Entries |
Document | Title | Date |
20080197281 | Electron Microscopic Method and Electron Microscope Using Same - There is provided an electron microscopic method capable of realizing a high resolution based on the principle of the phase retrieval method. An electron microscope ( | 08-21-2008 |
20080203295 | DEFORMATION METHOD OF NANOMETER SCALE MATERIAL USING PARTICLE BEAM AND NANO TOOL THEREBY - The present invention relates to a deformation method of nanometer-scale material using a particle beam and a nano-tool thereby. The deformation method of the nanometer-scale material using the particle beam according to the present invention is characterized in that the nanometer-scale material is bent toward a direction of the particle beam by irradiating the particle beam on the nanometer-scale material. | 08-28-2008 |
20080203296 | Transmission Electron Microscope Provided with Electronic Spectroscope - In order to correct measurement magnification and measurement position of a spectral image with high efficiency and with high accuracy using an electronic spectroscope and a transmission electron microscope regarding the spectral image formed in two orthogonal axes which are an amount of energy loss axis and a measurement position information axis; a method for correcting magnification and position and a system for correcting magnification and position, both of which are capable of correcting measurement magnification and measurement position of a spectral image with high efficiency and with high accuracy using an electronic spectroscope and a transmission electron microscope regarding the spectral image formed in two orthogonal axes which are an amount of energy loss axis and a measurement position information axis, are provided. | 08-28-2008 |
20080203297 | Specimen Inspection Equipment and How to Make the Electron Beam Absorbed Current Images - An object of the present invention is to obtain a clear absorbed current image without involving the difference in gain of amplifier between inputs, from absorbed currents detected by using a plurality of probes and to improve measurement efficiency. | 08-28-2008 |
20080203298 | Electrostatic Charge Measurement Method, Focus Adjustment Method, And Scanning Electron Microscope - The present invention aims to provide a method and a device of capable of suppressing error in electrostatic charge amount or defocus on the basis of electrostatic charge storage due to electron beam scanning when measuring the electrostatic charge amount of the sample or a focus adjustment amount by scanning the electron beam. | 08-28-2008 |
20080210865 | Pattern Measuring Method and Electron Microscope - An object of the present invention is to provide a pattern measuring method and an electron microscope that achieve truly high measurement throughput by achieving both precise location of a measurement target position and high-speed movement of the scanning position of an electron beam to the measurement target position. In order to attain the object described above, according to an aspect of the present invention, there is provided a pattern measuring method and an apparatus that move the scanning position of an electron beam based on coordinate information about a first pattern, which is a target to be measured with the electron beam, move the scanning position of the electron beam to a region comprising a second pattern, the relative distance of which from the first pattern is previously registered, in a case where detection of the first pattern at the point of arrival fails, and move the scanning position of the electron beam based on detection of the second pattern and information about the relative distance. | 09-04-2008 |
20080217530 | Semiconductor inspection system and apparatus utilizing a non-vibrating contact potential difference sensor and controlled illumination - A method and system for identifying a defect or contamination on the surface of a semiconductor or in a semiconductor. The method and system involves providing a semiconductor with a surface, such as a semiconductor wafer, providing a non-vibrating contact potential difference sensor, providing a source of illumination with controllable intensity or distribution of wavelengths, using the illumination source to provide controlled illumination of the surface of the wafer under or near the non-vibrating contact potential sensor probe tip, using the non-vibrating contact potential difference sensor to scan the wafer surface during controlled illumination, generating data representative of changes in contact potential difference across the wafer surface, and processing that data to identify a pattern characteristic of a defect or contamination. | 09-11-2008 |
20080217531 | INTEGRATED DEFLECTORS FOR BEAM ALIGNMENT AND BLANKING IN CHARGED PARTICLE COLUMNS - A charged particle beam column package includes an assembly (e.g., comprising a plurality of layers, which can have a component coupled to one of the layers), and at least one deflector between an extractor and aperture of the assembly. Further, at least one of the layers has interconnects thereon. | 09-11-2008 |
20080217532 | METHOD AND APPARATUS FOR SETTING SAMPLE OBSERVATION CONDITION, AND METHOD AND APPARATUS FOR SAMPLE OBSERVATION - A method and apparatus for setting a sample observation condition and a method and apparatus for sample observation which allow sample observation by speedily and simply finding an optimum condition while suppressing damage to the sample are provided. The setting of a sample observation condition according to the present invention is realized by an electron beam apparatus acquiring a profile at a predetermined evaluation location of a sample under a reference observation condition, by a processing section judging whether or not the above described acquired profile is located within a predetermined setting range and setting an optimum observation condition to be used for sample observation based on this judgment result. More specifically, locations where the condition can be examined are registered beforehand first and then a jump is made to the corresponding location which is irradiated with an electron beam (hereinafter referred to as “predosing”) at a low magnification, the surface of the sample is charged, enlarged to an observation magnification and secondary electron information on the target location is obtained. After that, secondary electron information is obtained at any time while performing predosing, it is successively judged from the information whether the pattern bottom part can be observed/measured or whether or not the sample is destroyed and an optimum observation condition is thereby found. | 09-11-2008 |
20080224036 | METHOD AND DEVICE TO QUANTIFY ACTIVE CARRIER PROFILES IN ULTRA-SHALLOW SEMICONDUCTOR STRUCTURES - A method and device for determining, in a non-destructive way, at least the active carrier profile from an unknown semiconductor substrate are disclosed. In one aspect, the method comprises generating 2 | 09-18-2008 |
20080224037 | Charged Particle Beam Device - There is provided a charged particle beam device which can prevent a specimen from not being able to be observed due to entering of a part of a grid of a mesh in a field of view, each pixel of a scanning transmission electron microscope image is displayed on the basis of a gray value of a predetermined gradation scale. In the case where the number of pixels of a predetermined gray value is less than a predetermined percentage, it is decided that a mesh image is not included in the scanning transmission electron microscope image. In the case where the number of pixels of the predetermined gray value is not less than a predetermined percentage, it is judged that the mesh image is included in the scanning transmission electron microscope image. In the case where the mesh image is included in the scanning transmission electron microscope image, a magnification is increased, a specimen stage is moved, or beam deflection is performed, and when the mesh image is not anymore included in the scanning transmission electron microscope image, the predetermined gradation scale is converted to other gradation scale and a scanning transmission electron microscope image is obtained. | 09-18-2008 |
20080230694 | Beam Optical Component Having a Charged Particle Lens - The present invention relates to a beam optical component including a charged particle lens for focusing a charged particle beam, the charged particle lens comprising a first element having a first opening for focusing the charged particle beam; a second element having a second opening for focusing the charged particle beam and first driving means connected with at least one of the first element and the second element for aligning the first opening with respect to the second opening. With the first driving means, the first opening and the second opening can be aligned with respect to each other during beam operation to provide a superior alignment of the beam optical component for a better beam focusing. The present invention also relates to a charged particle beam device that uses said beam optical component for focusing the charged particle beam, and a method to align first opening and second opening with respect to each other. | 09-25-2008 |
20080230695 | Method of imaging radiation from an object on a detection device and an inspection device for inspecting an object - A method of imaging radiation from an object on a detection device. The method includes directing a beam of coherent radiation to the object, scanning the beam of radiation over an angle in or out of a plane of incidence relative to the object, and imaging scattered radiation from the object on the detection device. | 09-25-2008 |
20080230696 | SURFACE TREATMENT AND SURFACE SCANNING - Provides surface treatment devices, surface scanning devices, methods of operating a surface treatment device and methods of operating a surface scanning device. An area within a medium comprises at least one sharpening location for sharpening a tip of a probe mechanically. The tip is conically shaped with a radius of an apex smaller than 100 nm. In the case of the surface treatment device the probe is designed for altering the surface of the medium. In the case of the surface scanning device the probe is designed for scanning the medium. The sharpening location is suited for sharpening the tip mechanically. For that purpose the probe and the medium are being moved relative to each other such that the tip is located in the sharpening location. Then the probe and/or the medium are moved relative to each other such, that the tip is mechanically sharpened. | 09-25-2008 |
20080237460 | METHOD FOR MASKLESS PARTICLE-BEAM EXPOSURE - For maskless irradiating a target with a beam of energetic electrically charged particles using a pattern definition means with a plurality of apertures and imaging the apertures in the pattern definition means onto a target which moves (v) relative to the pattern definition means laterally to the axis, the location of the image is moved along with the target, for a pixel exposure period within which a distance of relative movement of the target is covered which is at least a multiple of the width (w) of the aperture images as measured on the target, and after said pixel exposure period the location of the beam image is changed, which change of location generally compensates the overall movement of the location of the beam image. | 10-02-2008 |
20080237461 | Autofocus method in a scanning electron microscope - In an autofocus method, an electron beam is scanned onto a subject through a condensing member. A setting condition of the condensing member is changed within a first range. An image evaluation value is measured using a secondary electron current from the subject according to the setting condition within the first range. A second range adjacent to the first range and including the setting condition corresponding to the first maximum is set when a first maximum of the image evaluation value is not a peak value. The setting condition is changed within the second range. An image evaluation value is measured using a secondary electron current according to the setting condition within the second range. The condensing member is set with the setting condition corresponding to a second maximum of the image evaluation value when the second maximum value is the peak value. | 10-02-2008 |
20080258055 | CHARGED BEAM APPARATUS AND METHOD THAT PROVIDE CHARGED BEAM AERIAL DIMENSIONAL MAP - A charged beam apparatus, such as an electron microscopy apparatus, and a method for determining an aerial dimensional map of a charged beam within the charged beam apparatus, each use a test structure that includes a feature located upon a substrate. One of the feature and the substrate is conductive and the other of the feature and the structure is non conductive. The charged beam within the charged beam apparatus is scanned in a plurality of non-parallel linear directions with respect to the substrate and the feature to provide a corresponding plurality of current versus position response curves from which may be determined the aerial dimensional map of the charged beam within the charged beam apparatus. | 10-23-2008 |
20080258056 | METHOD FOR STEM SAMPLE INSPECTION IN A CHARGED PARTICLE BEAM INSTRUMENT - A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle. | 10-23-2008 |
20080265157 | Scanning Ion Probe Systems and Methods of Use Thereof - Briefly described, embodiments of this disclosure, among others, include scanning ion probe systems, methods of use thereof, scanning ion source systems, methods of use thereof, scanning ion probe mass spectrometry systems, methods of use thereof, methods of simultaneous ion analysis and imaging, and methods of simultaneous mass spectrometry and imaging. | 10-30-2008 |
20080272297 | Scanning electron microscope and CD measurement calibration standard specimen - A calibration standard specimen is provided to have formed therein calibrating patterns of a lattice shape discontinuously arrayed, and particular alignment patterns respectively disposed near the calibrating patterns so that the positioning of the specimen can be made to match the calibrating patterns to the measurement points. | 11-06-2008 |
20080277581 | In-situ BWR and PWR CRUD flake analysis method and tool - The invention provides a method and tool to perform an analysis of CRUD on a nuclear fuel rod. The method recites providing a nuclear fuel rod with a layer of CRUD on an exterior of the fuel rod, scraping the CRUD from the fuel rod with a CRUD scraping tool and collecting CRUD flakes from the CRUD scraping tool. The method also provides for sorting the CRUD flakes into particle fractions, and analyzing the CRUD with a scanning electron microscope, wherein the scraping tool has a blade with a rigidity that is matched to an anticipated CRUD deposit shear strength. | 11-13-2008 |
20080283744 | Charged Particle Beam Device - A charged particle beam device of the present invention, which can correct astigmatism, off-axis aberration and out-of-focus state simultaneously at high speed, is provided with an electrostatic lens between an objective lens and a sample, which lens generates an electric field on a trajectory of a charged particle beam. The electrostatic lens is divided into a plurality of electrodes, and a voltage can be applied to the electrodes independently. By adjusting this voltage, any one of the astigmatism, the off-axis aberration and the out-of-focus state of the objective lens is corrected. | 11-20-2008 |
20080283745 | EMITTER CHAMBER, CHARGED PARTICAL APPARATUS AND METHOD FOR OPERATING SAME - An emitter chamber for a charged particle beam apparatus with a wall defining a vacuum enclosure is provided, the emitter chamber comprising a housing enclosing an emitter (and at least one pump and attachment means for attaching said emitter chamber to the wall of said charged particle apparatus so that the housing of said emitter chamber is accommodated within said vacuum enclosure. | 11-20-2008 |
20080283746 | MICRO-SAMPLE PROCESSING METHOD, OBSERVATION METHOD AND APPARATUS - As sample sizes have decreased to microscopic levels, it has become desirable to establish a method for thin film processing and observation with a high level of positional accuracy, especially for materials which are vulnerable to electron beam irradiation. The technological problem is to judge a point at which to end FIB processing and perform control so that the portion to be observed ends up in a central portion of the thin film. The present invention enables display of structure in cross-section by setting a strip-like processing region in an inclined portion of a sample cross-section and enlarging the display of the strip-like processing region on a processing monitor in a short-side direction. It is then possible to check the cross-sectional structure without additional use of an electron beam. Since it is possible to check the processed section without using an electron beam, electron beam-generated damage or deformation to the processed section is avoided. Further, performing the observation using a high-speed electron beam after forming the thin film enables observation with suppressed sample damage. Processing of even thinner thin films using the FIB while observing images of the sample generated using an electron beam is then possible. | 11-20-2008 |
20080296496 | METHOD AND APPARATUS OF WAFER SURFACE POTENTIAL REGULATION - An electron beam apparatus and method are presented for regulating wafer surface potential during e-beam (scanning electron microscopy SEM) inspection and review. Regulating surface potential is often critical to detect voltage contrast (VC) defects of specific type, and sometimes, its also an important factor to achieve high quality SEM images. | 12-04-2008 |
20080308727 | Sample Preparation for Micro-Analysis - System and method for preparing a sample for micro-analysis, comprising: (a) sample precursor holding unit, for supporting and holding a sample precursor; (b) transporting and positioning unit, for transporting and positioning the sample precursor holding unit; (c) optical imaging unit, for optically imaging, recognizing, and identifying, target features on the sample precursor, and for monitoring the sample preparation; (d) picking and placing unit, for picking and placing the sample precursor and system components from initial positions to other functionally dependent positions; (e) micro-groove generating unit, for generating at least one micro-groove in a surface of the sample precursor, wherein the micro-groove generating unit includes components for controlling formation of each micro-groove in the surface; and (f) cryogenic sectioning unit, for cryogenically sectioning the sample precursor to a pre-determined configuration and size, for forming the prepared sample. Optionally, includes a micro-mask adhering unit, and a macro-mask adhering method. | 12-18-2008 |
20080308728 | Atom Probes, Atom Probe Specimens, and Associated Methods - The present invention relates generally to atom probes, atom probe specimens, and associated methods. For example, certain aspects are directed toward methods for analyzing a portion of a specimen that includes selecting a region of interest and moving a portion of material in a border region proximate to the region of interest so that at least a portion of the region of interest protrudes relative to at least a portion of the border region. The method further includes analyzing a portion of the region of interest. Other aspects of the invention are directed toward a method for applying photonic energy in an atom probe process by passing photonic energy through a lens system separated from a photonic device and spaced apart from the photonic device. Yet other aspects of the invention are directed toward a method for reflecting photonic energy off an outer surface of an electrode onto a specimen. | 12-18-2008 |
20080308729 | Apparatus for inspection with electron beam, method for operating same, and method for manufacturing semiconductor device using former - A substrate inspection apparatus | 12-18-2008 |
20080315091 | IMAGING AND SENSING BASED ON MUON TOMOGRAPHY - Techniques, apparatus and systems for detecting particles such as muons for imaging applications. Subtraction techniques are described to enhance the processing of the muon tomography data. | 12-25-2008 |
20080315092 | Scanning probe microscopy inspection and modification system - A scanning probe microscopy (SPM) inspection and/or modification system which uses SPM technology and techniques. The system includes various types of microstructured SPM probes for inspection and/or modification of the object. The components of the SPM system include microstructured calibration structures. A probe may be defective because of wear or because of fabrication errors. Various types of reference measurements of the calibration structure are made with the probe or vice versa to calibrate it. The components of the SPM system further include one or more tip machining structures. At these structures, material of the tips of the SPM probes may be machined by abrasively lapping and chemically lapping the material of the tip with the tip machining structures. | 12-25-2008 |
20090001266 | ARRANGEMENT AND METHOD FOR COMPENSATING EMITTER TIP VIBRATIONS - The present invention provides a charged particle beam apparatus with a charged particle beam source including an emitter with an emitter tip; and supporting member for supporting the emitter. Further, the apparatus includes an emitter location-measuring device for repeatedly measuring the location of the emitter; and a deflector system for compensating variations in the location of the emitter. | 01-01-2009 |
20090032705 | Fast Tip Scanning For Scanning Probe Microscope - An atomic force microscope apparatus scans a sample disposed in an X-Y plane, the sample having a surface, the surface having features in a Z direction perpendicular to the X-Y plane. The apparatus comprises an elongated arm having a pivot point and being rotatable about the pivot point in the X-Y plane; and a probe tip substructure that includes (i) a probe tip and (ii) a tip actuator. The probe tip substructure is disposed on the elongated arm a predetermined distance from the pivot point, wherein the arm disposes the probe tip at a location extended outward from the remainder of the AFM apparatus. The atomic force microscope apparatus moves the probe tip (i) by rotating the elongated arm about the pivot point, and (ii) by moving the tip actuator. | 02-05-2009 |
20090032706 | Fast-Scanning SPM and Method of Operating Same - A method and apparatus are provided that have the capability of rapidly scanning a large sample of arbitrary characteristics under force control feedback so has to obtain a high resolution image. The method includes generating relative scanning movement between a probe of the SPM and a sample to scan the probe through a scan range of at least 4 microns at a rate of at least 30 lines/sec and controlling probe-sample interaction with a force control slew rate of at least 1 mm/sec. A preferred SPM capable of achieving these results has a force controller having a force control bandwidth of at least closed loop bandwidth of at least 10 kHz. | 02-05-2009 |
20090032707 | PATTERN MEASUREMENT METHOD AND PATTERN MEASUREMENT SYSTEM - Easily and correctly measuring a dimension of a pattern of a photomask or of an OPC pattern of the photomask. | 02-05-2009 |
20090039257 | Electron beam device - An electron beam device has an electron gun for generating an electron beam, an objective lens for focusing the electron beam on an object and at least one detector for detecting electrons emitted by the object or electrons backscattered by the object. Detection of electrons emitted by or backscattered by an object may be simplified and improved using quadrupole devices and certain configurations of these devices provided in the electron beam device. | 02-12-2009 |
20090039258 | Scanning Electron Microscope And Method For Detecting An Image Using The Same - A scanning electron microscope includes an electron beam source which emits an electron beam, a beam current controller which controls a beam current of the electron beam, an electron beam converger which converges the electron beam on a surface of a sample, an electron beam scanner which scans the electron beam on the surface of the sample, a table which mounts the sample and moves at least in one direction, a detector which detects a secondary electron or a reflected electron emanated from the sample by the scan of the electron beam, an image former which forms an image of the sample based on a detection value of the detector, an image processor which processes the image formed by the image former. The beam current controller controls the beam current of the electron beam by changing transmittance of the electron beam in an irradiation path of the electron beam. | 02-12-2009 |
20090039259 | SCANNING ELECTRON MICROSCOPE - To make it possible to observe the bottom of a contact hole and internal wires, in observation of the contact hole | 02-12-2009 |
20090045336 | Scanning probe microscopy cantilever, corresponding manufacturing method, scanning probe microscope, and scanning method - The present invention provides a scanning probe microscope cantilever comprising a support portion, a lever portion extended from the support portion, and a needle projecting out of a first surface of the cantilever in the vicinity of a free end of the lever portion. From a second surface of the cantilever opposite the first surface, a bore extends through the needle to an aperture formed at a tip of the needle. To the tip of the needle, a substantially globular particle is attached. A method of scanning a sample surface comprises creating relative cantilever motion substantially toward the sample such that the particle experiences a contact force with the sample, illuminating a top surface of the cantilever with laser light such that a portion of the laser light passes through the hollow needle and is emitted from the aperture onto the particle, and detecting scattered light from the sample. | 02-19-2009 |
20090050802 | METHOD AND APPARATUS FOR INSPECTING SAMPLE SURFACE - Provided is a method and an apparatus for inspecting a sample surface with high accuracy. | 02-26-2009 |
20090057554 | METHOD FOR PHOTORESIST CHARACTERIZATION AND ANALYSIS - A method for photoresist characterization includes forming a photoresist on a supportive structure; and characterizing the photoresist using a metrology tool selected from the group consisting of a transmission electron microscope (TEM), a scanning electron microscope (SEM), an atomic force microscope (AFM), a small angle X-ray scattering (SAXS) and a laser diffraction particle analyzer. | 03-05-2009 |
