluation of the PET spectrum. To improve the correction of the base line in PET and thereby to improve the energy resolution for the PET images, at least one embodiment of the facility includes: a sampling facility for sampling the output signal of the PET detector at a predetermined sampling rate; an edge discriminator for recognizing at least one edge of a PET pulse; a background signal discriminator for estimating a background signal under the PET pulse; and an integrator device for determining the energy of the PET pulse in the PET spectrum above of the background signal from the sample values of the sampling facility. | 05-06-2010 |
20100116994 | METHOD AND SYSTEM FOR SCATTER CORRECTION - A method and apparatus are provided for correcting primary and secondary emission data. The method includes obtaining an emission data set having primary and secondary emission data representative of primary and secondary emission particles emitting from a region of interest and applying a scatter correction model to the emission data set to derive an estimated scatter vector. The method also includes comparing the emission data set to the estimated scatter vector to identify an amount of secondary emission data in the emission data set and correcting the emission data set based on the amount of secondary emission data identified in the comparing operation. | 05-13-2010 |
20100207029 | SINGLE CRYSTAL SCINTILLATOR MATERIAL AND METHOD FOR PRODUCING THE SAME - A single crystal scintillator material according to the present invention includes a single crystal portion that is represented by the compositional formula (Ce | 08-19-2010 |
20100219346 | NOVEL POSITRON EMISSION DETECTORS AND CONFIGURATIONS - A three-dimensional detector module for use in detecting annihilation photons generated by positrons emitted from radio-labeled sites within a body is formed from multiple solid state photo-detectors attached to one or more scintillators. Each photo-detector can be attached to a scintillator to form a photo-detector/scintillator combination and multiple photo-detector/scintillator combinations can be arranged in an array. Alternatively, multiple photo-detectors can be attached to the surface of a single scintillator to form an array. Multiple arrays are then stacked to form a photo-detector module. The modules can then be assembled to form a sheet of photo-detector modules. Multiple sheets or multiple modules can then be arranged around a body to detect emissions from radio-labeled sites in the body. Multiple position sensors attached to the photo-detectors, arrays or modules provide the ability to locate the source of the positron emissions from the labeled sites in the body and generate an image of the emission site. A series of novel PET configurations can be constructed from these detector modules, making PET scanners portable, more sensitive and flexible to be used in numerous different operational configurations, such as operating room, emergency rooms, critical care units, or battlefield. | 09-02-2010 |
20100258731 | Optical delay combining for multiplexing in radiation imaging systems - Multiplexing for radiation imaging is provided by using optical delay combiners to provide distinct optical encoding for each detector channel. Each detector head provides an optical output which is encoded. The encoded optical signals can be optically combined to provide a single optical output for all of the detectors in the system. This single optical output can be coupled to a fast photodetector (e.g., a streak camera). The pulse readout from the photodetector can decode the arrival time of the event, the energy of the event, and which channels registered the detection event. Preferably, the detector heads provide coherent optical outputs, and the optical delay combiners are preferably implemented using photonic crystal technology to provide photonic integrated circuits including many delay combiners. | 10-14-2010 |
20100288935 | Compact and mobile high resolution PET brain imager - A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage. | 11-18-2010 |
20100294940 | PIXELATED SCINTILLATOR ARRAY - A radiation detector module for use in nuclear medical imagers employing radiation transmission or radiopharmaceuticals includes a rigid, optically opaque grid defined around a plurality of scintillator crystals. The grid defines a plurality of cells in which each scintillator crystal is completely disposed within in such a manner that an air layer exists between the scintillator crystal and the walls of the grid. A plurality of photoelectric detectors, each of which is associated with a corresponding scintillator crystal, are optically coupled to corresponding scintillator crystals by an optical coupling layer disposed within the cell. | 11-25-2010 |
20100301220 | RADIATION DETECTOR - A gamma ray detector is disclosed. A scintillation layer ( | 12-02-2010 |
20110031407 | OPEN-TYPE PET SCANNER - In an open-type PET scanner including a plurality of detector rings having multiple rings arrayed in the body axis direction, radiation measurement is performed while at least one detector ring is relatively moved with respect to a subject in the body axis direction, thereby dispersing simultaneous radiation in an open region to suppress a local reduction in sensitivity. The detector rings are optimized in constitution, moving direction and/or moving speed, thus making it possible to reduce the variation of distribution of sensitivity and expand a clearance in the open region and a field-of-view in the body axis direction. | 02-10-2011 |
20110062340 | POSITRON EMISSION TOMOGRAPHY DETECTOR ELEMENTS USING DIFFERENT SIZES OF PHOTOMULTIPLIER TUBES - A positron emission tomography detector module that includes an array of optically isolated crystal elements and photomultiplier tubes that receive light emitted from the array of crystal elements and are arranged to cover the array of crystal elements. The photomultiplier tubes include photomultiplier tubes having two different sizes arranged in various patterns that minimize the number of edges. The axial extent of each detector module is at least three times longer than the other axis of the detector module. | 03-17-2011 |
20110084211 | DETECTOR-SHIFT TYPE COMBINED RADIATION THERAPY/PET APPARATUS - In beam monitoring for detecting annihilation radiations produced by radiation irradiation in radiation therapy for cancer which is performed by irradiating the affected area by X-rays, gamma rays, or particle beams, a detector-shift type combined radiation therapy/PET apparatus is provided with an open PET device that includes a plurality of shiftable multi-ring detector rings; and a radiation irradiation device that is capable of irradiation with a radiation beam through between the detector rings. The apparatus changes the positions of the detector rings, performs irradiation with the radiation beam through between the detector rings, and then performs radiation measurement. | 04-14-2011 |
20110163238 | NUCLEAR MEDICINE DIAGNOSIS APPARATUS - According to one embodiment, a nuclear medicine diagnosis includes a light signal generating unit, photodetection unit, measurement unit, calculation unit, and storage unit. The light signal generating unit repeatedly generates light signals. The photodetection unit repeatedly generates first output signals corresponding to intensities of the light signals, repeatedly generates second output signals corresponding to intensities of gamma rays emitted from a subject. The measurement unit repeatedly measures light signal detection times and repeatedly measures gamma ray detection times. The calculation unit calculates a difference between a target gamma ray detection time and a target light signal detection time of the light signal detection times for each of the gamma ray detection times. The target light signal detection time is measured before the target gamma ray detection time. The storage unit stores the calculated difference in association with a target second output signal of the second output signals. | 07-07-2011 |
20110198506 | PET SYSTEM - A PET instrument free from problems of maintenance of a detector when a field of view in a body axial direction of a subject is significantly enlarged. A gantry ( | 08-18-2011 |
20110215248 | IMPROVED DATA-PROCESSING ELECTRONICS FOR USE IN A POSITRON-EMISSION TOMOGRAPHY SYSTEM - Improved processing electronic hardware are disclosed that facilitate the efficient processing of PET system data, while enhancing accuracy and compatibility of PET systems with other analytical methods (e.g., magnetic resonance imaging). Improvements include the use of an application-specific integrated circuit (ASIC) for summing, by row, column, and diagonal, the output signals from an array of photodetectors in the PET system | 09-08-2011 |
20110220802 | USE OF FLAT PANEL MICROCHANNEL PHOTOMULTIPLIERS IN SAMPLING CALORIMETERS WITH TIMING - Large-area, flat-panel photo-detectors with sub-nanosecond time resolution based on microchannel plates are provided. The large-area, flat-panel photo-detectors enable the economic construction of sampling calorimeters with, for example, enhanced capability to measure local energy deposition, depth-of-interaction, time-of-flight, and/or directionality of showers. In certain embodiments, sub-nanosecond timing resolution supplies correlated position and time measurements over large areas. The use of thin flat-panel viewing radiators on both sides of a radiation-creating medium allows simultaneous measurement of Cherenkov and scintillation radiation in each layer of the calorimeter. The detectors may be used in a variety of applications including, for example, medical imaging, security, and particle and nuclear physics. | 09-15-2011 |
20110248175 | TEMPERATURE COMPENSATION CIRCUIT FOR SILICON PHOTOMULTIPLIERS AND OTHER SINGLE PHOTON COUNTERS - A PET scanner ( | 10-13-2011 |
20110284751 | NUCLEAR IMAGE RECONSTRUCTION - A system is provided for obtaining a nuclear image of a moving object. The system comprises an input ( | 11-24-2011 |
20110297833 | NUCLEAR MEDICINE IMAGING APPARATUS AND RADIATION THERAPY APPARATUS - A nuclear medicine imaging apparatus according to an embodiment includes a gradation width storage, an estimating unit, and an image generating unit. The gradation width storage is configured to store the gradation width of an image determined by the temporal resolution of a detector. The estimating unit is configured to estimate the spatial position of a positron on the basis of the spatial position of a set of detectors and a set of detection times. The image generating unit is configured to allocate pixel value to pixels corresponding to the gradation width around the estimated spatial position such that a spatial resolution corresponding to the temporal resolution is reflected on a line linking the set of detectors, thereby generating an image. | 12-08-2011 |
20110297834 | MEDICAL IMAGE DIAGNOSIS APPARATUS AND IMAGE RECONSTRUCTION METHOD - In a nuclear medicine imaging apparatus as a medical image diagnosis apparatus according to one embodiment, a PET detector is configured to detect a gamma ray emitted from a nuclide introduced into a body of a subject. A PET image reconstruction unit is configured to reconstruct a nuclear medicine image (PET image) as a medical image from the gamma ray projection data created based on the gamma ray detected by the PET detector using successive approximation. A controller is configured to control the PET image reconstruction unit to change the parameter used in the successive approximation depending on information regarding the scanning region in the body of the subject. | 12-08-2011 |
20110297835 | NUCLEAR MEDICINE IMAGING APPARATUS, CONTROL METHOD, AND COMPUTER PROGRAM PRODUCT - A nuclear medicine imaging apparatus according to an embodiment of the invention includes a detector, a measuring unit, and an end control unit. The detector is configured to detect radiation for generating a nuclear medicine image. The measuring unit is configured to measure the number of times the detector detects the radiation. The end control unit is configured to control the detector to end the detection operation when the number of times measured by the measuring unit is equal to or less than a threshold value. | 12-08-2011 |