20090084951 | Scintillator aspects for X-Ray fluorescence visualizer, imager, or information provider - One aspect relates to optically detecting an at least one scintillated viewable and/or visible photon that has been converted from the at least one induced X-ray fluorescing photon. The aspect can also relate to optically detecting an at least one scintillated viewable and/or visible photon that has been converted from the at least one induced X-ray fluorescing photon. | 04-02-2009 |
20090084952 | Apparatus and method for scanning capacitance microscopy and spectroscopy - An apparatus and technique for measuring the electrical capacitance between a conducting tip of a scanning probe microscope and a sample surface is described. A high frequency digital vector network analyzer is connected to the probe tip of the cantilever of an atomic force microscope, and data collection is coordinated by a digital computer using digital trigger signals between the AFM controller and the vector network analyzer. Methods for imaging tip-sample capacitance and spectroscopic measurements at a single point on the sample are described. A method for system calibration is described. | 04-02-2009 |
20090084953 | Method and system for observing a specimen using a scanning electron microscope - It is intended to reduce the auto focusing time and to increase the stability in a case that a defect on a specimen that has been detected by an inspection apparatus is observed by using a scanning electron microscope. One or more regions to be used for auto focusing are set in an imaging region or its neighborhood on the basis of semiconductor design information. A target focusing position in the imaging region is determined by performing auto focusing using the thus-set regions. The determined target focusing position is used for low-magnification imaging and high-magnification imaging. An auto focusing mode that is suitable for each imaging region is selected on the basis of the semiconductor design information. | 04-02-2009 |
20090084954 | METHOD FOR INSPECTING AND MEASURING SAMPLE AND SCANNING ELECTRON MICROSCOPE - As an aspect for realizing accurate observation, inspection, or measurement of the contact hole with large aspect ratio, a method and a device to scan a second electron beam after scanning a first electron beam to a sample to charge the sample are proposed wherein the beam diameter of the first electron beam is made larger than the beam diameter of the second electron beam. | 04-02-2009 |
20090090863 | SAMPLE SURFACE OBSERVATION METHOD - A surface of a sample is observed by acquiring an image of the surface of the sample. An electron beam I irradiated onto the surface of the sample in which wiring including an insulation material and an electrically conductive material is formed. Electrons that acquired structure information regarding a structure of the surface of the sample are detected. An image of the surface of the sample is acquired by a result of the detection of electrons. The surface of the sample is observed using the acquired image of the surface of the sample. The electron beam is irradiated onto the surface of the sample in a state where a brightness of the insulation material and a brightness of the electrically conductive material in the image of the surface of the sample are set equal to each other. | 04-09-2009 |
20090101815 | CANTILEVER FOR NEAR FIELD OPTICAL MICROSCOPES, PLASMON ENHANCED FLUORESCENCE MICROSCOPE EMPLOYING THE CANTILEVER, AND FLUORESCENCE DETECTING METHOD - A cantilever for near field optical microscopes is equipped with a probe in the vicinity of a free end thereof. The probe includes a thin film portion constituted by at least one layer of thin film that serves as the surface of the probe, and an inner bulk portion which is covered by the thin film portion. The outermost layer of the thin film portion is a thin dielectric film, and a metal portion is provided toward the interior of the probe from the thin dielectric film. | 04-23-2009 |
20090114816 | Advanced Roughness Metrology - A method for evaluating a feature, consisting of receiving an image of the feature and determining respective coordinates of a plurality of points on an edge of the feature in the image. A figure having a noncircular non-linear shape is fitted to the plurality of points, and respective distances between the plurality of points and the figure are determined. A roughness parameter for the feature is computed in response to the respective distances. The method finds application in the analysis of critical dimensions (CD) of integrated circuits and, particularly, in the measurement of the edge roughness of their features and components as imaged by means of eg. The electron scanning microscopy (SEM). | 05-07-2009 |
20090114817 | APPARATUS AND METHOD FOR ENHANCING VOLTAGE CONTRAST OF A WAFER - A system for electrically testing a semiconductor wafer, the system including (a) at least one charged particle beam focus effecting component and (b) at least one detector adapted to collect charged particles scattered from the wafer; wherein the system is adapted to scan a first area of a sample by a de-focused charged particle beam so as to affect a charging of the first area, scan at least a portion of the first area by a focused charged particle beam and detect electrons scattered from the at least portion. The system scans the at least portion while the first area remains affected by the de-focused charged particle beam. A method for electrically testing a semiconductor wafer includes scanning a first area of a sample by a de-focused charged particle beam so as to affect a charging of the first area; and scanning at least a portion of the first area by a focused charged particle beam while detecting electrons scattered from the at least portion, the at least portion being scanned while the first area remains affected by charging introduced by the de-focused charged particle beam. | 05-07-2009 |
20090114818 | Particle-Optical Component - The present invention relates to a particle-optical component comprising a first multi-aperture plate, and a second multi-aperture plate forming a gap between them; wherein a plurality of apertures of the first multi-aperture plate is arranged such that each aperture of the plurality of apertures of the first multi-aperture plate is aligned with a corresponding aperture of a plurality of apertures of the second multi-aperture plate; and wherein the gap has a first width at a first location and a second width at a second location and wherein the second width is by at least 5% greater than the first width. In addition, the present invention pertains to charged particle systems and arrangements comprising such components and methods of manufacturing multi aperture plates having a curved surface. | 05-07-2009 |
20090121131 | Method of determination of resolution of scanning electron microscope - A method of determining a resolution of a scanning electron microscope includes using an image of an object provided by the scanning electron microscope during scanning of an object of measurement, obtaining information about a resolution of the scanning electron microscope from the image of the object during its scanning by the scanning electron microscope; and using the information for determining the resolution of the scanning electron microscope. | 05-14-2009 |
20090121132 | Material processing system and method - A material processing system for processing a work piece is provided. The material processing is effected by supplying a reactive gas and energetic radiation for activation of the reactive gas to a surrounding of a location of the work piece to be processed. The radiation is preferably provided by an electron microscope. An objective lens of the electron microscope is preferably disposed between a detector of the electron microscope and the work piece. A gas supply arrangement of the material processing system comprises a valve disposed spaced apart from the processing location, a gas volume between the valve and a location of emergence of the reaction gas being small. The gas supply arrangement further comprises a temperature-adjusted, especially cooled reservoir for accommodating a starting material for the reactive gas. | 05-14-2009 |
20090127458 | Methods for Sample Preparation and Observation, Charged Particle Apparatus - In an SEM observation in a depth direction of a cross section processed by repeated FIB cross-sectioning and SEM observation to correct a deviation in an observation field of view and a deviation in focus, are corrected, the deviations occurring when a processed cross section moves in the depth direction thereof; information on a height and a tilt of a surface of cross section processing area is calculated before the processing, the above information is used, the deviation in a field of view and the deviation in focus in SEM observation, which correspond to an amount of movement of the cross section at a time of the processing, are predicted, and the SEM is controlled based on the predicted values. | 05-21-2009 |
20090134327 | Defect recognizing method, defect observing method, and charged particle beam apparatus - There are provided a detecting step of detecting secondary charged particles generated from an observation area of a sample when an electron beam or a focused ion beam is emitted onto the observation area under a certain irradiation condition; an image forming step of forming a plurality of observation images acquired by dividing the observation area and having an equal periodic pattern, from the secondary charged particles detected in the detecting step; and a defect recognizing step of recognizing a defect in the observation area from information on a difference acquired by comparing the plurality of observation images formed in the image forming step. Additionally, the detecting step, the image forming step, and the defect recognizing step are performed even when the electron beam or the focused ion beam is emitted onto the observation area under an irradiation condition different from the certain irradiation condition. | 05-28-2009 |
20090140142 | SCANNING PROBE MICROSCOPE AND MEASURING METHOD THEREBY - A scanning probe microscope performs first scanning movement of a probe in X and Y directions along a sample surface while controlling the position of the probe in a Z direction by an XYZ fine movement mechanism. Measurement information about the sample surface is obtained by a measurement section and displacement detection section during the first scanning. A probe movement path is determined for a second scanning that includes a measuring spot in which a measurement including a parallel direction component to the sample surface to be performed on the probe movement path is determined, on the basis of the measurement information about the sample surface. As a result of performing the measurement including the parallel direction component based on the second scanning wear of the probe is reduced and measurement reliability and simplified movement control of the scanning of the probe is enabled. | 06-04-2009 |
20090152461 | Hole Inspection Apparatus and Hole Inspection Method using the Same - Disclosed herein is an apparatus and method for inspecting the via holes of a semiconductor device using electron beams. The apparatus includes electron beam irradiation means, a current measuring means, and a current measuring means and data processing means. The electron beam irradiation means radiate respective electron beams to inspect a plurality of inspection target holes. The current measuring means measures current, which is generated by irradiating the electron beams, radiated from the electron beam irradiation means, through a conductive layer located under the holes, or through the conductive layer and a separate detector. The data processing means processes data acquired through the measurement of the current measuring means. | 06-18-2009 |
20090152462 | Gas field ionization ion source, scanning charged particle microscope, optical axis adjustment method and specimen observation method - It is an object of the present invention to improve the stability of a gas field ionization ion source. | 06-18-2009 |
20090166535 | TRANSMISSION ELECTRON MICROSCOPY ANALYSIS METHOD USING FOCUSED ION BEAM AND TRANSMISSION ELECTRON MICROSCOPY SAMPLE STRUCTURE - A TEM (transmission electron microscopy) analysis method using FIB (focused ion beam) includes dividing a TEM sample into a plurality of analysis regions; determining an FIB beam current for each of the analysis regions; and performing FIB milling on each of the analysis regions by using the determined FIB beam current. Further, the method includes loading the TEM sample onto a TEM sample grid and transmitting a TEM electron beam on the TEM sample to perform the TEM analysis. | 07-02-2009 |
20090166536 | Sample Holder, Method for Observation and Inspection, and Apparatus for Observation and Inspection - A sample holder used in SEM (scanning electron microscopy) or TEM (transmission electron microscopy) permitting observation and inspection at higher resolution. The holder has a frame-like member provided with an opening that is covered with a film. The film has a first surface on which a sample is held. The thickness D of the film and the length L of the portion of the film providing a cover over the opening in the frame-like member satisfy a relationship given by L/D <200,000. | 07-02-2009 |
20090173882 | Liquid Medium For Preventing Charge-Up in Electron Microscope and Method of Observing Sample Using The Same - An object of the present invention is to provide a medium; a specimen; a method for preparing the specimen; a method for observing the specimen; a sample cell; and an electron microscope capable of easily solving the problem of charge-up and further capable of observing a real shape or the like of a sample with a SEM, a TEM or the like. For the purpose of achieving the above-described object, the present invention uses an electrical conductivity-imparting liquid medium, for use in a microscope, which includes an ionic liquid as an essential component thereof and is impregnated into the entirety of a SEM or TEM sample or applied to the observation surface of a SEM or TEM sample to impart electrical conductivity at least to the observation surface of the sample. According to the present invention, the charge built up on the sample surface can be released simply by impregnating or coating the sample with the ionic liquid, and hence the problem of charge-up can be easily solved. Further, even when a sample impregnated or coated with the ionic liquid is placed under vacuum, the ionic liquid is not evaporated from the sample, and hence a biological sample can be observed as it is in an original shape. | 07-09-2009 |
20090179151 | APPARATUS AND METHOD FOR INSPECTION AND MEASUREMENT - An electrification control electrode B is installed at a measured or inspected specimen side of an electrification control electrode A, and a constant voltage is applied from an electrification control electrode control portion of an electrification control electrode B according to an electrification state of a specimen, whereby a variation of an electrification state and a potential barrier of a specimen surface formed before an inspection is suppressed. A retarding potential is applied by an electrification control electrode, and the electrification control electrode B is disposed below the electrification control electrode A adjusted to equal potential to a specimen. As a result, it is possible to adjust the amount that secondary electrons emitted from a specimen such as a wafer to which a primary electron beam is irradiated return to a specimen, and thus it is possible to stably maintain an inspection condition of high sensitivity during an inspection. | 07-16-2009 |
20090189075 | INSPECTION METHOD AND INSPECTION SYSTEM USING CHARGED PARTICLE BEAM - Secondary electrons and back scattered electrons generated by irradiating a wafer to be inspected such as a semiconductor wafer with a charged particle beam are detected by a detector. A signal proportional to the number of detected electrons is generated, and an inspection image is formed on the basis of the signal. On the other hand, in consideration of a current value and irradiation energy of a charged particle beam, an electric field on the surface of the inspection wafer, emission efficiency of the secondary electrons and back scattered electrons, and the like, an electric resistance and an electric capacitance are determined so as to coincide with those in the inspection image. In a state where a difference between a resistance value in a normal portion and a resistance value in a defective portion is sufficiently increased by using the charging generated by the irradiation of electron beams, an inspection is conducted to thereby detect a defect. | 07-30-2009 |
20090194689 | METHOD AND SYSTEM FOR MEASURING PROPERTIES OF MICROSTRUCTURES AND NANOSTRUCTURES - A method is presented for characterizing properties of a specimen, such as a microstructure and a nanostructure. The method includes attaching a first end of the specimen to a first probe ( | 08-06-2009 |
20090194690 | Inspection Method And Inspection System Using Charged Particle Beam - An electron beam system includes a sample holder to hold a sample, electron optics to obtain an image of the sample, an electrode to control a charged state of the sample, a monitor to determine a range of voltage applied to the electrode, and a processing unit to obtain plural images of different charged states of the sample in accordance with a change of the applied to the electrode and to determine voltage from the voltage contrasts of the images. | 08-06-2009 |
20090200463 | Charged Particle Beam Device With Retarding Field Analyzer - The invention provides a charged particle beam device to inspect or structure a specimen with a primary charged particle beam propagating along an optical axis; a beam tube element having a tube voltage; and a retarding field analyzer in the vicinity of the beam tube element to detect secondary charged particles generated by the primary charged particle beam on the specimen. According to the invention, the retarding field analyzer thereby comprises an entrance grid electrode at a second voltage; at least one filter grid electrode at a first voltage; a charged particle detector to detect the secondary charged particles; and at least one further electrode element arranged between the entrance grid electrode and the at least one filter grid electrode. The at least one further electrode element reduces the size of the stray fields regions in the retarding electric field region to improve the energy resolution of the retarding field analyzer. The improvement of the energy resolution is significant, in particular when the beam tube element is part of a high voltage beam tube. | 08-13-2009 |
20090200464 | TEM WITH ABERRATION CORRECTOR AND PHASE PLATE - The invention relates to a TEM with a corrector ( | 08-13-2009 |
20090206251 | OPTICAL MICROSCOPY WITH PHOTOTRANSFORMABLE OPTICAL LABELS - First activation radiation is provided to a sample that includes phototransformable optical labels (“PTOLs”) to activate a first subset of the PTOLs in the sample. First excitation radiation is provided to the first subset of PTOLs in the sample to excite at least some of the activated PTOLs, and radiation emitted from activated and excited PTOLs within the first subset of PTOLs is detecting with imaging optics. The first activation radiation is controlled such that the mean volume per activated PTOL in the first subset is greater than or approximately equal to a diffraction-limited resolution volume (“DLRV”) of the imaging optics. | 08-20-2009 |
20090206252 | Defect inspection method and its system - A method for enabling management of fatal defects of semiconductor integrated patterns easily, the method enables storing of design data of each pattern designed by a semiconductor integrated circuit designer, as well as storing of design intent data having pattern importance levels ranked according to their design intents respectively. The method also enables anticipating of defects to be generated systematically due to the characteristics of the subject exposure system, etc. while each designed circuit pattern is exposed and delineated onto a wafer in a simulation carried out beforehand and storing those defects as hot spot information. Furthermore, the method also enables combining of the design intent data with hot spot information to limit inspection spots that might include systematic defects at high possibility with respect to the characteristics of the object semiconductor integrated circuit and shorten the defect inspection time significantly. | 08-20-2009 |
20090206253 | SUBSTRATE INSPECTION METHOD, SUBSTRATE INSPECTION APPARATUS AND STORAGE MEDIUM - In a substrate inspection method, it is inspected whether the metal electrode is electrically connected to the conductive film by radiating electron beams onto a surface of the substrate to detect the number of secondary electrons emitted therefrom. The method includes placing the substrate onto a mounting table; inspecting the metal electrode by radiating electron beams onto an area of the substrate including the metal electrode at a first acceleration voltage and detecting secondary electrons emitted from the metal electrode; and radiating electron beams onto an area of the substrate not including the metal electrode at a second acceleration voltage. The second acceleration voltage is set such that a difference between the number of electrons entering the insulation film and the number of secondary electrons emitted from the insulation film is smaller at the second acceleration voltage than at the first acceleration voltage. | 08-20-2009 |
20090206254 | Composite charged particle beam apparatus, method of processing a sample and method of preparing a sample for a transmission electron microscope using the same - An apparatus is provided that precisely conduct ion beam etching to a sample having the properties of which easily change by electron beam irradiation with no loss of ease of operation and throughput. An apparatus includes an ion beam lens barrel and an electron beam lens barrel, which can observe or measure the conditions of a sample with an electron beam in the process of etching with an ion beam, wherein first, an observation image is obtained that includes the entire process area formed by secondary signals generated by an electron beam, secondly, an irradiation permit area and an irradiation inhibit area are defined in the observation image, and thirdly, electron beam irradiation is restricted only to the irradiation permit area. | 08-20-2009 |
20090212211 | Electron Microscope System and Method for Evaluating Film Thickness Reduction of Resist Patterns - The invention provides a system for achieving detection and measurement of film thickness reduction of a resist pattern with high throughput which can be applied to part of in-line process management. By taking into consideration the fact that film thickness reduction of the resist pattern leads to some surface roughness of the upper surface of the resist, a film thickness reduction index value is calculated by quantifying the degree of roughness of the part corresponding to the upper surface of the resist on an electron microscope image of the resist pattern which has been used in the conventional line width measurement. The amount of film thickness reduction of the resist pattern is estimated by applying the calculated index value to a database previously made for relating a film thickness reduction index value to an amount of film thickness reduction of the resist pattern. | 08-27-2009 |
20090212212 | Scanning Electron Microscope system and Method for Measuring Dimensions of Patterns Formed on Semiconductor Device By Using the System - The present invention is for providing a scanning electron microscope system adapted to output contour information fitting in with the real pattern edge end of a sample, and is arranged to generate a local projection waveform by projecting the scanning electron microscope image in the tangential direction with respect to the pattern edge at each point of the pattern edge of the scanning electron microscope image, estimate the cross-sectional shape of the pattern transferred on the sample by applying the local projection waveform generated at each point to a library, which has previously been created, correlating the cross-sectional shape with the electron beam signal waveform, obtain position coordinate of the edge end fitting in with the cross-sectional shape, and output the contour of the pattern as a range of position coordinates. | 08-27-2009 |
20090218488 | BEAM POSITIONING FOR BEAM PROCESSING - An improved method and apparatus of beam processing corrects for beam drift while a beam is processing a sample. The beam position is aligned using a fiducial that is sufficiently near the working area so that the fiducial can be imaged and the sample processed without a stage moving. During processing, the beam positioning is corrected for drift using a model that predicts the drift. | 09-03-2009 |
20090218489 | SYSTEMS AND METHODS FOR MATERIAL TREATMENT AND CHARACTERIZATION EMPLOYING POSITRON ANNIHILATION - Methods of treating materials include providing positrons within the material and detecting radiation emitted upon annihilation of positron-electron pairs within the material while treating the material. Treating the material may include subjecting the material to one or more of a pressure change, a temperature change, and a change in atmosphere while detecting the radiation. Methods of characterizing materials include providing a material in a non-equilibrium state, detecting electromagnetic radiation emitted upon annihilation of positron-electron pairs within the material, and detecting a change in one or more physical or chemical characteristics of the material. Systems for treating materials include an enclosure, a positron-generating device for providing positrons within material to be treated within the enclosure, and a radiation detection device for detecting radiation emitted upon annihilation of positron-electron pairs. | 09-03-2009 |
20090218490 | APPARATUS AND METHOD OF SEMICONDUCTOR DEFECT INSPECTION - An object of the present invention is to provide an apparatus and a method of semiconductor defect inspection in which an optimal process condition can be determined without performing electrical evaluation. To achieve the object, the present invention includes a configuration in which the type of an extracted defect is identified with reference to a database that stores the types of defects obtained by inspecting a sample, a defect density according to each defect type is obtained for each region of the sample, and the defect density is displayed. Moreover, the present invention includes a configuration in which the type of an extracted defect is identified with reference to a database that stores the types of defects obtained by inspecting a sample, a defect density according to each defect type is determined for each production process of the sample, and the defect density is displayed on a display. | 09-03-2009 |