20110309255 | Apparatus and Method for Evaluating an Activity Distribution, and Irradiation System - The invention relates to an apparatus for evaluating an activity distribution obtained in a moved target object by a beam that is generated by an irradiation device. Said apparatus comprises: a positron emission tomograph designed to record photons generated in the target object by the beam and generate measurement data representing points of origin of the photons; a movement detection device designed to generate a movement signal representing the movement of the target object; and an evaluation unit designed to associate the points of origin of the measured photons with positions in the target object with the help of the movement signal such that three-dimensional characteristics of the activity distribution actually generated in the target object can be evaluated by means of the photons generated by the beam. The invention further relates to an irradiation system and a method in which such an apparatus is used. | 12-22-2011 |
20110309256 | TOF-PET APPARATUS, DETECTOR RING AND DETECTOR - According to one embodiment, a TOF-PET apparatus includes a plurality of detector rings arranged along a central axis thereof. Each of the detector rings comprises a plurality of scintillators and a plurality of photomultipliers. The scintillators are arranged on a substantial circumference around the central axis and generate scintillation in response to pair annihilation gamma-rays from a subject. The photomultipliers generate an electric signal in accordance with the generated scintillation. A length of each of the scintillators along a radial direction of the substantial circumference is set to a range in which a value of a total number of counts/time resolution of coincidence events of pair annihilation gamma-rays is more improved than when a reference scintillator whose probability of interaction with pair annihilation gamma-rays is adjusted to 80% is used under conditions of a constant total volume of the scintillators. | 12-22-2011 |
20120006990 | RADIATION THERAPY APPARATUS - An organism is irradiated with therapeutic radiation from a radiation irradiation device. A pair of two-dimensional radiation detectors are arranged so as to face one another with the irradiated therapeutic radiation passing therebetween, and detect the two-dimensional positions irradiated by a pair of annihilation γ rays produced when a positron emitted from a positron-emitting radionuclide is annihilated. On the basis of a pair of positions detected by the pair of two-dimensional radiation detectors, a radionuclide position detecting unit detects the position of the positron-emitting radionuclide, and the radiation irradiation device irradiates the position of the positron-emitting radionuclide with therapeutic radiation. | 01-12-2012 |
20120068076 | PORTABLE PET SCANNER FOR IMAGING OF A PORTION OF THE BODY - A mobile PET scanner for use in bed side or a surgical environment comprises a mobile support base, with first and a second arm arms extending therefrom. The first arm is configured for placement under a table supporting an individual while the second arm is substantially parallel to and above said first arm with the individual being located between the first and second arms. Multiple module blocks are positioned along the length of the first and second arm. Each modules block comprises scintillators with solid state silicone multipliers or multi-pixel photon counters attached thereto. Positrons emitted from radiation labeled tissue within the individual's body impinge on the multiple scintillators to generate. The photons from each of the scintillator are received by each of a solid state silicone multipliers or multi-pixel photon counters associated therewith and an electrical signal representative of the received photons is then generated. The electrical signal output from each of the solid state silicone multipliers or multi-pixel photon counters is then transmitted to a computerized data collection and analysis system, which substantially instantaneously generates a visual image on a screen showing the location within the individuals body emitted the photons. This image can be coordinated with a photo image or a CT image showing the same portion of the individual's body. | 03-22-2012 |
20120085912 | TOMOGRAPHIC IMAGING SYSTEM FOR ACQUIRING PET/SPECT AND CT IMAGE DATA - Some embodiments of the present invention generally relate to a common PET/SPECT/CT gantry including a central aperture. At least one x-ray source can be mounted on the common gantry in a fixed relation, wherein an x-ray beam emitted by the source is directed across the central aperture. Some embodiments can also include a plurality of x-ray scintillation detectors mounted on the common gantry in a fixed relation and directed in an opposing orientation relative to the at least one x-ray source. In some embodiments a plurality of PET/SPECT scintillation detectors is also mounted on the common gantry in a fixed relation, wherein the PET/SPECT detectors define an arc having a center in common with the central aperture. | 04-12-2012 |
20120091350 | PET DETECTOR SCINTILLATION LIGHT GUIDING SYSTEM HAVING FIBER-OPTICS PLATES - A positron emission tomography scanner system that includes detector modules arranged adjacent to one another to form a cylindrical detector ring. Each of the detector modules includes an array of scintillation crystal elements, a plurality of photosensors arranged to cover the array of crystal elements and configured to receive light emitted from the array of crystal elements, and a fiber optics plate arranged between the array of scintillation crystal elements and the plurality of photosensors, the fiber optics plate including a plurality of fibers configured to guide the light emitted from the scintillation crystal to the plurality of photosensors. | 04-19-2012 |