20090224151 | DETECTOR AND INSPECTING APPARATUS - An inspecting apparatus for reducing a time loss associated with a work for changing a detector is characterized by comprising a plurality of detectors | 09-10-2009 |
20090236520 | METHOD AND APPARATUS ALLOWING SIMULTANEOUS DIRECT OBSERVATION AND ELECTRONIC CAPTURE OF SCINTILLATION IMAGES IN AN ELECTRON MICROSCOPE - A method and apparatus allowing for simultaneous direct viewing and electronic capture of images in an electron microscope (TEM). For this, the usual opaque direct viewing plate in the TEM is replaced in form and in function by a two-sided direct viewing plate including at least one scintillator. This plate produces light emissions from both its upper and lower surfaces, which allows an electronic camera below the plate to be used simultaneously with direct human viewing from above the plate. The method and apparatus are also compatible with traditional permanent image recording units that are often desired in such microscopes. | 09-24-2009 |
20090236521 | METHOD AND SYSTEM FOR ULTRAFAST PHOTOELECTRON MICROSCOPE - An ultrafast system (and methods) for characterizing one or more samples. The system includes a stage assembly, which has a sample to be characterized. The system has a laser source that is capable of emitting an optical pulse of less than 1 ps in duration. The system has a cathode coupled to the laser source. In a specific embodiment, the cathode is capable of emitting an electron pulse less than 1 ps in duration. The system has an electron lens assembly adapted to focus the electron pulse onto the sample disposed on the stage. The system has a detector adapted to capture one or more electrons passing through the sample. The one or more electrons passing through the sample is representative of the structure of the sample. The detector provides a signal (e.g., data signal) associated with the one or more electrons passing through the sample that represents the structure of the sample. The system has a processor coupled to the detector. The processor is adapted to process the data signal associated with the one or more electrons passing through the sample to output information associated with the structure of the sample. The system has an output device coupled to the processor. The output device is adapted to output the information associated with the structure of the sample. | 09-24-2009 |
20090236522 | Optical zoom system for a light scanning electron microscope - For a confocal scanning electron microscope ( | 09-24-2009 |
20090242758 | MULTISTAGE GAS CASCADE AMPLIFIER - A novel detector for a charged particle beam system which includes multiple gas amplification stages. The stages are typically defined by conductors to which voltage are applied relative to the sample or to a previous stage. By creating cascades of secondary electrons in multiple stages, the gain can be increased without causing dielectric breakdown of the gas. | 10-01-2009 |
20090242759 | SLICE AND VIEW WITH DECORATION - Imprecisely located defects are imaged by milling a series of slices and performing a light, preferential etch to provide a topographical interface between materials having similar secondary electron emission characteristics. The slices are sufficiently small to capture small defects, but are sufficiently large to overcome problems with redeposition. | 10-01-2009 |
20090242760 | Method and Apparatus for Measuring Dimension of Circuit Patterm Formed on Substrate by Using Scanning Electron Microscope - In the dimension measurement of a circuit pattern using a scanning electron microscope (SEM), in order to make it possible to automatically image desired evaluation points (EPs) on a sample, and automatically measure the circuit pattern formed at the evaluation points, according to the present invention, in the dimension measurement of a circuit pattern using a scanning electron microscope (SEM), it is arranged that coordinate data of the EP and design data of the circuit pattern including the EP are used as an input, creation of a dimension measurement cursor for measuring the pattern existing in the EP and selection or setting of the dimension measurement method are automatically performed based on the EP coordinate data and the design data to automatically create a recipe, and automatic imaging/measurement is performed using the recipe. | 10-01-2009 |
20090242761 | METHOD AND APPARATUS FOR CHARGED PARTICLE BEAM INSPECTION - A method, apparatus and computer readable medium for charged particle beam inspection of a sample comprising at least one sampling region and at least one skip region is disclosed. The method, apparatus and computer readable medium comprise receiving an imaging recipe which at least comprises information of the area of the sampling and skip regions; calculating a default stage speed according to the imaging recipe; calculating an alternative stage speed at least according to the default stage speed, the sampling region area information, and the skip region area information; calculating at least one imaging scan compensation offset at least according to the alternative stage speed; and inspecting the sample at the alternative stage speed while adjusting the motion of the charged particle beam according to the imaging scan compensation offsets, such that the charged particle beam tightly follows the motion of the stage and images only the sampling regions on the sample. | 10-01-2009 |
20090242762 | Apparatus and Method for Inspecting Sample - Method and apparatus have a film including a first surface to hold the liquid sample thereon, a vacuum chamber for reducing the pressure of an ambient in contact with a second surface of the film, primary beam irradiation means connected with the vacuum chamber and irradiating the sample with a primary beam via the film, signal detection means for detecting a secondary signal produced from the sample in response to the beam irradiation, a partitioning plate for partially partitioning off the space between the film and the primary beam irradiation means in the vacuum chamber, and a vacuum gauge for detecting the pressure inside the vacuum chamber. | 10-01-2009 |
20090242763 | Environmental Cell for a Particle-Optical Apparatus - The invention relates to an environmental cell for use in e.g. an electron microscope. The environmental cell shows an aperture ( | 10-01-2009 |
20090256075 | Charged Particle Inspection Method and Charged Particle System - The present invention relates to a charged particle system comprising: a charged particle source; a first multi aperture plate; a second multi aperture plate disposed downstream of the first multi aperture plate, the second multi aperture plate; a controller configured to selectively apply at least first and second voltage differences between the first and second multi aperture plates; wherein the charged particle source and the first and second multi aperture plates are arranged such that each of a plurality of charged particle beamlets traverses an aperture pair, said aperture pair comprising one aperture of the first multi aperture plate and one aperture of the second multi aperture plate, wherein plural aperture pairs are arranged such that a center of the aperture of the first multi aperture plate is, when seen in a direction of incidence of the charged particle beamlet traversing the aperture of the first multi aperture plate, displaced relative to a center of the aperture of the second multi aperture plate. The invention further pertains to a a particle-optical component configured to change a divergence of a set of charged particle beamlets and a charged particle inspection method comprising inspection of an object using different numbers of charged particle beamlets. | 10-15-2009 |
20090261250 | PLASMONIC STRUCTURE LENS AND ITS APPLICATION FOR ONLINE INSPECTION - A surface plasmonic polariton lens is disclosed that has an optical plate having incident thereupon waves of electromagnetic radiation. The plate also has a thin metal film of a metal having a negative permittivity. There are slits in the thin film, the slits being of decreasing radial width, and decreasing radial separation at increasing radius and being for the transmission therethrough of diffracted waves of the electromagnetic radiation. There are rings between the slits, the rings being of decreasing radial width at increasing radius and being for the transmission therethrough of evanescent waves of the electromagnetic radiation. The diffracted waves and the evanescent waves form propagated waves. A probe with such a lens, and an inspection apparatus and method using the probe are also disclosed. | 10-22-2009 |
20090266985 | Scanning Type Charged Particle Beam Microscope and an Image Processing Method Using the Same - Design data and sample characteristic information corresponding to individual areas on the design data are used to perform an image quality improvement operation to make appropriate improvements on image quality according to sample characteristic corresponding to the individual areas on the image, allowing a high speed area division on the image. Further, the use of a database that stores image information associated with the design data allows for an image quality improvement operation that automatically emphasizes portions of the image that greatly differ from past images of the similar design data. | 10-29-2009 |
20090272899 | Method for Detecting Information of an Electric Potential on a Sample and Charged Particle Beam Apparatus - An object of the present invention is to provide a method and apparatus for measuring a potential on a surface of a sample using a charged particle beam while restraining a change in the potential on the sample induced by the charged particle beam application, or detecting a compensation value for a change in a condition for the apparatus caused by the sample being electrically charged. In order to achieve the above object, the present invention provides a method and apparatus for applying a voltage to a sample so that a charged particle beam does not reach the sample (hereinafter, this may be referred to as “mirror state”) in a state in which the charged particle beam is applied toward the sample, and detecting information relating to a potential on the sample using signals obtained by that voltage application. | 11-05-2009 |
20090272900 | Pattern Invariant Focusing of a Charged Particle Beam - A method for focusing a scanning microscope, including scanning a primary charged particle beam across first sites of a reference die of a wafer, detecting a secondary beam emitted from the sites, and computing first focus scores for the sites based on the secondary beam. The method includes scanning the primary beam across second sites of a given die of the wafer while modulating a focal depth of the primary beam, the reference die and the given die having congruent layouts, the second sites corresponding vectorially in location with the first sites, and detecting the secondary beam emitted from the second sites in response to the primary beam. The method also includes computing second focus scores for the second sites based on the detected secondary beam emitted therefrom, and determining an exact focus of the primary beam for the second sites using the first and the second focus scores. | 11-05-2009 |
20090272901 | Semiconductor substrate, substrate inspection method, semiconductor device manufacturing method, and inspection apparatus - A semiconductor substrate inspection method includes: generating a charged particle beam, and irradiating the charged particle beam to a semiconductor substrate in which contact wiring lines are formed on a surface thereof, the contact wiring lines of the semiconductor substrate being designed to alternately repeat in a plane view so that one of the adjacent contact wiring lines is grounded to the semiconductor substrate and the other of the adjacent contact wiring lines is insulated from the semiconductor substrate; detecting at least one of a secondary charged particle, a reflected charged particle and a back scattering charged particle generated from the surface of the semiconductor substrate to acquire a signal; generating an inspection image with the signal, the inspection image showing a state of the surface of the semiconductor substrate; and judging whether the semiconductor substrate is good or bad from a difference of brightness in the inspection image obtained from the surfaces of the adjacent contact wiring lines. | 11-05-2009 |
20090283676 | EXTENDED ELECTRON TOMOGRAPHY - A method for improving image resolution of a three dimensional structure of at least one molecule conformation includes: determining a three dimensional structure of at least one conformation of a molecule in a sample from a first data set obtained from a series of 2D measurements of different geometrical projections of the molecule at a low electron beam dose in an electron microscope; producing a second data set including calculated two dimensional projections of the determined three dimensional structure of the at least one conformation of the same molecule; correlating data from a third data set obtained from at least one measurement of the same molecule using a higher electron beam dose with the second data set; and using the correlated data to improve the resolution of the three dimensional structure of the at least one conformation of the molecule by increasing the first data set with the correlated data and re-determining a three dimensional structure. | 11-19-2009 |
20090283677 | Section image acquiring method using combined charge particle beam apparatus and combined charge particle beam apparatus - There is constructed a constitution of including a mark image taking step of taking a reference mark image by subjecting a region other than an observation object section to EB scanning, a drift amount calculating step of calculating a current SEM drift amount with regard to a predetermined time point by comparing the taken reference mark image with a reference mark reference image, and an offset amount calculating step of calculating an offset amount of a current observation object section with regard to the predetermined time point prior to a section image taking step and taking a section image by correcting an EB scanning region at the predetermined time point based on the SEM drift amount and the offset amount at the section image taking step. | 11-19-2009 |
20090302217 | Hybrid Phase Plate - The invention relates to a hybrid phase plate for use in a TEM. The phase plate according to the invention resembles a Boersch phase plate in which a Zernike phase plate is mounted. As a result the phase plate according to the invention resembles a Boersch phase plate for electrons scattered to such an extent that they pass outside the central structure ( | 12-10-2009 |
20090309022 | APPARATUS FOR INSPECTING A SUBSTRATE, A METHOD OF INSPECTING A SUBSTRATE, A SCANNING ELECTRON MICROSCOPE, AND A METHOD OF PRODUCING AN IMAGE USING A SCANNING ELECTRON MICROSCOPE - An object of the present invention provides an inspection apparatus and an inspection method which use an electron beam image to accurately detect a defect that is difficult to detect in an optical image, the apparatus and method also enabling prevention of a possible decrease in focus accuracy of an inspection image which affect the defect detection. To accomplish the object, the present invention includes a height measurement section which measures height of the electron beam irradiation position on the substrate after the substrate is loaded onto a movable stage, a height correction processing section which corrects the measured height, and a control section which adjusts a focus of the electron beam according to the height corrected by the height correction processing section, wherein a stage position set when the height measurement section measures the height differs from a stage position set when the substrate is irradiated with the electron beam, and the height correction processing section corrects a possible deviation in height resulting from movement from the stage position for the height measurement to the stage position for the electron beam irradiation. | 12-17-2009 |
20090309023 | ELECTRON SPECTROSCOPY - The present invention provides an electron spectroscopy apparatus ( | 12-17-2009 |
20090314937 | Method and Device For Producing an Image - The invention relates to a method and to a device ( | 12-24-2009 |
20090314938 | CHARGED PARTICLE BEAM APPARATUS AND DIMENSION MEASURING METHOD - There is provided a charged particle beam apparatus which allows implementation of a high-reliability and high-accuracy dimension measurement even if height differences exist on the surface of a sample. The charged particle beam apparatus includes the following configuration components: An acquisition unit for acquiring a plurality of SEM images whose focus widths are varied in correspondence with the focal depths, a determination unit for determining, from the plurality of SEM images acquired, a SEM image for which the image sharpness degree of the partial domain including a dimension-measuring domain becomes the maximum value, and a measurement unit for measuring the dimension of the predetermined domain from the SEM image whose image sharpness degree is the maximum value. | 12-24-2009 |
20090321633 | NANOPILLAR ARRAYS FOR ELECTRON EMISSION - The present invention provides systems, devices, device components and structures for modulating the intensity and/or energies of electrons, including a beam of incident electrons. In some embodiments, for example, the present invention provides nano-structured semiconductor membrane structures capable of generating secondary electron emission. Nano-structured semiconductor membranes of this aspect of the present invention include membranes having an array of nanopillar structures capable of providing electron emission for amplification, filtering and/or detection of incident radiation, for example secondary electron emission and/or field emission. Nano-structured semiconductor membranes of the present invention are useful as converters wherein interaction of incident primary electrons and nanopillars of the nanopillar array generates secondary emission. Nano-structured semiconductor membranes of this aspect of the present invention are also useful as directed charge amplifiers wherein secondary emission from a nanopillar array provides gain functionality for increasing the intensity of radiation comprising incident electrons. | 12-31-2009 |
20090321634 | Multi-beam ion/electron spectra-microscope - This invention is a multi-beam charged particle instrument that can simultaneously focus electrons and a variety of positive and negative ions, such as Gallium, Oxygen and Cesium ions, onto the same material target. In addition, the instrument has provision to simultaneously capture the spectrum of both secondary electrons and ions. The highly dispersive, high resolution mass spectrometer portion of the instrument is expected to detect and identify secondary ion species across the entire range of the periodic table, and also record a portion of their emitted energy spectrum. The electron energy spectrometer part of the instrument is designed to acquire the entire range of scattered electrons, from the low energy secondary electrons through to the elastic backscattered electrons. | 12-31-2009 |
20090321635 | BETA-RAY SOOT CONCENTRATION DIRECT READOUT MONITOR AND METHOD FOR DETERMINING EFFECTIVE SAMPLE - A beta-ray soot concentration direct readout monitor and a method for determining effective sample. The monitor includes a fume collection cell and a fume mass detection cell. The fume collection cell includes a fume sampling gun, a filter paper and a mechanical control auto form feed structure. The fume sampling gun includes a gathering tube, a pitot tube and a sheath tube. The gathering tube tail of the fume sampling gun is equipped with an upper cavity body and a corresponding lower cavity body. The filter paper passes through space between the upper and lower cavity bodies. A paper supporting gate is provided at the inlet of the lower cavity body. A smoke outlet is equipped at a lower part of the lower cavity body. The sampling area of the soot acquired from the upper cavity body is at least twice with the actual testing area of the filter paper. | 12-31-2009 |
20100001183 | Phase Plate, Imaging Method, and Electron Microscope - The invention concerns a phase plate for electron optical imaging, wherein the zero beam ( | 01-07-2010 |
20100001184 | MINIATURIZED ULTRAFINE PARTICLE SIZER AND MONITOR - An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles. | 01-07-2010 |
20100006754 | METHOD FOR TREATMENT OF SAMPLES FOR TRANSMISSION ELECTRONIC MICROSCOPES - A method for analyzing a sample for the manufacture of integrated circuits, e.g., dynamic random access memory device, commonly called, DRAMS. The method also provides an integrated chip including a thickness, a width, and a length. In a specific embodiment, the integrated chip has at least one elongated structure through a portion of the thickness, while being normal to the width and the length. In a specific embodiment, the elongated structure has a structure width and a structure length that extends through a vertical portion of the thickness. The method includes removing a slice of the integrated circuit chip from a portion of the thickness in a directional manner normal to the structure length. In a specific embodiment, the slice is provided through an entirety of the one elongated structure along the structure length to cause a portion of a thickness of the slice providing the elongated structure to be of a substantially uniform sample thickness. The method also includes capturing one or more images through a portion of the slice using a transmission electron | 01-14-2010 |
20100006755 | CHARGED PARTICLE BEAM ALIGNMENT METHOD AND CHARGED PARTICLE BEAM APPARATUS - An object of the present invention is to provide a charged particle beam apparatus and an alignment method of the charged particle beam apparatus, which make it possible to align an optical axis of a charged particle beam easily even when a state of the charged particle beam changes. The present invention comprises calculation means for calculating a deflection amount of an alignment deflector which performs an axis alignment for an objective lens, a plurality of calculation methods for calculating the deflection amount is memorized in the calculation means, and a selection means for selecting at least one of the calculation methods is provided. | 01-14-2010 |
20100012837 | MULTIPLE CURRENT CHARGED PARTICLE METHODS - Charged particle beams with different charged particle currents are disclosed. In some embodiments, a method includes exposing a sample to a first ion beam having a first ion current at the sample, and exposing the sample to a second ion beam having a second ion current at the sample, where the first ion current is at least two times greater than the second ion current. In certain embodiments, a method includes creating a first ion beam at a first pressure, exposing a sample to the first ion beam, creating a second ion beam at a second pressure, and exposing the sample to the second ion beam, where the first pressure is at least two times greater than the second pressure. | 01-21-2010 |
20100012838 | INSPECTION METHOD AND APPARATUS OF A GLASS SUBSTRATE FOR IMPRINT - A method for inspecting a glass substrate for imprint including a glass substrate with a pattern surface and a transmissive conductive film coating at least part of the pattern surface, includes an electron beam irradiation step of irradiating the pattern surface of the glass substrate for imprint disposed on a stage with an electron beam having a predetermined irradiation area; an electron detection step of simultaneously detecting electrons from the pattern surface by the electron beam irradiation by means of a detection surface with a plurality of pixels; and a defect detection step of obtaining an image of the pattern surface based on the electrons detected by the detection surface and detecting a defect of the pattern surface. | 01-21-2010 |
20100019145 | Apparatus of Measuring the Orientation Relationship Between Neighboring Grains Using a Goniometer in a Transmission Electron Microscope and Method for Revealing the Characteristics of Grain Boundaries - An apparatus and method for measuring the crystallographic orientation relationship of neighboring grains and the characteristics of grain boundaries using a goniometer of a transmission electron microscope are disclosed to check the orientation relationship between two crystals and the characteristics of grain boundaries with a small error in real time. An apparatus for measuring the orientation relationship between neighboring grains and the characteristics of grain boundaries by using a goniometer of a transmission electron stereoscope, the apparatus comprising a goniometer mounted at a transmission electron microscope and a measurement unit for revealing the characteristics of grain boundaries of a specimen by linear-algebraically interpreting the relationship between crystal axes and tilt axes of the specimen using the goniometer. | 01-28-2010 |
20100019146 | Specimen Holder, Specimen Inspection Apparatus, and Specimen Inspection Method - Specimen holder, specimen inspection apparatus, and specimen inspection method for observing or inspecting a specimen consisting of cultured cells. The specimen holder has a body portion and a film. The body portion has a specimen-holding surface opened to permit access from the outside. The film has a first surface forming the specimen-holding surface. The specimen disposed on the first surface of the film can be irradiated with a primary beam for observation or inspection of the specimen via the film. A region coated with an electrically conductive film is formed on the bottom surface of the body portion facing away from the specimen-holding surface. An optically transparent region not coated with the electrically conductive film is also formed on the bottom surface. | 01-28-2010 |
20100019147 | METHOD AND APPARATUS FOR CHARGED PARTICLE BEAM INSPECTION - A charged particle beam inspection apparatus comprises: an electron gun for irradiating an electron beam onto a sample; a detector for detecting a signal obtained from the sample; an image processor for forming an image from the signal obtained from the detector, and an energy controller for controlling the beam energy of the electron beam to be irradiated onto the sample. An identical charged particle beam inspection apparatus carries out a plurality of types of inspections. An inspection apparatus of a projection type may be applied thereto. A pattern defect inspection, a foreign material inspection, and an inspection for a defect in a multilayer are carried out. Beam energies E | 01-28-2010 |