20120104262 | EVALUATION OF MEASUREMENTS FROM A PIXELATED DETECTOR - The invention relates to a method and a data processing device for evaluating measurement signals provided by a layered, pixelated radiation detector. A generalized detector response function is provided that describes the energy-related crosstalk caused by radiation incident in the d-th neighboring pixel. With the help of this GDR-function, crosstalk effects can be taken into account to achieve a more accurate determination of imaging parameters related to an imaged object. The approach can particularly be used in spectrally resolved, photon counting CT detectors with small, layered pixels. | 05-03-2012 |
20120104263 | POSITRON EMISSION TOMOGRAPHY SYSTEM WITH HYBRID DETECTION GEOMETRIES AND SAMPLING - A gamma ray detection system includes a plurality of detector modules having a same length, where each detector module is configured to detect gamma rays generated from positron annihilation events. A first detector module of the plurality of detector modules is shifted by a predetermined distance in an axial direction from a second detector module of the plurality of detector modules that is adjacent to the first detector module, where the predetermined distance is less than the length of the detector modules. | 05-03-2012 |
20120104264 | ANATOMICAL IMAGING SYSTEM WITH CENTIPEDE BELT DRIVE AND BOTTOM NOTCH TO ACCOMMODATE BASE OF PATIENT SUPPORT - Apparatus for imaging an object, the apparatus comprising:
| 05-03-2012 |
20120112078 | MOBILE CARDIAC POSITRON EMISSION TOMOGRAPHY (moPET) CAMERA - A mobile PET imager and method for the same is provided. The mobile PET imager includes a plurality of detector modules forming a ring detector, each for nuclear radiation detection. The imager may include a plurality of attenuation source housings including sources for attenuation such that each attenuation source housing is placed between two of the detector modules. A plurality of channel cards for processing data from the plurality of detector modules may be in the imager so that each channel card is shared by more than one of the detector modules. The imager may include at least one channel card for processing data from the detector modules and at least one resistor network acting as preamplifier, coupling to the detector modules and the channel card such that the channel card is mounted on the detector module in layer. | 05-10-2012 |
20120112079 | STRIP DEVICE AND METHOD FOR DETERMINING THE LOCATION AND TIME OF REACTION OF THE GAMMA QUANTA AND THE USE OF THE DEVICE TO DETERMINE THE LOCATION AND TIME OF REACTION OF THE GAMMA QUANTA IN POSITRON EMISSION TOMOGRAPHY - The subject of the invention is a strip device and method for determining the place and time of the gamma quanta interaction as well as the use of the device for determining the place and time of the gamma quanta interaction in positron emission tomography. | 05-10-2012 |
20120145909 | RADIATION TOMOGRAPHY APPARATUS FOR SMALLER ANIMALS - Disclosed is radiation tomography apparatus for smaller animals including a radiation source for emitting radiation; a radiation detecting device for detecting radiation; a rotary device for rotating the radiation source; and a holder provided between the radiation source and the radiation detecting device that has two or more spaces for placing a subject. The holder includes space discriminating members for each of the spaces. Each of the space discriminating members has a unique sectional shape when cut along a plane where an imaginary circle exists. Here, the imaginary circle is a locus of rotation of the radiation source. | 06-14-2012 |
20120161014 | MULTI-PURPOSE PET DEVICE - In an open PET device including a plurality of detector rings that are arranged apart in the direction of the body axis of a subject and having a physical open field of view area, at least one of the detector rings or another imaging device arranged in parallel is configured to be movable by simple device moving means in order to change the configuration of the PET device. This improves the versatility of the open PET device for easier introduction to facilities. | 06-28-2012 |
20120168631 | SCINTILLATOR OPERATION AND CONTROL - A method and system for reducing scintillator afterglow. Methods for reducing afterglow include conditioning a scintillator by exposing it to high flux densities of ionizing radiation. One technique includes operating an x-ray tube at elevated amperage. | 07-05-2012 |
20120175523 | MATRIX DEVICE AND METHOD FOR DETERMINING THE LOCATION AND TIME OF REACTION OF THE GAMMA QUANTA AND THE USE OF THE DEVICE TO DETERMINE THE LOCATION AND TIME OF REACTION OF THE GAMMA QUANTA IN POSITRON EMISSION TOMOGRAPHY - The subject matters of the invention is a matrix device and method for determining the place and time of the gamma quanta interaction as well as the use of the device for determining the place and time of the gamma quanta interaction in positron emission tomography. | 07-12-2012 |
20120199748 | RADIATION CONVERSION ELEMENTS WITH REFLECTORS FOR RADIOLOGICAL IMAGING APPARATUS - An apparatus comprises a plurality of radiation conversion elements ( | 08-09-2012 |
20120228511 | POSITRON EMISSION COMPUTED TOMOGRAPHY APPARATUS - A positron emission computed tomography apparatus according to an embodiment includes a detector, a buffer, and a regulating unit. The detector detects annihilation radiation. The buffer stores therein event data generated based on an output signal from the detector. The regulating unit regulates the amount of the event data read from the buffer during a high count rate period of the events at which the annihilation radiation is detected. | 09-13-2012 |
20120241631 | SPLIT GRADIENT COIL AND PET/MTI HYBRID SYSTEM USING THE SAME - A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings. | 09-27-2012 |
20120256092 | CT SYSTEM FOR USE IN MULTI-MODALITY IMAGING SYSTEM - A computed tomography (CT) imaging system is disclosed. The CT imaging system may be used in a multi-modality imaging context or other context. In one embodiment, the CT imaging system provides for both fast rotation of the rotating X-ray source and detection components and low dose of X-rays generated by the source providing several clinical and economic benefits such as low dose and sufficient image quality and no or insignificant investment in room shielding associated with diagnostic CT dose. | 10-11-2012 |