20100019148 | INSPECTION APPARATUS FOR CIRCUIT PATTERN - In a circuit pattern inspection apparatus, while an electron beam is irradiated onto a surface of a substrate having a plurality of chips where circuit patterns have been formed, a signal produced from the irradiated substrate is detected so as to form an image, and then, the formed image is compared with another image in order to detect a defect on the circuit patterns. Before the electron beam is irradiated onto either the chip or the plurality of chips so as to acquire the image for an inspection purpose, an electron beam is previously irradiated onto the region to be irradiated, so that charging conditions of the substrate to be inspected are arbitrarily controlled. | 01-28-2010 |
20100025577 | METHOD FOR THE PRODUCTION OF A SAMPLE FOR ELECTRON MICROSCOPY | 02-04-2010 |
20100025578 | Dual Beam System - A dual beam system includes an ion beam system and a scanning electron microscope with a magnetic objective lens. The ion beam system is adapted to operate optimally in the presence of the magnetic field from the SEM objective lens, so that the objective lens is not turned off during operation of the ion beam. An optional secondary particle detector and an optional charge neutralization flood gun are adapted to operate in the presence of the magnetic field. The magnetic objective lens is designed to have a constant heat signature, regardless of the strength of magnetic field being produced, so that the system does not need time to stabilize when the magnetic field is changed. | 02-04-2010 |
20100032563 | Method of determining the cuticle scale height of fibers - Accurate and reproducible measurements of the cuticle scale height of naturally occurring proteinaceous fibers can be made by measuring the scale height of the fiber while it is vertically oriented beneath a scanning electron microscope. | 02-11-2010 |
20100032564 | Particle Detection and Applications in Security and Portal Monitoring - Techniques, apparatus and systems for detecting particles such as muons. In one implementation, a monitoring system has a cosmic ray-produced charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray-produced muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects. | 02-11-2010 |
20100032565 | ELECTRON MICROSCOPE AND A METHOD FOR MEASURING THE DEFOCUS VARIATION OR THE LIMIT RESOLUTION - An electron microscope and a method for measuring the defocus spread or the limiting resolution of an electron microscope takes advantage of the fact that, in the case of tilted illumination, any aberration that may be present and the defocus spread of the electron microscope anisotropically change the intensity distribution in the diffractogram. In particular, the envelope of the diffractogram is anisotropically narrowed. If both the tilt of the electron beam and any aberration that may be present are known, and the focus distribution is assumed to be Gaussian-shaped, the defocus spread of the electron microscope is the only parameter still unknown that influences the anisotropic changes in intensity distribution. Quantitative conclusions as to the defocus spread can thus be drawn from the changes. However, the focus distribution can also be determined from the anisotropic narrowing without the use of a model, and without a priori assumptions about the shape thereof. In this way, the limiting resolution of the electron microscope can be determined. | 02-11-2010 |
20100032566 | SUBSTRATE SURFACE INSPECTION METHOD AND INSPECTION APPARATUS - A substrate surface inspection method inspects for a defect on a substrate including a plurality of materials on a surface thereof. The inspection method comprises: irradiating the surface of the substrate with an electron beam, a landing energy of the electron beam set such that a contrast between at least two types of materials of the plurality of materials is within a predetermined range; detecting electrons generated by the substrate to acquire a surface image of the substrate, with a pattern formed thereon from the at least two types of materials eliminated or weakened; and detecting the defect from the acquired surface image by detecting as the defect an object image having a contrast by which the object image can be distinguished from a background image in the surface image. Defects present on the substrate surface can be detected easily and precisely by using a cell inspection. | 02-11-2010 |
20100032567 | Method of Machining a Work Piece with a Focused Particle Beam - The invention relates to a method for producing high-quality samples for e.g. TEM inspection. When thinning samples with e.g. a Focused Ion Beam apparatus (FIB), the sample often oxidizes when taken from the FIB due to the exposure to air. This results in low-quality samples, that may be unfit for further analysis. By forming a passivation layer, preferably a hydrogen passivation layer, on the sample in situ, that is: before taking the sample from the FIB, high quality. | 02-11-2010 |
20100038534 | METHOD OF GENERATING PARTICLE BEAM IMAGES USING A PARTICLE BEAM APPARATUS - A representation of a particle beam image is generated by acquiring plural data sets using a particle beam apparatus. Each data set represents secondary particle intensities from a region of an object. The secondary particle intensities are acquired for the different data sets with different parameter adjustments of the particle beam apparatus. From the plural acquired data sets image data are generated using a tone-mapping method. The image data are represented at an output medium. | 02-18-2010 |
20100038535 | Sample dimension measuring method and scanning electron microscope - The present invention suppresses decreases in the volumes of the patterns which have been formed on the surfaces of semiconductor samples or of the like, or performs accurate length measurements, irrespective of such decreases. In an electrically charged particle ray apparatus by which the line widths and other length data of the patterns formed on samples are to be measured by scanning the surface of each sample with electrically charged particle rays and detecting the secondary electrons released from the sample, the scanning line interval of said electrically charged particle rays is set so as not to exceed the irradiation density dictated by the physical characteristics of the sample. Or measured length data is calculated from prestored approximation functions. | 02-18-2010 |
20100051804 | FAST WAFER INSPECTION SYSTEM - A charged particle beam device is provided including a particle source emitting a primary particle beam, a secondary particle beam generated by the impingement of the primary particle beam on the sample, a detection unit for detecting the secondary particle beam, the detector having at least two detector channels, and a distribution deflecting device for deflecting the secondary particle beam in a chronological sequence. Further, a detection assembly for a fast wafer inspection system is provided including a distribution deflecting device for distributing a secondary particle beam in a chronological sequence and a detector for detecting the secondary particle beam, the detector having multiple detector channels. Further, a method of operating a particle beam device with chronological resolution is provided. | 03-04-2010 |
20100051805 | ION BEAM STABILIZATION - Ion microscope methods and systems are disclosed. In general, the systems and methods provide high ion beam stability. | 03-04-2010 |
20100072364 | Method for regulating scanning sample surface charge in continuous and leap-and-scan scanning mode imaging process - A method for regulating sample surface charge has been proposed in this invention. The processes of applying a charged particle beam to a first area and applying a flood energized beam gun with gaseous molecules to a second area are executed in the method when the sample is in both continuous and Leap & Scan movements. The second area is located at a predetermined distance from the first area behind or ahead of the first area being scanned with respect to the movement of the sample. Thus, the surface of the sample may be regulated. | 03-25-2010 |
20100072365 | VARIABLE RATE SCANNING IN AN ELECTRON MICROSCOPE - A method for imaging a surface, including scanning a first region of the surface with a primary charged particle beam at a first scan rate so as to generate a first secondary charged particle beam from the first region, and scanning a second region of the surface with the primary charged particle beam at a second scan rate faster than the first scan rate so as to generate a second secondary charged particle beam from the second region. The method also includes receiving the first secondary charged particle beam and the second secondary charged particle beam at a detector configured to generate a signal in response to the beams, and forming an image of the first and the second regions in response to the signal. | 03-25-2010 |
20100072366 | METHOD FOR CORRECTING DISTORTIONS IN A PARTICLE-OPTICAL APPARATUS - The invention relates to a method for correcting distortions introduced by the projection system ( | 03-25-2010 |
20100078554 | Structure and Method for Determining a Defect in Integrated Circuit Manufacturing Process - The present invention discloses a structure and a method for determining a defect in integrated circuit manufacturing process. Test keys are designed for the structure to be the interlaced arrays of grounded and floating conductive cylinders, and the microscopic image can be predicted to be an interlaced pattern of bright voltage contrast (BVC) and dark voltage contrast (DVC) signals for a charged particle beam imaging system. The system can detect the defects by comparing patterns of the detected VC signals and the predicted VC signals. | 04-01-2010 |
20100084553 | CHARGED PARTICLE DETECTION APPARATUS AND DETECTION METHOD - A detection apparatus for use in a charged particle beam device is provided. The detection apparatus includes a separation field generating portion adapted to generate a separation field separating positively and negatively charged secondary particles, at least one first detector for detecting positively charged particles, at least one second detector for detecting negatively charged particles, wherein the detection apparatus is adapted to simultaneously detect the positively charged secondary particles in the at least one first detector and the negatively charged secondary particles in the at least one second detector. Further, a method of simultaneously detecting negatively and positively charged particles is provided. The method includes providing a separation field, providing at least one first detector and at least one second detector, separating the negatively charged particles from the positively charged particles in the separation field, simultaneously detecting positively charged particles with the at least one first detector and negatively charged particles with the at least one second detector. | 04-08-2010 |
20100090107 | METHOD AND HANDLING APPARATUS FOR PLACING PATTERNING DEVICE ON SUPPORT MEMBER FOR CHARGED PARTICLE BEAM IMAGING - A patterning device handling apparatus for use in charged particle beam imaging is disclosed. The disclosed patterning device handling apparatus comprises a first gripping member and a second gripping member. The first gripping member is equipped with a plurality of first positioning projections, and the second gripping member is equipped with a plurality of second positioning projections. When the patterning device is held at one angle, the first positioning projections abut against one edge of the patterning device and the second positioning projections abut against the opposite edge of the patterning device. When the patterning device is held at another angle, the first positioning projections abut against two neighboring edges of the patterning device, and the second positioning projections abut against the other two neighboring edges of the patterning device. Therefore, the disclosed patterning device handling apparatus can hold the pattering device at different angles. | 04-15-2010 |
20100090108 | Method and Apparatus for Producing Samples for Transmission Electron Microscopy - In the case of a method for producing samples for transmission electron microscopy, a sample is prepared from a substrate of a sample material. To this end, the sample material is irradiated by means of a laser beam along an irradiation trajectory in order to produce a weak path in the sample material. The irradiation is controlled such that the weak path crosses a further weak path, which is likewise preferably produced by laser irradiation, running in the sample material, at an acute angle in a crossing region. The substrate is broken along the weak paths. A sample is thereby produced which has a wedge-shaped sample section bounded by fracture surfaces and has in the region of a wedge tip at least one electron-transparent region. | 04-15-2010 |
20100096549 | Sample Inspection Apparatus, Sample Inspection Method and Sample Inspection System - Sample inspection apparatus, sample inspection method, and sample inspection system are offered which can give a stimulus to a sample held on a film when the sample is inspected by irradiating it with a primary beam (e.g., an electron beam or other charged-particle beam) via the film. The apparatus has the film, a vacuum chamber, primary beam irradiation column, signal detector, and a controller for controlling the operations of the beam irradiation column and signal detector. The sample is held on a first surface of the film opened to permit access to the film. The vacuum chamber reduces the pressure of the ambient in contact with a second surface of the film. The irradiation column irradiates the sample with the primary beam via the film from the second surface side. The detector detects a secondary signal produced from the sample in response to the irradiation. | 04-22-2010 |
20100102223 | Method and device for examining a surface of an object - A method for treating a surface of an object and a device suitable in particular for performing this method provide for examining the surface of the object with the aid of a particle beam to counteract the charge buildup on the object. A gas is supplied to convey the charge away from the surface and/or to neutralize it. | 04-29-2010 |
20100102224 | CHARGED PARTICLE BEAM APPARATUS - A charged particle beam apparatus for obtaining information of an uneven surface or a depression/protrusion of a sample by irradiating a charged particle beam to a sample having an uneven surface or a depression/protrusion at a plurality of focal positions, measuring signal emitted from the sample, and comparing profile waveforms corresponding to edge portions of the uneven surface. | 04-29-2010 |
20100102225 | Charged particle beam inspection apparatus and inspection method using charged particle beam - A charged particle beam inspection apparatus includes: an electron gun emitting an electron beam; first and second condenser lenses used to focus the electron beam; a beam control panel disposed between the first and second condenser lenses; and a control unit performing stabilizing processing in which excitation currents respectively supplied to the first condenser lens and the second condenser lens are set to have predetermined values, thereby the current amount of the electron beam passing through an opening of the beam control panel is regulated so that the electron beam to be emitted onto the sample has a larger current amount than that at a measurement, and then the electron beam is emitted onto the sample for a predetermined time period. After the stabilizing processing, the control unit sets the values of the excitation currents back to values for the measurement in order to measure dimensions of the sample, the excitation currents respectively supplied to the first and second condenser lenses. | 04-29-2010 |
20100108881 | SCANNING TRANSMISSION ELECTRON MICROSCOPE USING GAS AMPLIFICATION - A scanning transmission electron microscope operated with the sample in a high pressure environment. A preferred detector uses gas amplification by converting either scattered or unscattered transmitted electrons to secondary electrons for efficient gas amplification. | 05-06-2010 |
20100108882 | 4D IMAGING IN AN ULTRAFAST ELECTRON MICROSCOPE - The present invention relates to methods and systems for 4D ultrafast electron microscopy (UEM)—in situ imaging with ultrafast time resolution in TEM. Single electron imaging is used as a component of the 4D UEM technique to provide high spatial and temporal resolution unavailable using conventional techniques. Other embodiments of the present invention relate to methods and systems for convergent beam UEM, focusing the electron beams onto the specimen to measure structural characteristics in three dimensions as a function of time. Additionally, embodiments provide not only 4D imaging of specimens, but characterization of electron energy, performing time resolved electron energy loss spectroscopy (EELS). | 05-06-2010 |
20100108883 | CHARACTERIZATION OF NANOSCALE STRUCTURES USING AN ULTRAFAST ELECTRON MICROSCOPE - The present invention relates to methods and systems for 4D ultrafast electron microscopy (UEM)—in situ imaging with ultrafast time resolution in TEM. Single electron imaging is used as a component of the 4D UEM technique to provide high spatial and temporal resolution unavailable using conventional techniques. Other embodiments of the present invention relate to methods and systems for convergent beam UEM, focusing the electron beams onto the specimen to measure structural characteristics in three dimensions as a function of time. Additionally, embodiments provide not only 4D imaging of specimens, but characterization of electron energy, performing time resolved electron energy loss spectroscopy (EELS). | 05-06-2010 |
20100116984 | CHARGED PARTICLE BEAM APPARATUS AND METHOD OF ADJUSTING CHARGED PARTICLE OPTICS - A charged particle beam apparatus which is able to adjust charged particle optics easily in a short time with a high degree of accuracy and a method of adjusting charged particle optics are provided. A charged particle beam apparatus | 05-13-2010 |
20100116985 | LASER ATOM PROBE METHODS - A laser atom probe situates a counter electrode between a specimen mount and a detector, and provides a laser having its beam aligned to illuminate the specimen through the aperture of the counter electrode. The detector, specimen mount, and/or the counter electrode may be charged to some boost voltage and then be pulsed to bring the specimen to ionization. The timing of the laser pulses may be used to determine ion departure and arrival times allowing determination of the mass-to-charge ratios of the ions, thus their identities. Automated alignment methods are described wherein the laser is automatically directed to areas of interest. | 05-13-2010 |
20100123077 | PASSIVE PIXEL DIRECT DETECTION SENSOR - A simplification of the charge-collection pixel of an imaging detector for high-energy electrons is disclosed, incorporating removal of the buffer amplifier. While sacrificing speed and noise performance of the readout somewhat and therefore appearing counter-intuitive, this configuration has the potential to significantly reduce the susceptibility of the pixel to radiation damage. | 05-20-2010 |
20100133432 | Device and method for analyzing a sample - A device and method for analyzing a sample provide for extracting a part to be analyzed from the sample with the aid of a previously generated opening in the sample. The part to be analyzed is examined in greater detail with the aid of a particle beam. For this purpose, the sample is placed in the opening or on a sample holder. | 06-03-2010 |
20100140470 | INTERFACE, A METHOD FOR OBSERVING AN OBJECT WITHIN A NON-VACUUM ENVIRONMENT AND A SCANNING ELECTRON MICROSCOPE - An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object. | 06-10-2010 |
20100140471 | Electron Beam Apparatus And Method of Operating The Same - An electron beam apparatus is offered which can well detect backscattered electrons or both backscattered electrons and secondary electrons if an electron detector is disposed above an objective lens in the apparatus. The electron beam apparatus has an electron beam source for emitting an electron beam accelerated by a given accelerating voltage, the objective lens for focusing the electron beam emitted from the beam source onto a specimen, scan coils for scanning the focused beam over the specimen, and the electron detector located above the objective lens and provided with a hole permitting passage of the beam. The detector has an electrode for producing an electric field that attracts the electrons produced from the specimen in response to the electron beam irradiation. Correction coils for correcting deflection of the beam caused by the electric field are located below the detector. | 06-10-2010 |
20100140472 | PATTERN DISPLACEMENT MEASURING METHOD AND PATTERN MEASURING DEVICE - An evaluation method and apparatus is provided for evaluating a displacement between patterns of a pattern image by using design data representative of a plurality of patterns superimposed ideally. A first distance is measured for an upper layer pattern between a line segment of the design data and an edge of the charged particle radiation image, a second distance is measured for a lower layer pattern between a line segment of the design data and an edge of the charged particle radiation image; and an superimposition displacement is detected between the upper layer pattern and lower layer pattern in accordance with the first distance and second distance. | 06-10-2010 |
20100148064 | X-RAY DETECTOR FOR ELECTRON MICROSCOPE - Multiple detectors arranged in a ring within a specimen chamber provide a large solid angle of collection. The detectors preferably include a shutter and a cold shield that reduce ice formation on the detector. By providing detectors surrounding the sample, a large solid angle is provided for improved detection and x-rays are detected regardless of the direction of sample tilt. | 06-17-2010 |
20100155596 | METHOD AND SYSTEM FOR HEATING SUBSTRATE IN VACUUM ENVIRONMENT AND METHOD AND SYSTEM FOR IDENTIFYING DEFECTS ON SUBSTRATE - A method for heating a substrate in a vacuum environment and a system therefor is provided. The system includes a chamber capable of holding the substrate located in the vacuum environment and a light source capable of projecting a light beam only on a portion of the substrate. The method includes the following steps. First, the substrate is placed in the vacuumed chamber. Thereafter, the light beam emitted from the light source is projected on the portion of the substrate, such that the portion is significantly heated before whole the substrate is heated. When the light beam is a charged particle beam projected by a charged particle beam assembly and projected on defects located on the substrate, the defects are capable of being identified by an examination result provided by an examination assembly after termination of light beam projection. | 06-24-2010 |
20100163727 | METHODS OF OPERATING A NANOPROBER TO ELECTRICALLY PROBE A DEVICE STRUCTURE OF AN INTEGRATED CIRCUIT - Methods for nanoprobing a device structure of an integrated circuit. The method may include scanning a primary charged particle beam across a first region of the device structure with at least one probe proximate to the first region and a second region of the device structure is masked from the primary charged particle beam. The method may further include collecting secondary electrons emitted from the first region of the device structure and the at least one probe to form a secondary electron image. The secondary electron image includes the first region and the at least one probe as imaged portions and the second region as a non-imaged portion. Alternatively, the second region may be scanned by the charged particle beam at a faster scan rate than the first region so that the second region is also an imaged portion of the secondary electron image. | 07-01-2010 |
20100171036 | OPC MODEL CALIBRATION PROCESS - A method of calibrating a model of a lithographic process includes a plurality of test features each having different widths that vary from a resolvable feature width that is known to be resolvable by the lithographic process, to a width that is known not to be resolvable by the lithographic process. The test features and patterns are specifically designed to include features that approach or exceed the resolution of the lithographic process, and range from known resolvable patterns to patterns that are expected to fail to be resolved. The printed test patterns are inspected for printability and the extremum intensity values associated with neighboring printable and non-printable test patterns are used to determine a constant threshold value to be used in a resist process model. | 07-08-2010 |
20100176296 | COMPOSITE FOCUSED ION BEAM DEVICE, AND PROCESSING OBSERVATION METHOD AND PROCESSING METHOD USING THE SAME - A composite focused ion beam device includes a first ion beam irradiation system | 07-15-2010 |
20100181477 | Systems, Methods, and Apparatus for Structural Health Monitoring - Embodiments can provide systems, methods, and apparatus for monitoring the structural health of one or more structures and associated materials. For example, a structural health monitoring system can be provided. The system can include a structure to be monitored, the structure including a material with multiple triboluminescent sensors and multiple nano-optoelectronic members; and an analyzer in signal communication with the nano-optoelectronic members. | 07-22-2010 |
20100181478 | CHARGED PARTICLE BEAM ADJUSTING METHOD AND CHARGED PARTICLE BEAM APPARATUS - In an apparatus for obtaining an image by irradiating a charged particle beam on a specimen, a condition of the beam conditioned differently from vertical incidence as in the case of the beam being tilted is required to be adjusted. To this end, the apparatus has a controller for automatically controlling a stigmator, an objective lens and a deflector such that astigmatism is corrected, focus is adjusted and view filed shift is corrected. The controller has a selector for inhibiting at least one of the astigmatism correction, focus adjustment and FOV shift correction from being executed. | 07-22-2010 |
20100193686 | Electron Beam Exposure Or System Inspection Or Measurement Apparatus And Its Method And Height Detection Apparatus - An electron beam apparatus equipped with a height detection system includes an electron beam unit emitting an electron beam to the specimen, and a height detection system for detecting height of the specimen which is set on a table. The height detection system includes an illumination system configured to direct first and second beams of light through a mask with a multi-slit pattern to a surface of the specimen at substantially opposite azimuth angles and at substantially equal angles of incidence, first and second detectors which respectively detect first and second multi-slit images of the first and second beams reflected from the specimen and generate output signals thereof, and a device which receives the output signals and generates a comparison signal which is responsive to the height of the specimen. An objective lens of the electron beam unit is controlled in accordance with the comparison signal. | 08-05-2010 |
20100200747 | METHOD FOR CORRECTING ASTIGMATISM IN ELECTRON EMISSION SPECTROMICROSCOPY IMAGING - A method for correcting astigmatism of an electronic optical column of an electron emission spectromicroscope, comprising the steps of:
| 08-12-2010 |
20100200748 | ARRANGEMENT AND METHOD FOR THE CONTRAST IMPROVEMENT IN A CHARGED PARTICLE BEAM DEVICE FOR INSPECTING A SPECIMEN - It is provided a charged particle beam device for inspecting a specimen, comprising a charged particle beam source adapted to generate a primary charged particle beam; an objective lens device adapted to direct the primary charged particle beam onto the specimen; and a detector device comprising one or more charged particle detectors adapted to detect a secondary charged particle beam generated by the primary charged particle beam at the specimen and passing through the objective lens device, the secondary charged particle beam comprising a first group of secondary charged particles starting from the specimen with high starting angles and a second group of secondary charged particles starting from the specimen with low starting angles; wherein at least one of the charged particle detectors is adapted to detect depending on the starting angles one group of the first and the second groups of secondary charged particles. | 08-12-2010 |
20100200749 | Semiconductor Testing Method and Semiconductor Tester - A semiconductor testing method capable of quickly counting semiconductor cells in which a seemingly horizontal or vertical line is drawn with a mouse, and raster rotation is performed in alignment with the closer axis. After that, the stage is horizontally moved, pattern matching is performed on an image on a position where the image should be disposed, and an angle is adjusted. The stage is moved evenly along the X-axis and the Y-axis, achieving a movement to a destination like a straight line. In synchronization with the smooth movement of the stage, a cell is surrounded in a rectangular frame by a ruler, and the number of cells is displayed with a numeric value. | 08-12-2010 |
20100213369 | Method - The invention relates to a method for producing image contrast by phase shifting in the electron optics, wherein, from an intermediate image ( | 08-26-2010 |
20100219340 | APPARATUS AND METHOD FOR MEASURING SEMICONDUCTOR DEVICE - An apparatus for measuring a semiconductor device is provided. The apparatus includes a beam emitter configured to irradiate an electron beam onto a sample having the entire region composed of a critical dimension (CD) region, which is formed by etching or development, and a normal region connected to the CD region, and an analyzer electrically connected to the beam emitter, and configured to select and set a wavelength range of a region in which a difference in reflectance between the CD region and the normal region occurs, after obtaining reflectance from the electron beam reflected by a surface of the sample according to the wavelength of the electron beam. A method of measuring a semiconductor device using the measuring apparatus is also provided. Therefore, it is possible to minimize a change in reflectance due to the thickness and properties of the semiconductor device, and set a wavelength range to monitor a specific wavelength, thereby accurately measuring and analyzing a CD value of a measurement part of the semiconductor device. | 09-02-2010 |
20100224777 | LAYERED SCANNING CHARGED PARTICLE MICROSCOPE WITH DIFFERENTIAL PUMPING APERTURE - A scanning charged particle apparatus includes a layered charged particle beam column package; a sample holder; and a layered differential pumping aperture that assists in maintaining two different vacuums. | 09-09-2010 |
20100224778 | LAYERED SCANNING CHARGED PARTICLE APPARATUS PACKAGE HAVING AN EMBEDDED HEATER - A scanning charge particle apparatus includes a layered charged particle beam column package; a sample holder; and a heater, such as a resistive heater, in one of the layers of the package that conductively heats layers and/or components. | 09-09-2010 |
20100224779 | LAYERED SCANNING CHARGED PARTICLE MICROSCOPE PACKAGE FOR A CHARGED PARTICLE AND RADIATION DETECTOR - A scanning charged particle microscope includes a layered charged particle beam column package; a sample holder; and a layered micro-channel plate detector package located between the column package and the sample holder. | 09-09-2010 |
20100243888 | Apparatus and Method for Inspecting Samples - An inspection apparatus and method capable of well observing or inspecting a specimen contained in a liquid. The inspection apparatus has a film including first and second surfaces. Furthermore, the apparatus has a vacuum chamber for reducing the pressure in the ambient in contact with the second surface of the film, primary beam irradiation column connected with the vacuum chamber, and a shutter for partially partitioning the space between the film and the primary beam irradiation column within the vacuum chamber. A liquid sample is held on the first surface of the film. The primary beam irradiation column irradiates the sample. Backscattered electrons (a secondary beam) produced from the sample by the primary beam irradiation are directed at the shutter, producing secondary electrons (a tertiary signal). | 09-30-2010 |
20100243889 | FORMING AN IMAGE WHILE MILLING A WORK PIECE - Dual beam instruments, comprising a Scanning Electron Microscope (SEM) column for imaging and a Focused Ion Beam (FIB) column for milling, are routinely used to extract samples (lamellae) from semiconductor wafers. By observing the progress of the milling with the SEM column, end pointing of the milling process can be performed. | 09-30-2010 |
20100252733 | METHOD FOR MASKLESS PARTICLE-BEAM EXPOSURE - For maskless irradiating a target with a beam of energetic electrically charged particles using a pattern definition means with a plurality of apertures and imaging the apertures in the pattern definition means onto a target which moves (v) relative to the pattern definition means laterally to the axis, the location of the image is moved along with the target, for a pixel exposure period within which a distance of relative movement of the target is covered which is at least a multiple of the width (w) of the aperture images as measured on the target, and after said pixel exposure period the location of the beam image is changed, which change of location generally compensates the overall movement of the location of the beam image. | 10-07-2010 |
20100258720 | TEST STRUCTURE FOR CHARGED PARTICLE BEAM INSPECTION AND METHOD FOR DEFECT DETERMINATION USING THE SAME - A test structure and method thereof for determining a defect in a sample of semiconductor device includes at least one transistor rendered grounded. The grounded transistor is preferably located at at least one end of a test pattern designed to be included in the sample. When the test structure is inspected by charged particle beam inspection, the voltage contrast (VC) of the transistors in the test pattern including the grounded transistor is observed for determination of the presence of defect in the sample. | 10-14-2010 |
20100258721 | DARK FIELD DETECTOR FOR USE IN AN ELECTRON MICROSCOPE - The invention relates to a dark-field detector for an electron microscope. The detector comprises a photodiode for detecting the scattered electrons, with an inner electrode and an outer electrode. As a result of the resistive behaviour of the surface layer the current induced by a scattered electron, e.g. holes, are divided over the electrodes, so that a current I | 10-14-2010 |
20100288923 | DISCHAGING METHOD FOR CHARGED PARTICLE BEAM IMAGING - A layer of conductive or semi-conductive material is formed on a surface of a sample and then the sample, when being charged particle beam imaged, is electrically coupled with an object having a large charge-receiving or charge-storage capacity (e.g., capacitance). Hence, the charging on the sample surface is removed and released quickly by the layer. The layer is then removed by reacting it with a predefined agent. The reaction forms a gaseous product which does not form a physical or chemical bond to the sample surface. | 11-18-2010 |
20100288924 | COMPOSITE FOCUSED ION BEAM DEVICE, PROCESS OBSERVATION METHOD USING THE SAME,AND PROCESSING METHOD - A composite focused ion beam device includes a first ion beam irradiation system | 11-18-2010 |
20100288925 | High-density FIB-SEM tomography via real-time imaging - A method and an apparatus are for three-dimensional tomographic image generation in a scanning electron microscope system. At least two longitudinal marks are provided on the top surface of the sample which include an angle therebetween. In consecutive image recordings, the positions of these marks are determined and are used to quantify the slice thickness removed between consecutive image recordings. | 11-18-2010 |
20100294927 | High throughput inspecting - The various embodiments provide methods and apparatus high-throughput reading and decoding of information-encoding features (especially identification features) on pharmaceutical compositions for the purpose of e.g. counterfeiting detection and inventory tracking/tracing. A preferred embodiment provides high-throughput imaging of regular arrays of pharmaceutical tablets with a scanning electron microscope. Another preferred embodiment provides video-rate scanning probe imaging of pharmaceutical compositions and especially atomic force microscopy imaging thereof. | 11-25-2010 |
20100294928 | LASER ATOM PROBES - An atom probe includes a specimen mount that can hold a specimen to be analyzed. A detector is spaced apart from the specimen mount. Between the detector and specimen mount Is a local electrode with an aperture. A laser is oriented to emit a laser beam toward the specimen mount at a nonzero angle with respect to the aperture plane, the aperture plane being oriented perpendicular to an ion travel path defined through the aperture between the specimen mount and detector. | 11-25-2010 |
20100294929 | Sample Electrification Measurement Method and Charged Particle Beam Apparatus - The present invention has the object of providing charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges. Yet another method is disclosed for correcting the measurement length value or magnification based on fluctuations found by measuring the amount of electrostatic charge at the specified points under at least two charged particle optical conditions, and then using a charged particle beam to measure fluctuations in measurement dimensions occurring due to fluctuations in the electrostatic charge at the specified locations. | 11-25-2010 |
20100294930 | SCANNING CHARGED PARTICLE BEAMS - Methods are disclosed that include exposing, in direct succession, portions of a surface of a sample to a charged particle beam, the portions of the surface of the sample forming a row in a first direction, the charged particle beam having an average spot size fat the surface of the sample, each portion being spaced from its neighboring portions by a distance of at least din the first direction, and a ratio d/f being 2 or more. | 11-25-2010 |
20100301211 | DUAL BEAM SYSTEM - A dual beam system provides for operation of a focused ion beam in the presence of a magnetic field from an ultra-high resolution electron lens. The ion beam is deflected to compensate for the presence of the magnetic field. | 12-02-2010 |
20100308219 | METHOD FOR CREATING S/TEM SAMPLE AND SAMPLE STRUCTURE - An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (<100 nm thick) TEM lamellae. A novel sample structure and a novel use of a milling pattern allow the creation of S/TEM samples as thin as 50 nm without significant bowing or warping. Preferred embodiments of the present invention provide methods to partially or fully automate TEM sample creation, to make the process of creating and analyzing TEM samples less labor intensive, and to increase throughput and reproducibility of TEM analysis. | 12-09-2010 |
20100314539 | METHOD AND APPARATUS FOR IDENTIFYING PLUG-TO-PLUG SHORT FROM A CHARGED PARTICLE MICROSCOPIC IMAGE - A method of inspecting for plug-to-plug short (short circuit) defects on a sample is disclosed. A charged particle beam for imaging the sample is repeatedly line-scanned over the sample with a line-to-line advancement direction perpendicular to the line-scan direction. The method includes scanning the sample with a line-to-line advancement along a first and a second direction, to obtain a first and a second image of the sample, respectively. Then, the method includes identifying plug patterns, represented in the obtained images with abnormal grey levels, as abnormal plug patterns. Next, the method compares the locations of the abnormal plug patterns to determine the presence of plug-to-plug short defects on the sample. | 12-16-2010 |
20100314540 | Electron microscope with an emitter operating in medium vacuum - An electron microscope is described. This electron microscope includes an electron emitter that has an evaporation or sublimation rate that is significantly less than that of tungsten at the reduced pressures around the electron emitter during operation of the electron microscope. As a consequence, the electron microscope may be able to operate at reduced pressures that are much larger than those in existing electron microscopes. For example, at least during the operation the reduced pressure in the electron microscope may be greater than or equal to a medium vacuum. This capability may allow the electron microscope to use a roughing pump to provide the reduced pressure, thereby reducing the cost and complexity of the electron microscope, and improving its reliability. In addition, the size of the electron microscope may be reduced, which may enable a hand-held or portable version of the electron microscope. | 12-16-2010 |
20100320381 | METHOD FOR CHARACTERIZING IDENTIFIED DEFECTS DURING CHARGED PARTICLE BEAM INSPECTION AND APPLICATION THEREOF - A method for characterizing identified defects during charged particle beam inspection of a sample is disclosed. The method comprises obtaining a voltage contrast image of the sample by using a charged particle beam imaging apparatus at an inspection temperature; identifying, from the voltage contrast image, the presence of at least one defect on the sample; providing reference data of the sample, wherein the reference data represent at least one reference defect on the sample; comparing the location or geographical distribution of the identified defects and the reference defects on the sample to correlate the identified defects with the inspection temperature thereby characterizing the identified defects. | 12-23-2010 |
20100320382 | HIGH THROUGHPUT SEM TOOL - A multi-beam scanning electron beam device ( | 12-23-2010 |
20100320383 | METHOD FOR EXCITING A MOBILE ELEMENT OF A MICROSTRUCTURE - The invention pertains to a method for exciting a resonant element ( | 12-23-2010 |
20100320384 | METHOD OF ENHANCING DETECTION OF DEFECTS ON A SURFACE - A method that may be applied to imaging and identifying defects and contamination on the surface of an integrated circuit is described. An energetic beam, such as an electron beam, may be directed at a selected IC location having a layer of a solid, fluid, or gaseous reactive material formed over the surface. The energetic beam disassociates the reactive material in the region into chemical radicals that either chemically etch the surface preferentially, or deposit a thin layer of a conductive material over the local area around the energetic beam. The surface may be examined as various layers are selectively etched to decorate defects and/or as various layers are locally deposited in the area around the energetic beam. SEM imaging and other analytic methods may be used to identify the problem more easily. | 12-23-2010 |
20100327160 | METHOD FOR EXAMINING A SAMPLE BY USING A CHARGED PARTICLE BEAM - A method for examining a sample with a scanning charged particle beam imaging apparatus. First, an image area and a scan area are specified on a surface of the sample. Herein, the image area is entirely overlapped within the scan area. Next, the scan area is scanned by using a charged particle beam along a direction neither parallel nor perpendicular to an orientation of the scan area. It is possible that only a portion of the scan area overlapped with the image area is exposed to the charged particle beam. It also is possible that both the shape and the size of the image area are essentially similar with that of the scan area, such that the size of the area projected by the charged particle beam is almost equal to the size of the image area. | 12-30-2010 |
20100327161 | METHOD FOR DISCRIMINATION OF BACKSCATTERED FROM INCOMING ELECTRONS IN IMAGING ELECTRON DETECTORS WITH A THIN ELECTRON-SENSITIVE LAYER - Methods are disclosed for operating a device having a high energy particle detector wherein the particles create first incoming traversal events, outgoing backscatter events, higher-order in and out events and incoming events caused by particles which backscatter out of the device, hit nearby mechanical structures and are scattered back into the device. Exemplary method steps include discriminating incoming traversal events from outgoing backscatter events, higher-order in and out events and incoming events by limiting dose rate to a level at ensures that separate events do not overlap and discriminating events from background and from other events based on total energy in each event; discriminating backscatter events from incoming traversal events based on electron path shape; or determining that a first event and a second event are coincident with each other and separating incoming form backscatter events based on electron path shape and energy level. | 12-30-2010 |
20100327162 | IN-LINE ELECTRON BEAM TEST SYSTEM - A method and apparatus for testing a plurality of electronic devices formed on a large area substrate is described. In one embodiment, the apparatus performs a test on the substrate in one linear axis in at least one chamber that is slightly wider than a dimension of the substrate to be tested. Clean room space and process time is minimized due to the smaller dimensions and volume of the system. | 12-30-2010 |
20110001046 | NONDESTRUCTIVE INSPECTION APPARATUS AND NONDESTRUCTIVE INSPECTION METHOD FOR COMPOSITE STRUCTURE - The invention provides a nondestructive inspection apparatus and nondestructive inspection method for inspecting the inside of a surface layer of a composite structure using cosmic-ray muons. The nondestructive inspection apparatus is to inspect the inside of the surface layer of a composite structure | 01-06-2011 |
20110006207 | METHOD FOR S/TEM SAMPLE ANALYSIS - An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (<100 nm thick) TEM lamellae. Preferred embodiments of the present invention also provide an in-line process for S/TEM based metrology on objects such as integrated circuits or other structures fabricated on semiconductor wafer by providing methods to partially or fully automate TEM sample creation, to make the process of creating and analyzing TEM samples less labor intensive, and to increase throughput and reproducibility of TEM analysis. | 01-13-2011 |
20110006208 | Method for Inspecting a Sample - The invention describes a method for inspecting samples in an electron microscope. A sample carrier | 01-13-2011 |
20110024621 | SCANNING ELECTRON MICROSCOPE CONTROL DEVICE, CONTROL METHOD, AND PROGRAM - An SEM control device comprises: an image acquisition unit that acquires by an SEM a plurality of images of a prescribed object, each of which is formed of a plurality of pixels lined up in a first direction, at a plurality of positions in a second direction perpendicular to the first direction; a variation range calculation unit that obtains maximum values and minimum values of gray scale values among the plurality of images at respective locations of the plurality of pixels, and calculates a variation range of the maximum values and a variation range of the minimum values for the plurality of pixels; and a brightness/contrast adjustment unit that adjusts brightness and contrast of the SEM so as to minimize difference between the variation range of the maximum values and the variation range of the minimum values. | 02-03-2011 |
20110024622 | SYSTEM AND METHOD FOR MATERIAL ANALYSYS OF A MICROSCOPIC ELEMENT - A system and a method for material analysis of a microscopic element, the method comprising: illuminating an area that includes at least a portion of the microscopic element by a charged particle beam, detecting particles that are generated in the area in response to the charged particle beam and analyzing the detected particles to provide an indication about a material characteristic of the microscopic element, wherein the operation of illumination is implemented as a sequence of displacement compensation determination periods, each provided between consecutive material analysis periods, the method further comprising evaluating during a displacement compensation determination period, a displacement of the charged particle beam with respect to the microscopic element and during a consecutive material analysis period applying a spatial adjustment measure as required, thereby compensating for a drift of the charged particle beam. | 02-03-2011 |
20110031394 | HIGH PRESSURE CHARGED PARTICLE BEAM SYSTEM - The current invention includes methods and apparatuses for processing, that is, altering and imaging, a sample in a high pressure charged particle beam system. Embodiments of the invention include a cell in which the sample is positioned during high pressure charged particle beam processing. The cell reduces the amount of gas required for processing, thereby allowing rapid introduction, exhaustion, and switching between gases and between processing and imaging modes. Maintaining the processes gases within the cell protects the sample chamber and column from contact with the gases. In some embodiments, the temperature of the cell walls and the sample can be controlled. | 02-10-2011 |
20110031395 | TRANSMISSION ELECTRON MICROSCOPE AND METHOD FOR OBSERVING SPECIMEN IMAGE WITH THE SAME - A first electron biprism is disposed in a condenser optical system and an observation region of a specimen is irradiated simultaneously with two electron beams of different angles. The two electron beams that have simultaneously transmitted the specimen are spatially separated and focused with a second electron biprism disposed in an imaging optical system and two electron microscopic images of different irradiation angles are obtained. The two picture images are obtained by a detecting unit. Based on the two picture images, a stereoscopic image or two images having different kinds of information of the specimen is/are produced and displayed on a display device. | 02-10-2011 |
20110031396 | METHOD FOR STEM SAMPLE INSPECTION IN A CHARGED PARTICLE BEAM INSTRUMENT - A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle. | 02-10-2011 |
20110031397 | METHOD FOR STEM SAMPLE INSPECTION IN A CHARGED PARTICLE BEAM INSTRUMENT - A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle. | 02-10-2011 |
20110031398 | Imaging Apparatus and Method - The imaging apparatus comprises a micro-pipette ( | 02-10-2011 |
20110036981 | CHARGED PARTICLE BEAM INSPECTION METHOD - An imaging method and apparatus for forming images of substantially the same area on a sample for defect inspection within the area are disclosed. The disclosed method includes line-scanning the charged particle beam over the area to form a plurality of n*Y scan lines by repeatedly forming a group of n scan lines for Y times. During the formation of each group of n scan lines, an optical beam is, from one line scan to another, selectively illuminated on the area prior to or simultaneously with scanning of the charged particle beam. In addition, during the formation of each group of n scan lines, a condition of illumination of the optical beam selectively changes from one line scan to another. The conditions at which individual n scan lines are formed are repeated for the formation of all Y groups. | 02-17-2011 |
20110042568 | METHOD FOR ADJUSTING IMAGING MAGNIFICATION AND CHARGED PARTICLE BEAM APPARATUS - There is provided a method for setting a suitable imaging magnification for each of a plurality of measurement places in a charged particle beam apparatus which images a semiconductor pattern. | 02-24-2011 |
20110049363 | METHOD AND DEVICE FOR MEASURING ELECTRON DIFFRACTION OF A SAMPLE - The invention relates to a method and a device for measuring electron diffraction of a sample, including the steps of illuminating the sample with an incident electron beam which is deflected from a sample axis to hit the sample at an angle of incidence relative to the sample axis, at least partially subjecting the incident electron beam to diffraction by the sample, subjecting the diffracted and undiffracted electron beams transmitted through the sample to a partial deflection compensation, detecting the intensity of the diffracted and undiffracted electron beams transmitted through the sample in dependency on the angle of incidence and a scattering angle of the diffracted beam. The invention also relates to a computer program for controlling a transmission electron microscope for carrying out the inventive method. | 03-03-2011 |
20110049364 | REDUCING PARTICLE IMPLANTATION - Methods disclosed herein include: (a) forming a channel in a sample, the channel extending one micron or more along a direction oriented at an angle to a surface of the sample; (b) exposing a portion of the sample above the channel to a particle beam to cause particles to leave the surface of the sample; and (c) forming an image of the sample based on particles that leave the surface. | 03-03-2011 |