20120267536 | PET IMAGING SYSTEM INCLUDING DETECTOR ELEMENTS OF DIFFERENT DESIGN AND PERFORMANCE - A positron emission tomography (PET) scanner, including a first detector portion arranged circumferentially around a patient pallet, the first detector portion having a predetermined axial extent and transaxially subtending less than 360 degrees with respect to a central axis of the scanner defined by the first detector portion, wherein the first detector portion includes a plurality of first detector elements; and a second detector portion arranged separately from and opposing the first detector section, the second detector portion including a plurality of second detector elements, the second detector elements being of a different type than the first detector elements, wherein each of the first detector elements includes photomultiplier tubes (PMTs); and each of the second detector elements includes photosensors of a different type from the PMTs of the first detector elements. | 10-25-2012 |
20120267537 | GEOMETRY FOR PET IMAGING - A positron emission tomography (PET) scanner, including a first detector portion arranged circumferentially around a patient pallet, the first detector portion having a predetermined axial extent and transaxially subtending more than 180 degrees, but less than 360 degrees with respect to a central axis of the scanner defined by the first detector portion; and a second detector portion arranged separately from and opposing the first detector section, the second detector portion having a radius of curvature smaller than a radius of curvature of the first detector portion, wherein the second detector portion transaxially subtends less than 180 degrees with respect to the central axis of the scanner. | 10-25-2012 |
20120305780 | METHOD AND SYSTEM FOR PROCESSING GATED IMAGE DATA - A method for generating an image is provided. The method comprises: acquiring a first set of image data using a first imaging modality; sorting the first set of image data into a plurality of gates to generate a plurality of gated data sets; reconstructing each gated data set to generate a respective gated image for each gated data set; registering the respective gated images to generate a plurality of registered images; and generating a median image from the plurality of registered images, wherein each voxel of the median image is a respective median value of the corresponding voxels of the plurality of registered images. | 12-06-2012 |
20120312996 | NUCLEAR MEDICINE IMAGING APPARATUS AND ANALYZING SYSTEM - A PET apparatus includes an optical coupling detachment testing unit. In one example, the optical coupling detachment testing unit inputs an electric signal to a piezoelectric element or the like adhered to a detector module and generates a sound wave within the detector module. Further, the optical coupling detachment testing unit detects the sound wave propagated within the detector module and performs a frequency analysis on the detected sound wave. Subsequently, as a result of the analysis, the optical coupling detachment testing unit detects whether an optical coupling detachment has occurred by looking for a frequency distribution specific to a surface having an optical coupling detachment and/or comparing a frequency distribution with another frequency distribution from a previous test. | 12-13-2012 |
20130009066 | Block Detector With Variable Microcell Size For Optimal Light Collection - Systems, devices, and methods are provided for more efficient photon detection in nuclear medical imaging. By basing the density of photosensitive microcells in photosensors on a spatial distribution of photons across the array of photosensors, the non-linearity of the photosensors' output pulses can be reduced, and the negative effects of non-uniform distribution of light from a scintillator array can be ameliorated. As a result, the positioning and linearity information of typical photosensors used in nuclear medical imaging can be improved, and better quality images are produced. | 01-10-2013 |
20130009067 | Positron Emission Tomography Detector Based on Monolithic Scintillator Crystal - A high-resolution nuclear imaging detector for use in systems such as positron emission tomography includes a monolithic scintillator crystal block in combination with a single photomultiplier tube read-out channel for timing and total energy signals, and one or more solid-state photosensor pixels arrays on one or more vertical surfaces of the scintillator block to determine event position information. | 01-10-2013 |
20130056640 | HIGH-ENERGY PHOTON DETECTOR - A detector of a high-energy photon, the detector including a photodetector and a detection medium that is intended to absorb a high-energy photon while generating ionization electrons and photons along a luminous phenomenon, the electrons and photons being detected by the photodetector. The detection medium is formed of molecules, having a heavy atom with an atomic number greater than or equal to 72, such that the detection medium is liquid under the operating conditions of the detector. The detector also includes a device for diverting the ionization electrons that are generated by the absorbed photon and moreover includes a collector that collects charges in order to determine the time for diverting the electrons to the charge-collector on the basis of a triggering time that corresponds to the detection of the luminous phenomenon by the photodetector. | 03-07-2013 |
20130105699 | METHODS AND SYSTEMS FOR ADAPTIVE TOMOGRAPHIC IMAGING | 05-02-2013 |
20130119259 | APPARATUS AND METHODS FOR COOLING POSITRON EMISSION TOMOGRAPHY SCANNER DETECTOR CRYSTALS - Detector crystals in a positron emission tomography (PET) apparatus gantry are cooled by directing cooling gas flow into a cooling duct bounded by the crystals and a cover defining the patient scanning field within the gantry. The cooling gas cools the crystals. Cooling gas may also be directed radially outwardly from the cooling duct into spatial gaps defined between detector enclosures that include the crystals, further isolating heat generated by other components within gantry from the detector crystals. Cooling gas is provided by a cooling system that may be incorporated within the gantry, external the gantry or a combination of both. Cooling gas can be provided by directing air within the gantry in contact with internal gantry cooling tubes and routing cooled air directly into the cooling duct with a powered fan. | 05-16-2013 |