20110057100 | Transmission Electron Microscope, and Method of Observing Specimen - Provided is means which enables observation of the shape of a specimen as it is without deforming the specimen. Observation is made by allowing a specimen-holding member having an opening (for example, microgrid and mesh) to hold an ionic liquid and charging a specimen thereto, to allow the specimen to suspend in the ionic liquid. Furthermore, in the proximity of the specimen-holding member, a mechanism of injecting an ionic liquid (ionic liquid introduction mechanism) and/or an electrode are provided. When a voltage is applied to the electrode, the specimen moves or deforms in the ionic liquid. How the specimen moves or deforms can be observed. Furthermore, in the proximity of specimen-holding member, an evaporation apparatus is provided to enable charge of the specimen into the ionic liquid while evaporating. Furthermore, in the proximity of the specimen-holding member, a microcapillary is provided to charge a liquid-state specimen into the ionic liquid. Note that the specimen-holding member is designed to be rotatable. | 03-10-2011 |
20110062326 | Method and System for Acquisition of Confocal Stem Images - Method and system to obtain confocal STEM images. Arithmetic and control device extracts diffraction images respectively corresponding to successive pixel positions from the images stored in the memory, selects and corrects center positions of the extracted diffraction images, creates an image set having diffraction information in which the center positions of the diffraction images have been corrected and aligned, selects only innermost portions of the diffraction images of the created image set, and reproduces STEM images from the diffraction images, thus obtaining a confocal STEM image. | 03-17-2011 |
20110068266 | METHOD AND DEVICE FOR VISUALIZING DISTRIBUTION OF LOCAL ELECTRIC FIELD - A method which visualizes the distribution of a local electric field formed near a sample | 03-24-2011 |
20110073757 | METHOD FOR OBTAINING CRYSTAL LATTICE MOIRE PATTERN AND SCANNING MICROSCOPE - A method for taking a crystal lattice moiré pattern of a crystal structure using a scanning microscope, and the scanning microscope implementing the method, arranges multiple virtual lattice points periodically corresponding to the crystal structure and an orientation thereof, on a scan plane of the crystal structure, detects signals from the multiple virtual lattice points, generated by an incident probe of the scanning microscope, and generates data of the crystal lattice moiré pattern, based on the detected signals. | 03-31-2011 |
20110073758 | MICRO-SAMPLE PROCESSING METHOD, OBSERVATION METHOD AND APPARATUS - As sample sizes have decreased to microscopic levels, it has become desirable to establish a method for thin film processing and observation with a high level of positional accuracy, especially for materials which are vulnerable to electron beam irradiation. The technological problem is to judge a point at which to end FIB processing and perform control so that the portion to be observed ends up in a central portion of the thin film. The present invention enables display of structure in cross-section by setting a strip-like processing region in an inclined portion of a sample cross-section and enlarging the display of the strip-like processing region on a processing monitor in a short-side direction. It is then possible to check the cross-sectional structure without additional use of an electron beam. Since it is possible to check the processed section without using an electron beam, electron beam-generated damage or deformation to the processed section is avoided. Further, performing the observation using a high-speed electron beam after forming the thin film enables observation with suppressed sample damage. Processing of even thinner thin films using the FIB while observing images of the sample generated using an electron beam is then possible. | 03-31-2011 |
20110079710 | MICROSCOPY SUPPORT STRUCTURES - Electron microscope support structures and methods of making and using same. The support structures are generally constructed using semiconductor materials and semiconductor manufacturing processes. The temperature of the support structure may be controlled and/or gases or liquids may be confined in the observation region for reactions and/or imaging. | 04-07-2011 |
20110079711 | Particle beam microscopy system and method for operating the same - A particle beam system | 04-07-2011 |
20110084207 | Charged Particle Beam System Having Multiple User-Selectable Operating Modes - A method for performing milling and imaging in a focused ion beam (FIB) system employing an inductively-coupled plasma ion source, wherein two sets of FIB system operating parameters are utilized: a first set representing optimized parameters for operating the FIB system in a milling mode, and a second set representing optimized parameters for operating in an imaging mode. These operating parameters may comprise the gas pressure in the ICP source, the RF power to the ICP source, the ion extraction voltage, and in some embodiments, various parameters within the FIB system ion column, including lens voltages and the beam-defining aperture diameter. An optimized milling process provides a maximum milling rate for bulk (low spatial resolution) rapid material removal from the surface of a substrate. An optimized imaging process provides minimized material removal and higher spatial resolutions for improved imaging of the substrate area being milled. | 04-14-2011 |
20110089322 | ACHROMATIC BEAM DEFLECTOR, ACHROMATIC BEAM SEPARATOR, CHARGED PARTICLE DEVICE, METHOD OF OPERATING AN ACHROMATIC BEAM DEFLECTOR, AND METHOD OF OPERATING AN ACHROMATIC BEAM SEPARATOR - An achromatic beam separator device for separating a primary charged particle beam from another charged particle beam and providing the primary charged particle beam on an optical axis ( | 04-21-2011 |
20110101222 | Z-STAGE CONFIGURATION AND APPLICATION THEREOF - A stage configuration is provided, wherein a ceramic plate is used as the z-stage body to decrease the use of the metal plates in the conventional configuration, so that the compact structure of the z-stage may decrease the vibrational movements of the z-stage. Further, two Laser interferometer are used to detect a movement of different points along a vertical line of the z-stage sidewall to calculate a movement of the specimen surface, so that a horizontal movement of the specimen surface can be detected more accurately | 05-05-2011 |
20110114838 | High-Sensitivity and High-Throughput Electron Beam Inspection Column Enabled by Adjustable Beam-Limiting Aperture - One embodiment relates to an electron-beam apparatus for defect inspection and/or review of substrates or for measuring critical dimensions of features on substrates. The apparatus includes an electron gun and an electron column. The electron gun includes an electron source configured to generate electrons for an electron beam and an adjustable beam-limiting aperture which is configured to select and use one aperture size from a range of aperture sizes. Another embodiment relates to providing an electron beam in an apparatus. Advantageously, the disclosed apparatus and methods reduce spot blur while maintaining a high beam current so as to obtain both high sensitivity and high throughput. | 05-19-2011 |
20110114839 | ELECTRON BEAM LAYER MANUFACTURING USING SCANNING ELECTRON MONITORED CLOSED LOOP CONTROL - A process (and apparatus for performing the process) for layer manufacturing a three-dimensional work piece comprising the steps of; feeding raw material in a solid state to a first predetermined location; exposing the raw material to an electron beam to liquefy the raw material; depositing the raw material onto a substrate as a molten pool deposit, the deposit having a forward edge region in an x-y plane with a forward edge region width and a trailing edge region in the x-y plane with a trailing edge region width, under at least one first processing condition; monitoring the molten pool deposit for at least one preselected condition using detecting of scatter from a scanning electron beam contemporaneously with the depositing step; solidifying the molten pool deposit; automatically altering the first processing condition to a different processing condition based upon information obtained from the comparing step; and repeating steps at one or more second locations for building up layer by layer, generally along a z-axis that is orthogonal to the x-y plane, a three-dimensional work piece. | 05-19-2011 |
20110121176 | SAMPLE INSPECTION METHODS, SYSTEMS AND COMPONENTS - The disclosure relates to sample inspection using an ion-beam microscope. In some embodiments, the disclosure involves the use of multiple detectors, each of which provides different information about a sample. | 05-26-2011 |
20110121177 | System and Method for Detecting at Least One Contamination Species in a Lithographic Apparatus - A system for detecting at least one contamination species in an interior space of a lithographic apparatus, including: at least one monitoring surface configured to be in contact with the interior space, a thermal controller configured to control the temperature of the monitoring surface to at least one detection temperature, and at least one detector configured to detect condensation of the at least one contamination species onto the monitoring surface. | 05-26-2011 |
20110127427 | SPECIMEN HOLDER USED FOR MOUNTING - A novel specimen holder for specimen support devices for insertion in electron microscopes. The novel specimen holder of the invention provides mechanical support for specimen support devices and as well as electrical contacts to the specimens or specimen support devices. | 06-02-2011 |
20110127428 | ELECTRON DETECTION SYSTEMS AND METHODS - Systems and methods to detect electrons from one or more samples are disclosed. In some embodiments, the systems and methods involve one or more magnetic field sources, for deflecting secondary electrons emitted from the surface of the samples. | 06-02-2011 |
20110127429 | Method and Apparatus For Measuring Dimension Of Circuit Pattern Formed On Substrate By Using Scanning Electron Microscope - In the dimension measurement of a circuit pattern using a scanning electron microscope (SEM), in order to make it possible to automatically image desired evaluation points (EPs) on a sample, and automatically measure the circuit pattern formed at the evaluation points, according to the present invention, in the dimension measurement of a circuit pattern using a scanning electron microscope (SEM), it is arranged that coordinate data of the EP and design data of the circuit pattern including the EP are used as an input, creation of a dimension measurement cursor for measuring the pattern existing in the EP and selection or setting of the dimension measurement method are automatically performed based on the EP coordinate data and the design data to automatically create a recipe, and automatic imaging/measurement is performed using the recipe. | 06-02-2011 |
20110133080 | CHARGED PARTICEL BEAM APPARATUS AND METHODS FOR CAPTURING IMAGES USING THE SAME - The present invention provides a charged particle beam apparatus used to measure micro-dimensions (CD value) of a semiconductor apparatus or the like which captures images for measurement. For the present invention, a sample for calibration, on which a plurality of polyhedral structural objects with known angles on surfaces produced by the crystal anisotropic etching technology are arranged in a viewing field, is used. A beam landing angle at each position within a viewing field is calculated based on geometric deformation on an image of each polyhedral structural object. Beam control parameters for equalizing the beam landing angle at each position within the viewing field are pre-registered. The registered beam control parameters are applied according to the position of the pattern to be measured within the viewing field when performing dimensional measurement. Accordingly, the present invention provides methods for reducing the variation in the CD value caused by the variation in the electron beam landing angle with respect to the sample with an equal beam landing angle and methods for reducing the instrumental error caused by the difference in the electron beam landing angle between apparatuses. | 06-09-2011 |
20110139978 | CHARGED PARTICLE BEAM DEVICE, METHOD OF OPERATING A CHARGED PARTICLE BEAM DEVICE - A charged particle beam device is provided, including a primary beam source for generating a primary charged particle beam, an objective lens for focusing the primary charged particle beam onto a specimen, and an achromatic beam separator adapted to separate the primary charged particle beam from a secondary charged particle beam originating from the specimen. The achromatic beam separator is adapted to separate the primary charged particle beam and the secondary charged particle beam earliest practicable after generation of the secondary charged particle beam. | 06-16-2011 |
20110139979 | ISOTOPE ION MICROSCOPE METHODS AND SYSTEMS - Ion microscope methods and systems are disclosed. In general, the systems and methods involve relatively light isotopes, minority isotopes or both. In some embodiments, He-3 is used. | 06-16-2011 |
20110139980 | CHARGED PARTICLE BEAM APPARATUS AND GEOMETRICAL ABERRATION MEASUREMENT METHOD THEREFORE - Disclosed is a scanning charged particle microscope provided with an aberration measuring means that measures high-order geometrical aberration at high precision and high speed. An image obtained by a single-hole aperture and an image obtained by a multiple-hole aperture arranged in a region larger than that for the single-hole aperture are deconvoluted, an aberration quantity is determined based on the profiles of beams tilted in a plurality of directions and the obtained quantity is fed back to an aberration corrector. | 06-16-2011 |
20110139981 | METHOD FOR CONTROLLING CHARGING OF SAMPLE AND SCANNING ELECTRON MICROSCOPE - An object of the present invention is to provide a scanning electron microscope aiming at making it possible to control the quantity of electrons generated by collision of electrons emitted from a sample with other members, and a sample charging control method using the control of electron quantity. To achieve the object, a scanning electron microscope including a plurality of apertures through which an electron beam can pass and a mechanism for switching the apertures for the electron beam, and a method for controlling sample charging by switching the apertures are proposed. The plurality of apertures are at least two apertures. Portions respectively having different secondary electron emission efficiencies are provided on peripheral portions of the at least two apertures on a side opposed to the sample. The quantity of electrons generated by collision of electrons emitted from the sample can be controlled by switching the apertures. | 06-16-2011 |
20110139982 | METHOD FOR MEASURING SAMPLE AND MEASUREMENT DEVICE - An object of the present invention is to provide a method that can properly carry out the evaluation of a displacement and an overlapping area between first and second patterns formed through double patterning and a device therefor. | 06-16-2011 |
20110139983 | CHARGED CORPUSCULAR PARTICLE BEAM IRRADIATING METHOD, AND CHARGED CORPUSCULAR PARTICLE BEAM APPARATUS - According to a charged corpuscular particle beam irradiating method of this invention, a focusing element ( | 06-16-2011 |
20110155904 | Method and Apparatus for Pattern Position and Overlay Measurement - Systems and methods using imaged device patterns to measure overlay between different layers in a semiconductor manufacturing process, such as a double-patterning process. Images of pattern features are acquired by scanning electron microscopy. The position of a patterning layer is determined using positions of pattern features for the patterning layer in the images. A relative position of each patterning layer with respect to other pattern features or patterning layers is determined in vector form based on the determined pattern positions. Overlay error is determined based on a comparison of the relative position with reference values from design or simulation. Overlay can be measured with high precision and accuracy by utilizing pattern symmetry. | 06-30-2011 |
20110155905 | SPECIMEN OBSERVATION METHOD AND DEVICE, AND INSPECTION METHOD AND DEVICE USING THE METHOD AND DEVICE - A technique capable of improving the ability to observe a specimen using an electron beam in an energy region which has not been conventionally given attention is provided. This specimen observation method comprises: irradiating the specimen with an electron beam; detecting electrons to be observed which have been generated and have obtained information on the specimen by the electron beam irradiation; and generating an image of the specimen from the detected electrons to be observed. The electron beam irradiation comprises irradiating the specimen with the electron beam with a landing energy set in a transition region between a secondary emission electron region in which secondary emission electrons are detected and a mirror electron region in which mirror electrons are detected, thereby causing the secondary emission electrons and the mirror electrons to be mixed as the electrons to be observed. The detection of the electrons to be observed comprises performing the detection in a state where the secondary emission electrons and the mirror electrons are mixed. Observation and inspection can be quickly carried out for a fine foreign material and pattern of 100 nm or less. | 06-30-2011 |
20110155906 | TRANSMISSION ELECTRON MICROSCOPE APPARATUS COMPRISING ELECTRON SPECTROSCOPE, SAMPLE HOLDER, SAMPLE STAGE, AND METHOD FOR ACQUIRING SPECTRAL IMAGE - A transmission electron microscope apparatus, a sample holder and a sample stage and a method for acquiring spectral images as well are provided which can acquire spectral images at a time from a plurality of samples and measure highly accurate chemical shifts from electron energy loss spectra extracted from the spectral images. | 06-30-2011 |
20110155907 | IDENTIFICATION OF PLATINUM GROUP MINERALS - A PGM is identified by subjecting a sample mineral to a scanning electron microscope to produce an energy dispersive spectrum for the sample and comprising the amplitude of the spectrum in a single channel to data from a reference table of normalised spectra of different PGM species. | 06-30-2011 |
20110168888 | WEAK-LENS COUPLING OF HIGH CURRENT ELECTRON SOURCES TO ELECTRON MICROSCOPE COLUMNS - A dynamic transmission electron microscope (DTEM) according to one embodiment includes an electron gun positioned at a top of a column for emitting electrons; an accelerator for accelerating the electrons; a C | 07-14-2011 |
20110168889 | SCANNING ELECTRON MICROSCOPE, AN INTERFACE AND A METHOD FOR OBSERVING AN OBJECT WITHIN A NON-VACUUM ENVIRONMENT - An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: generating an electron beam in the vacuum environment; scanning a region of the object with the electron beam while the object is located below an object holder; wherein the scanning comprises allowing the electron beam to pass through an aperture of an aperture array, pass through an ultra thin membrane that seals the aperture, and pass through the object holder; wherein the ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the electron beam and the object. | 07-14-2011 |
20110174971 | Phase contrast imaging and preparing a tem therefor - New methods for phase contrast imaging in transmission electron microscopy use the imaging electron beam itself to prepare a hole-free thin film for use as an effective phase plate, in some cases eliminating the need for ex-situ fabrication of a hole and reducing requirements for the precision of the ZPP hardware. The electron optical properties of the ZPP hardware are modified primarily in two ways: by boring a hole using the electron beam; and/or by modifying the electro-optical properties by charging induced by the primary beam. Furthermore a method where the sample is focused by a lens downstream from the ZPP hardware is disclosed. A method for transferring a back focal plane of the objective lens to a selected area aperture plane and any plane conjugated with the back focal plane of the objective lens is also provided. | 07-21-2011 |
20110174972 | APPARATUS AND METHODS FOR CONTROLLING ELECTRON MICROSCOPE STAGES - Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a plurality of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions. | 07-21-2011 |
20110180707 | MICROSAMPLING APPARATUS AND SAMPLING METHOD THEREOF - A microsampling apparatus having a mechanism for enabling observation of a specimen and for contacting a potential-controllable conductive terminal with a sampling area and a sampling method thereof are provided. The mechanism includes an operation mechanism for precisely controlling, during the observation, a conductive terminal for contact with a periphery of the sampling area and movement of the terminal, a potential control mechanism for applying a voltage to the terminal, and a mechanism for coupling the terminal to ground and to the potential control mechanism. Contacting the terminal with a vicinity of the specimen allows charged particles that are created during the observation and sampling to escape via an earth lead. This makes it possible, in analysis preprocessing of a small insulator specimen of about 1 μm which causes device defects, to lessen electrification risks, thereby enabling sampling of only the target object without mixture of a surrounding base material. | 07-28-2011 |
20110186734 | Electron microscope and specimen analyzing method - An electron microscope includes: an electron beam column for irradiating a specimen with an electron beam; a specimen stage that supports the specimen; a scattered electron detector for detected backscattered electrons released from the specimen; and a focused ion beam column for irradiating the specimen with a focused ion beam. | 08-04-2011 |
20110198497 | Method for producing a representation of an object by means of a particle beam, as well as a particle beam device for carrying out the method - A method for producing a representation of an object using a particle beam, as well as a particle beam device for carrying out the method are disclosed. The system described herein is based on the object of specifying the method and the particle beam device for producing a representation of an object such that images which are produced, in particular including FFT images, are as free as possible of artifacts which are not caused by the object to be examined. This is achieved in particular in that pixel lives, line flyback times and pixel pause times are varied in raster patterns. | 08-18-2011 |
20110204224 | Multi-column electron beam lithography apparatus and electron beam trajectory adjustment method for the same - A multi-column electron beam lithography apparatus includes multiple columns, each including a mask having several aperture patterns; a selective deflector to deflect an electron beam to select an aperture pattern; a bending back deflector to bend the beam passed through the pattern back to the column optical axis; and an electron beam trajectory adjustment unit to adjust deflection efficiencies of the deflectors without the mask installed to allow the beam deflected toward any positions in a deflection region to be bent back and applied to the same position on a sample, and to adjust the deflection efficiency of the selective deflector with the mask installed to allow the beam to be deflected toward any pattern of the mask, while maintaining a relationship between the deflection efficiencies. | 08-25-2011 |
20110210247 | VACUUMED DEVICE AND A SCANNING ELECTRON MICROSCOPE - A vacuumed device that includes: a sealed housing, an electron beam source, an electron optic component, a thin membrane, and a detector. The thin membrane seals an aperture of the sealed housing. The sealed housing defines a vacuumed space in which vacuum is maintained. The electron beam source is configured to generate an electron beam that propagates within the vacuumed space, interacts with the electron optic component and passes through the thin membrane. A first portion of the sealed housing is shaped to fit a space defined by non-vacuumed scanning electron microscope components that are maintained in a non-vacuum environment. | 09-01-2011 |
20110215241 | Charged Particle Beam Detection Unit with Multi Type Detection Subunits - A detection unit of a charged particle imaging system includes a multi type detection subunit in the charged particle imaging system, with the assistance of a Wien filter (also known as an E×B charged particle analyzer). The imaging system is suitable for a low beam current, high resolution mode and a high beam current, high throughput mode. The unit can be applied to a scanning electron inspection system as well as to other systems that use a charged particle beam as an observation tool. | 09-08-2011 |
20110215242 | Particle beam device and method for operation of a particle beam device - A particle beam device and a method for operation of a particle beam device are disclosed. The particle beam device has a sample chamber, a sample arranged in the sample chamber, a first particle beam column, a second particle beam column and at least one detector arranged in a first cavity in a first hollow body. The first cavity has a first inlet opening. The first particle beam column and the second particle beam column are arranged on one plane, while the detector is not arranged on that plane. At least one control electrode is arranged on the first particle beam column. The second particle beam column has a terminating electrode. A first hollow body voltage, a control electrode voltage and/or a terminating electrode voltage are/is chosen such that first interaction particles and/or second interaction particles enter the first cavity in the first hollow body through the first inlet opening. | 09-08-2011 |
20110215243 | METHOD FOR INSPECTING AND MEASURING SAMPLE AND SCANNING ELECTRON MICROSCOPE - As an aspect for realizing accurate observation, inspection, or measurement of the contact hole with large aspect ratio, a method and a device to scan a second electron beam after scanning a first electron beam to a sample to charge the sample are proposed wherein the beam diameter of the first electron beam is made larger than the beam diameter of the second electron beam. | 09-08-2011 |
20110220791 | Ponderomotive Phase Plate For Transmission Electron Microscopes - A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function. | 09-15-2011 |
20110220792 | PHOTON INDUCED NEAR FIELD ELECTRON MICROSCOPE AND BIOLOGICAL IMAGING SYSTEM - A method of obtaining PINEM images includes providing femtosecond optical pulse, generating electron pulses, and directing the electron pulses towards a sample. The method also includes overlapping the femtosecond optical pulses and the electron pulses spatially and temporally at the sample and transferring energy from the femtosecond optical pulses to the electron pulses. The method further includes detecting electron pulses having an energy greater than a zero loss value, providing imaging in space and time. | 09-15-2011 |
20110220793 | Detection device and particle beam device having a detection device - A detection device and a particle beam device having a detection device ensure a good efficiency in detecting interaction particles and electromagnetic radiation. The detection device has a detector for detecting electromagnetic radiation and/or interaction particles and a filter element through which the electromagnetic radiation is transmitted. The filter element prevents the interaction particles from striking the detector such that the filter element is situated to move between a first position and a second position, the filter element in the first position being situated in relation to the detector in such a way that the filter element prevents the interaction particles from striking the detector. The filter element in the second position is situated in relation to the detector in such a way that the filter element allows the interaction particles to strike the detector. As an alternative, the filter element may be an object holder. | 09-15-2011 |
20110220794 | SYSTEMS AND METHODOLOGIES FOR PROTON COMPUTED TOMOGRAPHY - Disclosed are systems, devices and methodologies relating to proton computed tomography. In some implementations, detection of protons can yield track information before and after an object for each proton so as to allow determination of a likely path of each proton within the object. Further, measurement of energy loss experienced by each proton allows determination that a given likely path results in a given energy loss. A collection of such data allows characterization of the object. In the context of energy loss, such a characterization can include an image map of relative stopping power of the object. Various reconstruction methodologies for obtaining such an image, including but not limited to superiorization of a merit function such as total variation, are disclosed. In some implementations, various forms of total variation superiorization methodology can yield excellent results while being computationally efficient and with reduced computing time. In some implementations, such a methodology can result in high quality proton CT images using relatively low dose of protons. | 09-15-2011 |
20110220795 | TWIN BEAM CHARGED PARTICLE COLUMN AND METHOD OF OPERATING THEREOF - A column for a charged particle beam device is described. The column includes a charged particle emitter for emitting a primary charged particle beam as one source of the primary charged particle beam; a biprism adapted for acting on the primary charged particle beam so that two virtual sources are generated; and a charged particle beam optics adapted to focus the charged particle beam simultaneously on two positions of a specimen corresponding to images of the two virtual sources. | 09-15-2011 |
20110220796 | METHODS AND DEVICES FOR HIGH THROUGHPUT CRYSTAL STRUCTURE ANALYSIS BY ELECTRON DIFFRACTION - A method and device for electron diffraction tomography of a crystal sample, which employs scanning of the electron beam over a plurality of discrete locations of the sample, in combination with a beam scanning protocol as the beam converges at every discrete location ( | 09-15-2011 |
20110226947 | Composite charged particle beam apparatus and sample processing and observing method - There is provided a composite charged particle beam apparatus, in which a first rotation axis of a rotatable stage intersects a beam irradiation axis of a FIB column and a beam irradiation axis of an SEM so as to be substantially perpendicular thereto, respectively, at a sample observing position, the rotatable stage is provided with a supporting member which can be rotated with respect to the first rotation axis, and the supporting member is connected to a movement mechanism which can dispose the sample at the sample observing position. | 09-22-2011 |
20110226948 | Sample processing and observing method - There is provided a sample processing and observing method including irradiating a focused ion beam to a sample to form an observed surface, irradiating an electron beam to the observed surface to form an observed image, removing the surface opposite to the observed surface of the sample, forming a lamella including the observed surface and obtaining a transmission observed image for the lamella. | 09-22-2011 |
20110233398 | METHOD FOR CHARACTERISATION OF DIELECTRIC LAYERS BY ULTRAVIOLENT PHOTO-EMISSION SPECTROSCOPY - The electron affinity of thick dielectrics, of thickness greater than 10 nanometres, is measured by applying a polarisation voltage varying between −4V and −40V, for example, and by taking several measuring points to determine a reference value of the photo-emission threshold (E | 09-29-2011 |
20110233399 | CHARGED PARTICLE BEAM DEVICE - The present invention provides a charged particle beam device in which signal electrons ( | 09-29-2011 |
20110233400 | Pattern measurement apparatus and pattern measurement method - A pattern measurement apparatus includes a beam intensity distribution creation unit to scan a charged particle beam over a reference pattern having edge portions formed at a right angle to create a line profile of the reference pattern and thus create a reference-beam intensity distribution, an edge width detection unit to determine line profiles for pattern models including edges formed at various inclination angles by use of the reference-beam intensity distribution and calculate edge widths reflecting an influence of a width of a reference beam, and a correspondence table creation unit to calculate correction values for edge positions from the calculated edge widths and the pattern models and create a correspondence table in which the edge widths and the correction values are associated with one another. | 09-29-2011 |
20110240852 | AUTOMATED SLICE MILLING FOR VIEWING A FEATURE - A method and apparatus for performing a slice and view technique with a dual beam system. The feature of interest in an image of a sample is located by machine vision, and the area to be milled and imaged in a subsequent slice and view iteration is determined through analysis of data gathered by the machine vision at least in part. A determined milling area may be represented as a bounding box around a feature, which dimensions can be changed in accordance with the analysis step. The FIB is then adjusted accordingly to slice and mill a new face in the subsequent slice and view iteration, and the SEM images the new face. Because the present invention accurately locates the feature and determines an appropriate size of area to mill and image, efficiency is increased by preventing the unnecessary milling of substrate that does not contain the feature of interest. | 10-06-2011 |
20110240853 | ION SOURCES, SYSTEMS AND METHODS - Ion sources, systems and methods are disclosed. In some embodiments, the ion sources, systems and methods can exhibit relatively little undesired vibration and/or can sufficiently dampen undesired vibration. This can enhance performance (e.g., increase reliability, stability and the like). In certain embodiments, the ion sources, systems and methods can enhance the ability to make tips having desired physical attributes (e.g., the number of atoms on the apex of the tip). This can enhance performance (e.g., increase reliability, stability and the like). | 10-06-2011 |
20110240854 | TRANSMISSION ELECTRON MICROSCOPE HAVING ELECTRON SPECTROMETER - In a spectral image formed by two orthogonal axes, one of which is an axis of the amount of energy loss and the other of which is an axis of positional information, by the use of an electron spectrometer and a transmission electron microscope, distortion in the spectral image of a sample to be analyzed is corrected with high efficiency and high accuracy by comparing electron beam positions calculated from a two-dimensional electron beam position image formed by the two orthogonal axes (the axis of the amount of energy loss and the axis of positional information) with reference electron beam positions, and calculating amounts of the distortion based on the differences of the electron beam positions. Method and apparatus are offered which correct distortion in a spectral image with high efficiency and high accuracy, the image being formed by the two orthogonal axes (the axis of the amount of energy loss and the axis of positional information). | 10-06-2011 |
20110248163 | IMAGING BASED ON COSMIC-RAY PRODUCED CHARGED PARTICLES - Techniques, apparatus and systems for obtaining tomographic images of a volume of interest by using charged particle tomography detection systems. | 10-13-2011 |
20110248164 | Combination Laser and Charged Particle Beam System - A combined laser and charged particle beam system. A pulsed laser enables milling of a sample at material removal rates several orders of magnitude larger than possible for a focused ion beam. In some embodiments, a scanning electron microscope enables high resolution imaging of the sample during laser processing. In some embodiments, a focused ion beam enables more precise milling of the sample. A method and structure for deactivating the imaging detectors during laser milling enables the removal of imaging artifacts arising from saturation of the detector due to a plasma plume generated by the laser beam. In some embodiments, two types of detectors are employed: type-1 detectors provide high gain imaging during scanning of the sample with an electron or ion beam, while type-2 detectors enable lower gain imaging and endpoint detection during laser milling. | 10-13-2011 |
20110248165 | SAMPLE HOLDER PROVIDING INTERFACE TO SEMICONDUCTOR DEVICE WITH HIGH DENSITY CONNECTIONS - A novel specimen holder for specimen support specimen support devices for insertion in electron microscopes. The novel specimen holder of the invention provides mechanical support for specimen support devices and as well as electrical contacts to the specimens or specimen support devices. | 10-13-2011 |
20110253892 | ELECTRON-BEAM EXPOSURE APPARATUS AND METHOD OF MANUFACTURING DEVICE - An electron-beam exposure apparatus includes a first measurement device which irradiates a mark formed on a substrate with light to detect reflected light of the light, thereby measuring the position of the mark, a second measurement device which detects a secondary electron generated by the electron beam guided from an electron source onto the mark, thereby measuring the position of the mark, and a controller. The controller performs measurements for the mark using the first and second measurement devices without interposing drawing of a pattern on the substrate with the electron beam between the measurements, calculates a shift in irradiated point of the electron beam based on the difference between the measurement results obtained by the first and second measurement devices, and controls at least one of a stage and the electron optical system to correct the calculated shift. | 10-20-2011 |
20110253893 | CHARGED PARTICLE BEAM DEVICE AND A METHOD OF OPERATING A CHARGED PARTICLE BEAM DEVICE - A charged particle beam device is provided, including: a charged particle beam source adapted to generate a charged particle beam on an axis; an optical aberration correction device and an objective lens device, which define a corrected beam aperture angle adjusted to reduce diffraction; and a charged particle beam tilting device; wherein the optical aberration correction device and the objective lens device are adapted to provide the charged particle beam with a beam aperture angle smaller than the corrected beam aperture angle; and wherein the charged particle beam tilting device is adapted to provide a beam tilt angle which is equal or less than the corrected beam aperture angle. Further, a method of operating a charged particle beam device is provided. | 10-20-2011 |
20110260054 | ATOM PROBE PULSE ENERGY - The present invention relates to atom probe pulse energy. One aspect of the invention is directed toward a method that includes establishing a data relationship between pulse energy and bias energy for a target evaporation rate. In selected embodiments, establishing a data relationship can include determining an equivalent pulse fraction for a selected pulse energy and bias energy combination based on a local change in bias energy compared to a local change in pulse energy associated with the selected pulse energy and bias energy combination. Another aspect of the invention is directed toward a method that includes determining an equivalent pulse fraction for a first bias energy and pulse energy combination and/or a second bias energy and pulse energy combination based on the difference between the first bias energy and the second bias energy compared to the difference between the first pulse energy and the second pulse energy. | 10-27-2011 |
20110260055 | Dynamic Focus Adjustment with Optical Height Detection Apparatus in Electron Beam system - The present invention generally relates to dynamic focus adjustment for an image system. With the assistance of a height detection sub-system, present invention provides an apparatus and methods for micro adjusting an image focusing according the specimen surface height variation by altering the field strength of an electrostatic lens between objective lens and sample stage/or a bias voltage applied to the sample surface. Merely by way of example, the invention has been applied to a scanning electron inspection system. But it would be recognized that the invention could apply to other system using charged particle beam as observation tool with a height detection apparatus. | 10-27-2011 |
20110260056 | AUXILIARY STAGE AND METHOD OF UTILIZING AUXILIARY STAGE - An auxiliary stage for holding an electron microscope specimen includes a bottom part and a supporting part . The bottom part includes a first top surface, and the supporting part includes a second top surface and a side surface. The supporting part is fixed on the first top surface, and the side surface of the supporting part is substantially perpendicular to the first top surface of the bottom part. Therefore, the auxiliary stage is in a shape of a reversed T. A slit is embedded in the second top surface of the supporting part. A specimen holder is mounted in the slit, and a specimen is fixed on the specimen holder. | 10-27-2011 |
20110260057 | CHARGED PARTICLE BEAM APPARATUS - According to a charged particle beam apparatus of this invention, an inspection position on a test sample (wafer coordinate system) is converted to a setting position of an inspection mechanism (stage coordinate system (polar coordinate system)), a rotating arm ( | 10-27-2011 |
20110260058 | CHARGED PARTICLE RADIATION DEVICE AND IMAGE CAPTURING CONDITION DETERMINING METHOD USING CHARGED PARTICLE RADIATION DEVICE - A charged particle radiation device wherein the position or the size of a FOV can be easily determined even if a number of measuring points are provided on a sample, and an image capturing condition determining method using the charged particle radiation device are provided. An image capturing condition determining method wherein the field of view of a charged particle radiation device is determined so as to include a plurality of measuring points, characterized in that whether or not the measuring points are overlapped with four sides of the field of view is judged; the field of view is moved so that the measuring points are moved to the inside or outside of the field of view; and the position of the field of view after being moved is determined as a position of the field of view of the charged particle radiation device, and a device to realize the method are proposed. Further, a method for judging whether or not the measuring points are overlapped with the four sides, and changing the size of the field of view so as not to overlap the measuring points with each side, and a device therefor are proposed. | 10-27-2011 |
20110266439 | Method of Using a Direct Electron Detector for a TEM - A method of using a direct electron detector in a TEM, in which an image with a high intensity peak, such as a diffractogram or an EELS spectrum, is imaged on said detector. As known the high intensity peak may damage the detector. To avoid this damage, the centre of the image is moved, as a result of which not one position of the detector is exposed to the high intensity, but the high intensity is smeared over the detector, displacing the high intensity peak before damage results. | 11-03-2011 |
20110272577 | ELECTRON BEAM DEVICE WITH DISPERSION COMPENSATION, AND METHOD OF OPERATING SAME - An electron beam device comprises: a beam emitter for emitting a primary electron beam; an objective electron lens for focusing the primary electron beam onto a specimen, the objective lens defining an optical axis; a beam separator having a first dispersion for separating a signal electron beam from the primary electron beam; and a dispersion compensation element. The dispersion compensation element has a second dispersion, the dispersion compensation element being adapted for adjusting the second dispersion independently of an inclination angle of the primary beam downstream of the dispersion compensation element, such that the second dispersion substantially compensates the first dispersion. The dispersion compensation element is arranged upstream, along the primary electron beam, of the beam separator. | 11-10-2011 |
20110278451 | Simultaneous Electron Detection - The invention provides multiple detectors that detect electrons that have passed through a sample. The detectors preferably detect electrons after the electrons have been passed through a prism that separates electrons according to their energies. Electrons in different energy ranges are then detected by different detectors, with preferably at least one of the detectors measuring the energy lost by the electrons as they pass through the sample. One embodiment of the invention provides EELS on core-loss electrons while simultaneously providing a bright-field STEM signal from low-loss electrons. | 11-17-2011 |
20110278452 | PATTERN CHECK DEVICE AND PATTERN CHECK METHOD - Provided is a pattern inspection apparatus including: a charge formation means which forms charge on a surface of a substrate ( | 11-17-2011 |
20110284743 | Method for Characterizing a Membrane in a Wet Condition By Positron Annihilation Spectrometer and Sample Holder Thereof - The present invention discloses a method for characterizing a membrane in a wet condition using a positron annihilation spectrometer and a sample holder thereof. Positron annihilation lifetime spectroscopy (PALS) has been know to be an invaluable tool for investigating local free-volume hole properties in various materials. Accompanying with the method and sample holder disclosed by the invention, PAS and PALS can measure the properties of various materials, such as free volume and layer structures both in the dry and wet states. | 11-24-2011 |
20110284744 | METHOD AND SYSTEM FOR 4D TOMOGRAPHY AND ULTRAFAST SCANNING ELECTRON MICROSCOPY - A 4D electron tomography system includes a stage having one or more degrees of freedom, an electron source, and electron optics operable to direct electron pulses to impinge on a sample supported on the stage. A pulse of the electron pulses impinges on the sample at a first time. The system also includes a laser system and optics operable to direct optical pulses to impinge on the sample. A pulse of the optical pulses impinges on the sample at a second time. The system further includes a detector operable to receive the electron pulses passing through the sample, a controller operable to independently modify an orientation of the stage and at least one of the first time or the second time, a memory operable to store sets of images, and a processor operable to form a 4D tomgraphic image set from the sets of images. | 11-24-2011 |
20110284745 | Sample Holder, Inspection Apparatus, and Inspection Method - A sample holder, inspection apparatus, and an inspection method using the sample holder having a film including a first surface and a second surface. A liquid sample may be held on the first surface. The film is made of two or more layers. A primary beam irradiation device is installed in a reduced-pressure space. Consequently, the sample can be observed or inspected while maintaining the sample at the atmospheric pressure. | 11-24-2011 |
20110291007 | Movable Detector for Charged Particle Beam Inspection or Review - The present invention generally relates to a detection unit of a charged particle imaging system. More particularly, portion of the detection unit can move into or out of the detection system as imaging condition required. With the assistance of a Wein filter (also known as an E×B charged particle analyzer) and a movable detector design, the present invention provides a stereo imaging system that suitable for both low current, high resolution mode and high current, high throughput mode. Merely by way of example, the invention has been applied to a scanning electron beam inspection system. But it would be recognized that the invention could apply to other system using charged particle beam as an observation tool. | 12-01-2011 |
20110291008 | ELECTRON MICROSCOPE SPECIMEN AND METHOD FOR PREPARING THE SAME - A method for preparing an electron microscope specimen is provided. The method includes providing a wafer sample with an analysis region disposed thereon. A dicing process is performed to cut a sample piece from the wafer sample. The sample piece includes a target pillar structure wherein the analysis region is located on a top portion of the target pillar structure. A thinning process is performed to thin the top portion of the target pillar structure. The invention further provides an electron microscope specimen and a method of forming a 3D image. | 12-01-2011 |
20110291009 | SEMICONDUCTOR INSPECTION METHOD AND DEVICE THAT CONSIDER THE EFFECTS OF ELECTRON BEAMS - Disclosed is a device capable of probing with minimal effect from electron beams. Rough probing is made possible using a lower magnification than the magnification usually viewed. When target contact of semiconductor is detected, measurement position is set in the center of picture usually to move probe without moving stage. With the miniaturization, contact can be confirmed only at high magnification, although probe can be confirmed at low magnification on the contrary but it is necessary to display it in real time. Static image obtained at high magnification once is combined with image obtained at low magnification in real time from target contact required for probing and characteristic of probe to be displayed, so that probing at low magnification can be realized to reduce the effects of electron beams and obtain accurate electrical characteristics. | 12-01-2011 |
20110297826 | CHARGED PARTICLE BEAM DEVICE AND METHOD FOR CORRECTING POSITION WITH RESPECT TO CHARGED PARTICLE BEAM - An object of the present invention is to eliminate a distortion in an image even if there is an angular difference between the deflection direction of the charged particle beam and the tilt axis of a specimen, and to accurately observe and process the specimen. When the deflection direction of the charged particle beam is not parallel to the tilt axis of the specimen, the deflection rotation angle to the observation direction of the charged particle beam is determined, and the deflection pattern is changed. Thereby the distortion in the image is corrected. The deflection pattern is changed to a parallelogram. A distortion-free image is obtained even if the specimen is tilted, and the specimen can be observed and processed with high accuracy. This allows automatically recognizing the position correction mark to perform observation and processing after correcting the positional relation. | 12-08-2011 |
20110303843 | SAMPLE OBSERVING METHOD AND SCANNING ELECTRON MICROSCOPE - Provided is a sample observing method wherein the effect on throughput is minimized, and a pattern profile can be obtained at high accuracy even in a complicated LSI pattern, regardless of the scanning direction of an electron beam. In the sample observing method, the presence or absence of an edge parallel to a scanning direction ( | 12-15-2011 |
20110303844 | ELECTRON MICROSCOPE, AND SPECIMEN HOLDING METHOD - It is an object of the present invention to provide an electron microscope for properly applying a retarding voltage to a sample which is brought into electrical conduction. | 12-15-2011 |
20110309245 | SPECIMEN PREPARATION DEVICE, AND CONTROL METHOD IN SPECIMEN PREPARATION DEVICE - Separation and the like of an excised specimen from a specimen are automatically performed. Marks for improving image recognition accuracy are provided in a region that becomes an excised specimen in a specimen and a region other than said region, or in a transfer means for transferring the excised specimen and a specimen holder capable of holding the excised specimen, and the relative movement of the excised specimen and the specimen, and the like are recognized with high accuracy by image recognition. In the sampling of a minute specimen using a focused ion beam, the detection of an end point of processing for separation of the excised specimen from the specimen, and the like are automatically performed. Thus, for example, unmanned specimen excision becomes possible, and preparation of a lot of specimens becomes possible. | 12-22-2011 |
20110315876 | Blocking Member for Use in the Diffraction Plane of a TEM - The invention relates to a blocking member to be placed in the diffraction plane of a TEM. It resembles the knife edge used for single sideband imaging, but blocks only electrons deflected over a small angle. As a result the Contrast Transfer Function of the TEM according to this invention will equal that of a single sideband microscope at low frequencies and that of a normal microscope for high frequencies. Preferable the highest frequency blocked by the blocking member is such that a microscope without the blocking member would show a CTF of 0.5. | 12-29-2011 |
20120001068 | Method of Electron Diffraction Tomography - The invention relates to a method for electron diffraction tomography in a Transmission Electron Microscope. Known methods involve using Scanning Transmission Electron Microscope, and use the scanned beam for STEM diffraction. The invention proposes to form the diffraction patterns with a stationary beam with a diameter slightly larger than the crystal, as a result of which a TEM without STEM unit can be used. Finding the crystal is done in TEM mode. Advantages of the method according to the invention are: a TEM without scanning unit can be used, and the diffraction volume is not depending on the orientation of the crystal, as the whole crystal is illuminated while obtaining the diffraction pattern. | 01-05-2012 |