20130134313 | DETECTOR ARRANGEMENT OF AN IMAGING SYSTEM DETECTOR DETECTING IONIZING RADIATION WITH AIR COOLING AND METHOD FOR COOLING THE DETECTOR ARRANGEMENT - A detector arrangement of an imaging system detector detecting ionizing radiation includes a detector carrier, a plurality of detector modules attached to the detector carrier, and a collimator disposed in the radiation direction in front of the detector modules which are disposed on the incident radiation measurement side. In at least one embodiment, at least one air gap is included for conveying cooling air is disposed between the collimator and the measurement sensors of the detector modules. A method is also disclosed for cooling a detector arrangement of a detector rotating around a system axis with a plurality of measurement sensors disposed next to one another and a collimator arranged in the radiation direction in front of the measurement sensors, wherein cooling air is conveyed in or against the system axis direction between the collimator and the measurement sensors which directly cools the surface of the measurement sensors. | 05-30-2013 |
20130134314 | POSITRON EMISSION COMPUTED TOMOGRAPHY APPARATUS AND IMAGE PROCESSING APPARATUS - A positron emission computed tomography apparatus according to an embodiment includes a detector, a coincidence counting information generating unit, and a body movement detecting unit. The detector detects annihilation radiation released from a subject. The coincidence counting information generating unit searches for sets of counting information, which counted a pair of annihilation radiations at substantially the same time, from a counting information list that is generated from output signals of the detector; generates a set of coincidence counting information for each retrieved set of counting information; and generates a time series list of coincidence counting information. Based on the time series list of coincidence counting information, the body movement detecting unit detects temporal changes in the body movement of the subject. | 05-30-2013 |
20130175451 | RADIATION DETECTOR - A radiation detector is provided that allows correction so as to identify incident gamma-ray positions accurately with no influence of afterglow of fluorescence. The radiation detector includes an intensity-data acquiring section for acquiring intensity data representing intensity of fluorescence outputted from a light detector for every temporally-constant sampling interval, and a correction-value acquiring section section for acquiring a correction value used for correction of variations in intensity data resulting from afterglow of the fluorescence. In addition, the radiation detector includes an integrating section for correcting the intensity data using the correction value. This allows correct calculation of the integrated value m with no influence of the afterglow of fluorescence. | 07-11-2013 |
20130264484 | SCINTILLATING MODULE, POSITRON EMISSION TOMOGRAPHY, ION BEAM PROFILER, ION BEAM FILTER, AND ION BEAM GENERATING DEVICE USING SCINTILLATING MODULE - A scintillating module is provided which includes a first scintillating layer including a plurality of scintillators extending in a first direction; a second scintillating layer including a plurality of scintillators extending in a second direction and stacked in a third direction with respect to the first scintillating layer, wherein the first, second and third directions are orthogonal to each other. | 10-10-2013 |
20130284936 | POSITRON EMISSION TOMOGRPAHY DETECTOR FOR DUAL-MODALITY IMAGING - A Positron Emission Tomography (PET) detector assembly includes a cold plate having a first side and an opposite second side, the cold plate being fabricated from a thermally conductive and electrically non-conductive material, a plurality of PET detector units coupled to the first side of the cold plate, and a readout electronics section coupled to the second side of the cold plate. A radio frequency (RF) body coil assembly and a dual-modality imaging system are also described herein. | 10-31-2013 |
20130299707 | OPTICAL COUPLING TECHNIQUE FOR CONTIGUOUS MONOLITHIC SCINTILLATION CRYSTAL DETECTORS - Embodiments of the invention provide a high energy photon detector. A first scintillation crystal is provided. A first plurality of photosensors is on a first face of the first scintillation crystal, wherein the first plurality is at least two. A second scintillation crystal is provided. A second plurality of photosensors is on a first face of the second scintillation crystal, wherein the second plurality is at least two. An optical coupling interface is between a second face of the first scintillation crystal and a second face of the second scintillation crystal, wherein the optical coupling interface provides an optical transmission between the first scintillation crystal and the second scintillation crystal, so that the distribution of scintillation light created in one crystal is allowed to spread into the second crystal. | 11-14-2013 |
20130299708 | POSITRON CT APPARATUS AND A RECONSTRUCTION METHOD - When calculating a system matrix (detection probability), adjustment is made by fitting a point spread function (PSF) expressed by a Gauss function to a profile of count values of radiation with respect to a distance from a point source which emits radiation of the same type as the positron-emitting drug, and a distance range of the above PSF is adjusted for each layer in a depth direction of gamma-ray detectors indicating an incident direction in which the radiation strikes. By calculating the system matrix (detection probability) after adjusting the distance range of the function for each layer, improvement can be made in image quality of a reconstructed image. | 11-14-2013 |
20130313437 | POSITRON TOMOGRAPHY IMAGING APPARATUS AND METHOD FOR MULTIPHASE FLOW - The present invention relates to a positron tomography imaging apparatus for a multiphase flow in an oil pipeline, which apparatus utilizes positron and electron annihilation generating a pair of coincidence gamma-rays of 511 keV energy as tomography imaging means and provides an on-line tomography imaging function for metering a multiphase flow in an oil pipeline of an oil field. The apparatus comprises a plurality of sets of parallel high-precision gamma-ray detector arrays with a particular space structure arrangement, a positron radioactive source and a shield, and can acquire a phase fraction of such multiphase flow mixture as oil, gas and water under a condition of a single radioactive source by combining an image processing function. The design of a plurality of sets of high-precision detector arrays also greatly improves accuracy of a multiphase flow metering and its applicability in multiphase flows of different flow patterns. The video information of fluid generated by it will significantly enrich oil, gas metering information for petroleum industry and provide basic data for a more effective reservoir management and production optimization. | 11-28-2013 |
20130334428 | METHODS AND SYSTEMS FOR SIGNAL COMMUNICATION IN GAMMA RAY DETECTORS - Methods and systems for signal communication in gamma ray detectors are provided. One gamma ray detector includes a scintillator block having a plurality of scintillator crystals and a plurality of light sensors coupled to the scintillator crystals and having a plurality of microcells. Each of the plurality of light sensors has a first set of signal traces connected to the microcells and a second set of signal traces connected along the first set of signal traces and together forming a signal path to a summing signal trace. Each of the plurality of light sensors also has a pin-out connected to the summing signal trace. | 12-19-2013 |
20130334429 | IMAGING DEVICE USING GAMMA RAYS, IMAGE SIGNAL PROCESSOR, AND IMAGE PROCESSING METHOD FOR GAMMA RAY MEASUREMENT DATA - To simultaneously image a plurality types of tracer molecules for a Compton image and a PET image. Provided is an imaging device comprising: a first Compton camera ( | 12-19-2013 |
20130341518 | TIME-TO-DIGITAL CONVERTER FOR A MEDICAL IMAGING SYSTEM - A timing circuit that includes a first serializer/deserializer (SERDES) configured to receive a parallel rate clock signal and a system clock start signal from an imaging system and generate a first output, a second SERDES configured to receive a stop signal that is based on an output from the medical imaging system and generate a second output, and a timestamp calculator configured to utilize the first and second outputs to generate a timestamp. A medical imaging system and a method of operating a timing circuit are also described. | 12-26-2013 |
20140008542 | Methods and Systems for increasing the sensitivity of simultaneous multi-isotope positron emission tomography - Positron emission tomography (PET) systems suitable for use with dirty (positron+prompt gamma) emitters are provided. One or more prompt gamma detectors are added to the PET system, where the prompt gamma detectors are responsive to the prompt gammas provided by the dirty emitter, but are not responsive to 511 keV annihilation photons. The prompt gamma detectors can surround the imaging PET detector array and/or be disposed as end caps relative to a generally cylindrical PET detector array. The prompt gamma detectors need not provide spatial resolution, because coincidence events in the PET detector array are classified as 2-photon or 3-photon events depending on whether or not there is a time-coincident signal from the prompt gamma detectors. One application of this approach is dual isotope PET where distinct tracers labeled with clean and dirty positron emitters are simultaneously imaged. | 01-09-2014 |
20140103217 | EFFICIENT AND SERVICEABLE LIGHT GUIDE FOR PET DETECTOR - A positron emission tomography (PET) detector module includes an array of scintillation crystal elements and a plurality of photosensors arranged to at least partially cover the array of scintillation crystal elements. The photosensors are configured to receive light emitted from the array of scintillation crystal elements. The module includes a transparent adhesive arranged between the array of scintillation crystal elements and the plurality of photosensors. The transparent adhesive extends directly from a surface of at least one of the scintillation crystal elements to a surface of at least one of the photosensors and is configured to distribute the light emitted from one of the scintillation crystal elements to more than one of the photosensors. A method of manufacturing the module includes various steps utilizing a fixture. A PET scanner uses multiple modules arranged circumferentially around an area to be scanned. | 04-17-2014 |
20140103218 | CONCENTRATING LIGHT TOWARDS A TARGET ELEMENT - An optical device ( | 04-17-2014 |
20140175294 | POSITION-SENSITIVE READOUT MODES FOR DIGITAL SILICON PHOTOMULTIPLIER ARRAYS - A photon detector ( | 06-26-2014 |
20140312238 | FLEXIBLE CONNECTORS FOR PET DETECTORS - A PET or SPECT radiation detector module ( | 10-23-2014 |
20150090890 | SYSTEM AND METHOD FOR ATTENUATION CORRECTION OF PHANTOM IMAGES - A method for attenuation correction of a phantom image in a PET imaging system includes obtaining raw scan data of a scanned phantom, a non attenuation corrected template image of a stock phantom of like type to the scanned phantom, and an attenuation map of the stock phantom. The method further includes generating a non-attenuation corrected raw image of the scanned phantom based on the raw scan data, registering the template image and attenuation map to the raw image through a rigid image transform, and applying the registered attenuation map to the raw scan data to enable reconstruction of an attenuation corrected final image. | 04-02-2015 |
20150115162 | HELMET-TYPE PET DEVICE - A helmet-type PET device includes a helmet portion (hemispherical detector) and an added portion (jaw portion detector, an ear portion detector, or a neck portion detector). The helmet portion includes a PET detector so as to cover a parietal region of an examination target. The added portion is positioned to dispose a PET detector at a part other than the parietal region of the examination target. PET measurement is performed using both an output from the PET detector at the helmet portion and an output from the PET detector at the added portion. | 04-30-2015 |
20150331115 | DETECTOR SYSTEMS FOR RADIATION IMAGING - Detector designs and systems for enhanced radiographic imaging with integrated detector systems incorporate one or more of Compton and nuclear medicine imaging, PET imaging and x-ray CT imaging capabilities. Detector designs employ one or more layers of detector modules comprised of edge-on or face-on detectors or a combination of edge-on and face-on detectors which may employ gas, scintillator, semiconductor, low temperature (such as Ge and superconductor) and structured detectors. Detectors may implement tracking capabilities and may operate in a non-coincidence or coincidence detection mode. | 11-19-2015 |
20150331119 | SCINTILLATION DETECTOR FOR IMPROVED PET PERFORMANCE - A radiation detector for a radiation imaging system, wherein the detector comprises photosensors, arranged to receive light emitted from an array of scintillator elements. The scintillator elements absorb radiation, such as gamma rays, and emit light. Using Anger arithmetic and crystal decoding, the position of each scintillation event is determined from the relative fractions of light detected by each of the photosensors. Selectively shaping the top surface, i.e., the surface closest to the photosensors, of each scintillator element in the array, the direction of light emission from each scintillator element can be optimized such that the fraction of light detected by each photosensor is optimally distinct for each position in the array of scintillator elements. The top surface of at least one of the scintillator element array is not parallel with the bottom surface of at least one of the scintillator. | 11-19-2015 |
20150338526 | RADIATION SENSOR AND METHODS OF DETECTING A TARGETED RADIATION USING THE RADIATION SENSOR - A radiation sensor can include a body configured to capture targeted radiation. In an embodiment, the body can include a topological insulator material. In another embodiment, the radiation sensor can further include a controllable magnetic source configured to generate a magnetic field that is received by the body. The radiation sensor can be used to detect the targeted radiation. In an embodiment, detecting the targeted radiation can be done in not greater than 100 ns. | 11-26-2015 |
20150355344 | PET DETECTION STRUCTURE AND SYSTEM WITH APPLICATION ADAPTABILITY - A PET detection structure with application adaptability includes: at least two detector blocks and a detection ring for disposing the detector blocks. The at least two detector blocks are placed on the detection ring and surround a detected object in a manner of encirclement. The performance of each detector block includes inherent spatial resolution, time behavior, energy resolution, detection efficiency and maximum counting rate. The performance of the detector blocks are divided into a plurality of performance levels, and the performance level of one performance of at least one detector block of the at least two detector blocks is higher than the performance rate of the same performance of the other detector blocks. | 12-10-2015 |
20150378035 | POSITRON EMISSION TOMOGRAPHY DETECTOR AND POSITRON EMISSION TOMOGRAPHY SYSTEM USING SAME - The present disclosure relates to a positron emission tomography detector and a positron emission tomography system using the same. More particularly, the positron emission tomography detector includes: a lower detecting unit configured to have a plurality of detector modules disposed in a ring or polygonal shape; and an upper detecting unit configured to have a plurality of detector modules which are spaced apart from each other by a predetermined distance, or of which at least some are in contact with each other to be formed on the lower detecting unit, and formed in a conical shape which is tilted by a preset angle. By the configuration as described above, since the positron emission tomography detector and the positron emission tomography system using the same according to the present disclosure have a large number of effective lines of response (LOR) and increase geometric efficiency, it is possible to improve sensitivity. | 12-31-2015 |
20160011321 | TIMESTAMPING DETECTED RADIATION QUANTA | 01-14-2016 |
20160077124 | DETECTION OF SHOCK IN DETECTOR ELECTRONICS - A shock detection device for a detector array includes an accelerometer mounted on the detector array to detect vibrations. The shock detection device also includes an electronic memory to store data from the accelerometer. The data corresponds to detected vibrations that exceed an active threshold of the accelerometer. The shock detection device also includes a power supply that is separate from the power supply of the detector array. | 03-17-2016 |
20160116614 | Positron Attenuation Tomography - Positron attenuation is estimated. Positrons attenuate differently than x-rays, so measuring positron attenuation may assist in diagnosis or material study. To measure positron attenuation, a positron beam is formed using a magnetic field. The annihilations along the beam within an object are measured using positron emission tomography. The rate of annihilation and integration of the rate of annihilation along the positron beam may be used to determine positron attenuation. | 04-28-2016 |
20160146950 | CE3+ ACTIVATED LUMINESCENT COMPOSITIONS FOR APPLICATION IN IMAGING SYSTEMS - This disclosure relates to luminescent compositions comprising a host matrix sensitized by Ce | 05-26-2016 |
20160166215 | SYSTEMS AND METHODS FOR USE IN EMISSION GUIDED RADIATION THERAPY | 06-16-2016 |