20120006984 | METHOD OF CONTROLLING PARTICLE ABSORPTION ON A WAFER SAMPLE BEING INSPECTED BY A CHARGED PARTICLE BEAM IMAGING SYSTEM - A method of controlling particle absorption on a wafer sample and charged particle beam imaging system thereof prevents particle absorption by grounding the wafer sample and kept electrically neutral during the transfer-in and transfer-out process. | 01-12-2012 |
20120012747 | Contrast for Scanning Confocal Electron Microscope - A scanning confocal transmission electron microscope includes a descan deflector and a corrector below the sample. The microscope uses a detector that is preferably significantly larger than the resolution of the microscope and is positioned in the real image plane, which provides improved contrast, particularly for light elements. | 01-19-2012 |
20120025073 | ORIENTATION IMAGING USING WIDE ANGLE CONVERGENT BEAM DIFFRACTION IN TRANSMISSION ELECTRON MICROSCOPY - Methods of orientation imaging microscopy (OIM) techniques generally performed using transition electron microscopy (TEM) for nanomaterials using dynamical theory is presented. Methods disclosed may use a wide angle convergent beam electron diffraction for performing OIM by generating a diffraction pattern having at least three diffraction discs that may provide additional information that is not available otherwise. | 02-02-2012 |
20120025074 | ELECTRON DETECTOR INCLUDING AN INTIMATELY-COUPLED SCINTILLATOR-PHOTOMULTIPLIER COMBINATION, AND ELECTRON MICROSCOPE AND X-RAY DETECTOR EMPLOYING SAME - A charged particle beam device includes an electron source structured to generate an electron beam, the electron source being coupled to an electron column that at least partially houses a system structured to direct the electron beam toward a specimen positioned in a sample chamber to which the electron column is coupled, and an electron detector. The electron detector includes one or more assemblies positioned within the electron column or the sample chamber, each of the assemblies including an SiPM and a scintillator directly connected face-to-face to an active light sensing surface of the SiPM without a light transporting device being positioned in between the scintillator and the SiPM. | 02-02-2012 |
20120025075 | METHOD AND APPARATUS FOR ACQUIRING SIMULTANEOUS AND OVERLAPPING OPTICAL AND CHARGED PARTICLE BEAM IMAGES - This disclosure relates to a method and apparatus for producing multiple pixel-by-pixel simultaneous and overlapping images of a sample in a microscope with multiple imaging beams. A scanning electron microscope, a focused ion-beam microscope, or a microscope having both beams, also has an optical microscope. A region of interest on a sample is scanned by both charged-particle and optical beams, either by moving the sample beneath the beams by use of a mechanical stage, or by synchronized scanning of the stationary sample by the imaging beams, or by independently scanning the sample with the imaging beams and recording imaging signals so as to form pixel-by-pixel simultaneous and overlapping images. | 02-02-2012 |
20120025076 | DETECTOR DEVICE - A detector device detects the penetration depth of a particle beam applied to a target volume. The detector device includes a first detection device and a second detection device. The second detection device is configured to detect photons that are formed in the target volume and is disposed behind the first detection device with respect to a direction of the particle beam. | 02-02-2012 |
20120032076 | METHOD FOR INSPECTING EUV RETICLE AND APPARATUS THEREOF - A method of inspecting an EUV reticle is proposed, which uses an electron beam (EB) with low density and high energy to scan the surface of an EUV reticle for inspecting the EUV reticle. A step of conditioning surface charge is followed by a step of inspecting surface of the EUV reticle. The step of conditioning surface can neutralize the surface charge and the step of inspecting can obtain an image of the EUV reticle. The present invention uses a scanning electron microscope (SEM) to provide a primary electron beam for conditioning the surface charge and a focused primary electron beam for scanning the surface. | 02-09-2012 |
20120032077 | Pattern measuring apparatus and pattern measuring method - A pattern measurement apparatus and a pattern measurement method are capable of easily distinguishing a line pattern and a space pattern from one another, without being affected by the luminance of the pattern. The pattern measurement apparatus includes: irradiation unit for irradiating a sample with an electron beam; first electron detector and second electron detector arranged with an optical axis of the electron beam in between; image processor for generating image data of the pattern; line profile generator for generating a line profile of the pattern; and controller for causing the image processor to generate the image data of the pattern on the basis of an amount of electrons corresponding to the difference between a signal detected by the first electron detector and a signal detected by the second electron detector. | 02-09-2012 |
20120032078 | Backscatter Reduction in Thin Electron Detectors - In a direct electron detector, backscattering of electrons into the detector volume from below the sensor is prevented. In some embodiments, an empty space is maintained below the sensor. In other embodiments, a structure below the sensor includes geometry, such as multiple high aspects ratio channels, either extending to or from the sensor to trap electrons, or a structure of angled surfaces to deflect the electrons that pass through the sensor. | 02-09-2012 |
20120037802 | Distributed Potential Charged Particle Detector - A charged particle beam system for imaging and processing targets is disclosed, comprising a charged particle column, a secondary particle detector, and a secondary particle detection grid assembly between the target and detector. In one embodiment, the grid assembly comprises a multiplicity of grids, each with a separate bias voltage, wherein the electric field between the target and the grids may be adjusted using the grid voltages to optimize the spatial distribution of secondary particles reaching the detector. Since detector lifetime is determined by the total dose accumulated at the area on the detector receiving the largest dose, detector lifetime can be increased by making the dose into the detector more spatially uniform. A single resistive grid assembly with a radial voltage gradient may replace the separate grids. A multiplicity of deflector electrodes may be located between the target and grid to enhance shaping of the electric field. | 02-16-2012 |
20120043462 | METHOD AND APPARATUS FOR CHARGED PARTICLE BEAM INSPECTION - A method, apparatus and computer readable medium for charged particle beam inspection of a sample comprising at least one sampling region and at least one skip region is disclosed. The method, apparatus and computer readable medium comprise receiving an imaging recipe which at least comprises information of the area of the sampling and skip regions; calculating a default stage speed according to the imaging recipe; calculating an alternative stage speed at least according to the default stage speed, the sampling region area information, and the skip region area information; calculating at least one imaging scan compensation offset at least according to the alternative stage speed; and inspecting the sample at the alternative stage speed while adjusting the motion of the charged particle beam according to the imaging scan compensation offsets, such that the charged particle beam tightly follows the motion of the stage and images only the sampling regions on the sample. | 02-23-2012 |
20120056088 | Navigation and Sample Processing Using an Ion Source Containing both Low-Mass and High-Mass Species - An improved method and apparatus for imaging and milling a substrate using a FIB system. Preferred embodiments of the present invention use a mixture of light and heavy ions, focused to the same focal point by the same beam optics, to simultaneously mill the sample surface (primarily with the heavy ions) while the light ions penetrate deeper into the sample to allow the generation of images of subsurface features. Among other uses, preferred embodiments of the present invention provide improved methods of navigation and sample processing that can be used for various circuit edit applications, such as backside circuit edit. | 03-08-2012 |
20120061564 | SURFACE ANALYZER OF OBJECT TO BE MEASURED AND ANALYZING METHOD - A surface analyzer | 03-15-2012 |
20120061565 | CHARGED PARTICLE BEAM DEVICE AND SAMPLE OBSERVATION METHOD - Disclosed is a charged particle beam device, wherein multibeam secondary electron detectors ( | 03-15-2012 |
20120068065 | PATTERN DEFECT INSPECTION APPARATUS AND PATTERN DEFECT INSPECTION METHOD - A pattern defect inspection method includes generating electron beam irradiation point track data on the basis of first data on an inspection target pattern, irradiating the electron beam to the inspection target pattern in accordance with the electron beam irradiation point track data, detecting secondary electrons generated from the inspection target pattern due to the irradiation of the electron beam, acquiring second data regarding a signal intensity of the secondary electrons from a signal of the detected secondary electrons, and detecting an abnormal point from the second data and outputting the abnormal point as a defect of the inspection target pattern. The electron beam irradiation point track data includes data on a track of irradiation points of an electron beam to the inspection target pattern and is intended to control over scanning with the electron beam, the electron beam irradiation point track data. | 03-22-2012 |
20120068066 | DISPLACEMENT MEASURING DEVICE AND DISPLACEMENT MEASURING METHOD - A displacement measuring device is provided which can directly measure a position and shape of a target object with high precision even if the target object has a minute shape with a high aspect ratio. A displacement measuring device 100 for measuring a change in a distance to a target object S includes a light irradiation section 10 configured to irradiate, with laser light, a light transmissive particle 50 provided at a predetermined distance from a surface of the target object S, a movement section 20 configured to move, relative to the target object S, the particle 50 held in an optical standing wave field generated by interference between light transmitted from the particle 50 and light reflected from the target object S, a sensing section 30 configured to sense a movement signal occurring when the particle 50 relatively moves against confining force caused by the optical standing wave field, and a calculation section 40 configured to derive the change in the distance to the target object S based on the movement signal. | 03-22-2012 |
20120068067 | GAS FIELD ION MICROSCOPES HAVING MULTIPLE OPERATION MODES - The disclosure relates to ion beams systems, such as gas field ion microscopes, having multiple modes of operation, as well as related methods. In some embodiments, the disclosure provides a method of operating a gas field ion microscope system that includes a gas field ion source, where the gas field ion source includes a tip including a plurality of atoms. | 03-22-2012 |
20120068068 | CHARGED PARTICLE DETECTORS - Disclosed are devices, systems, and methods are disclosed that include: (a) a first material layer positioned on a first surface of a support structure and configured to generate secondary electrons in response to incident charged particles that strike the first layer, the first layer including an aperture configured to permit a portion of the incident charged particles to pass through the aperture; and (b) a second material layer positioned on a second surface of the support structure and separated from the first layer by a distance of 0.5 cm or more, the second layer being configured to generate secondary electrons in response to charged particles that pass through the aperture and strike the second layer, where the device is a charged particle detector. | 03-22-2012 |
20120074315 | High resolution energy-selecting electron beam apparatus - A high resolution energy-selecting electron beam apparatus and method for improving the energy resolution of electron-optical systems by restricting the energy range of admitted electrons, and optionally also for improving the spatial resolution by correcting chromatic and geometric aberrations. The apparatus comprises a plurality of magnetic or electrostatic prisms that disperse an electron beam according to the energies of the electrons into an energy spectrum, a plurality of magnifying lenses such as electromagnetic or electrostatic quadrupoles that increase the energy dispersion of the energy spectrum, an energy-selecting slit that selects a desirable range of energies of the electrons, and optionally also sextupole, octupole and higher-order lenses that correct chromatic and geometric aberration of the electron-optical system. The apparatus also comprises further magnetic or electrostatic prisms and electron lenses arranged such that the energy dispersion of the electron beam emerging from the apparatus is cancelled. | 03-29-2012 |
20120074316 | ELECTRO-OPTICAL INSPECTION APPARATUS AND METHOD WITH DUST OR PARTICLE COLLECTION FUNCTION - An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage ( | 03-29-2012 |
20120074317 | Particle Beam Microscope and Method for Operating the Particle Beam Microscope - A method for operating a particle beam microscope comprising detecting light rays or particles which emanate from a structure, wherein the structure comprises at least one of: at least a portion of a surface of an object and at least a portion of a surface of an object holder of the particle beam microscope; generating a surface model of the structure depending on the at least one of the detected light rays and the particles; determining a position and an orientation of the surface model of the structure relative to the object region; determining a measurement location relative to the surface model of the structure; and positioning the object depending on the generated surface model of the structure, depending on the determined position and orientation of the surface model of the structure, and depending on the determined measurement location. | 03-29-2012 |
20120074318 | METHODS AND SYSTEMS FOR HEATING A TIP APEX OF A CHARGED PARTICLE SOURCE - Systems and methods for heating an apex of a tip of a charged particle source are disclosed. The charged particle source can be, for example, a gas ion source. The systems can include a detector configured to detect light generated by the tip apex, and a controller coupled with the charged particle source and the detector so that the controller can control heating of the tip apex based on the light detected by the detector. | 03-29-2012 |
20120074319 | METHOD AND APPARATUS FOR REVIEWING DEFECTS - A method of inspecting defects of a sample on a movable table includes a first step for, on a basis of position information of the defects which is previously detected by an other inspection system, driving the table so that the defects come into a viewing field of an optical microscope having a focus which is adjusted, a second step for re-detecting the defects to obtain a first detection result, a third step for correcting the position information of defects on a basis of position information of the re-detected defects, and a fourth step for reviewing the defects whose position information is corrected to obtain a second detection result. At the second step, re-detecting is performed using reflection light or scattered light from the sample which passes an optical filter which includes a light shielding portion and a light transmitting portion. | 03-29-2012 |
20120080595 | NON-CONTACT DETERMINATION OF JOINT INTEGRITY BETWEEN A TSV DIE AND A PACKAGE SUBSTRATE - A non-contact voltage contrast (VC) method of determining TSV joint integrity after partial assembly. A TSV die is provided including TSVs that extend from a frontside of the TSV die to TSV tips on a bottomside of the TSV die. At least some TSVs (contacting TSVs) are attached to pads on a top surface of a multilayer (ML) package substrate. The ML package substrate is on a substrate carrier that blocks electrical access to the frontside of the TSV die. Two or more nets including groups of contacting TSVs are tied common within the ML substrate. A charged particle reference beam is directed to a selected TSV within a first net and a charged particle primary beam is then rastered across the TSVs in the first net. VC signals emitted are detected, and joint integrity for the contacting TSVs to pads of the ML package substrate is determined from the VC signals. | 04-05-2012 |
20120080596 | Laser Atom Probe and Laser Atom Probe Analysis Methods - A laser atom probe system and a method for analysing a specimen by laser atom probe tomography are disclosed. The system includes a specimen holder whereon a specimen to be analyzed may be mounted, the specimen having a tip shape. The system further includes a detector, an electrode arranged between the specimen holder and the detector, and a voltage source configured to apply a voltage difference between the specimen tip and the electrode. The system also includes at least one laser system configured to direct a laser beam laterally at the specimen tip and a tip shape monitoring means configured to detect and monitor the tip shape, and/or a means for altering and/or controlling one or more laser parameters of said laser beam(s) so as to maintain, restore or control said specimen tip shape. | 04-05-2012 |
20120085906 | CROSS-SECTION SYSTEMS AND METHODS - A first instrument ( | 04-12-2012 |
20120091336 | SEM ACTUATED LEVITATION DEVICES - A microelectromechanical system (MEMS) device is configured to be actuated directly by an energy field through Coulombic interactions to have a translational motion. The MEMS device can be untethered, and actuated by irradiating an actuator with the energy field thereby building up electrical charges on the actuator. The MEMS device can thus be actuated with Coulomb forces from the built up electrical charges to suspend a movable portion over a rail. In one example, the energy field includes an electron beam from a scanning electron microscope (SEM). | 04-19-2012 |
20120091337 | CHARGED PARTICLE BEAM DEVICES - In a charged particle beam device, such as an electron microscope, a beam generating apparatus generates a focussed charged particle beam e—that is incident on a specimen in a specimen chamber which holds the specimen in a gaseous environment. A pressure limiting aperture provides partial gaseous isolation of the specimen chamber from the beam generating means, and is located in a lens of the latter. The device includes a conduit, such as an intermediate chamber in the lens, through which, in use, gas is supplied to set up a flow of gas from the region of the lens towards the specimen, thereby to prevent material released from the specimen from impinging on the pressure limiting aperture, to prevent contamination of the latter. The device can be used in a method of scanning a specimen with a charged particle beam, for example in a method of electron microscopy. | 04-19-2012 |
20120091338 | Environmental cell for a particle-optical apparatus - The invention relates to an environmental cell for use in e.g. an electron microscope. The environmental cell shows an aperture ( | 04-19-2012 |
20120091339 | CHARGED-PARTICLE MICROSCOPE DEVICE, AND METHOD OF CONTROLLING CHARGED-PARTICLE BEAMS - A charged-particle microscope device and a method of controlling charged-particle beams are provided, which are capable of signal detection at the time when the charged state of an observation sample or a defect portion becomes optimum. Charge accumulation-waiting time T from an initial irradiation with an electron beam | 04-19-2012 |
20120097848 | SCANNING INCREMENTAL FOCUS MICROSCOPY - Method and apparatus are provided for generating an enhanced image of an object. The method includes obtaining images of an area of an object generated using a probe of having a probe size greater than or equal to a minimum probe area size. An enhanced image of the area of the object is generated by accurately computing the emission intensities emitted from pixel areas smaller than the minimum probe size and within the area of the object. This is repeated for other areas of the object to form other enhanced images. The enhanced images are combined to form an accurate enhanced image of the object. | 04-26-2012 |
20120097849 | ION BEAM STABILIZATION - Ion microscope methods and systems are disclosed. In general, the systems and methods provide high ion beam stability. | 04-26-2012 |
20120104250 | Microscope System, Method for Operating a Charged-Particle Microscope - A method of operating a charged-particle microscope, the method comprising: recording a first image of a first region of an object in a first setting; recording a second image of a second region of the object using the charged-particle microscope in a second setting; reading a third image of a third region using the charged-particle microscope, wherein the first and second regions are contained at least partially within the third region; displaying a representation of the first image at least partly within the displayed third image, wherein the representation of the first image includes a first indicator which is indicative of the first setting; displaying a representation of the second image at least partly within the displayed third image, wherein the representation of the second image includes a second indicator which is indicative of the second setting, and wherein the displayed second indicator is different from the displayed first indicator. | 05-03-2012 |
20120104251 | SCANNING ELECTRON MICROSCOPE DEVICE, EVALUATION POINT GENERATING METHOD, AND PROGRAM - An image acquisition condition necessary to so arrange FOV's as not to overlap along a device shape so that all constituent arreas necessary for electric characteristic measurement may be confined in the FOV's is determined from device shape information (including circuit design data and layout design data) possessed by CAD data. Since, contingently upon the shape of a wiring portion, the wiring portion of a device is expressed by using a plurality of basic constituent figures in combination, a process of arranging FOV's to the individual constituent figures is executed. For a cell portion, a FOV is arranged in reference to a cell outer frame and apexes. At that time, any apex is a starting point of the FOV arrangement process and another apex is an end point of the same process. | 05-03-2012 |
20120104252 | Particle-Optical Systems and Arrangements and Particle-Optical Components for such Systems and Arrangements - A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first regularity. | 05-03-2012 |
20120104253 | CHARGED PARTICLE BEAM MICROSCOPE AND MEASURING METHOD USING SAME - A charged particle beam device is equipped with a function of: obtaining an approximation function of a sample drift from a visual field shift amount among plural images (S | 05-03-2012 |
20120112062 | Environmental Cell for Charged Particle Beam System - An environmental cell for a charged particle beam system allows relative motion between the cell mounted on an X-Y stage and the optical axis of the focusing column, thereby eliminating the need for a sub-stage within the cell. A flexible cell configuration, such as a retractable lid, permits a variety of processes, including beam-induced and thermally-induced processes. Photon yield spectroscopy performed in a charged particle beam system and using gas cascade amplification of the photoelectrons allows analysis of material in the cell and monitoring of processing in the cell. Luminescence analysis can be also performed using a retractable minor. | 05-10-2012 |
20120112063 | METHOD AND APPARATUS FOR GENERATING THREE-DIMENSIONAL IMAGE DATA - A method and an apparatus for generating three-dimensional image data of a sample are disclosed. A first particle beam is provided for exposing a surface and a second particle beam is provided for generating an image of the surface are used. By moving the sample, it suffices if the first particle beam and/or the second particle beam are initially focused once on a surface of the sample that has already been exposed. Because all further exposed surfaces are always located in the same position, refocusing the first particle beam and/or the second particle beam is no longer required. | 05-10-2012 |
20120112064 | SAMPLE HOLDER, METHOD FOR USE OF THE SAMPLE HOLDER, AND CHARGED PARTICLE DEVICE - A sample holder for efficiently performing the processing or observation of a sample by means of charged particles while cooling. Particularly, disclosed is a sample holder whereby the processing or observation of a material which may be affected by the influence of heat damage can be performed in a state in which the material is cooled, and furthermore, the influence due to a sample processing method using charged particles can be reduced by cooling. The sample holder is provided with a sample stage capable of fixing a sample piece extracted from a sample by ion beam irradiation, and a rotation mechanism for rotating the sample stage in a desired direction, which can be attached to an ion beam device and a transmission electron microscope device, and which has a movable heat transfer material for thermally connecting the sample stage and a cooling source, and an isolation material for thermally isolating the sample stage and the heat transfer material from the outside. According to the sample holder, the processing or observation of a sample by means of charged particle beams can be performed while efficiently cooling. | 05-10-2012 |
20120112065 | APPARATUS AND METHOD FOR ESTIMATING CHANGE OF STATUS OF PARTICLE BEAMS - This invention provides an apparatus for estimating change of status of a plurality of particle beams, the apparatus includes a plurality of particle detectors and an estimating unit, wherein the one or the plurality of particle beams is projected to a substrate. The particle detectors detect the one or the plurality of particle beams reflected from the substrate to generate one or a plurality of detector signals. The estimating unit estimates change of the status of the one or the plurality of particle beams by executing a mathematical programming method according to the one or the plurality of detector signals. By such arrangement and monitoring method, the apparatus could estimate the drift of beams. | 05-10-2012 |
20120112066 | Defect review apparatus and defect review method - A defect review apparatus includes: an electron scanning part which irradiates and scans an electron beam over an observation region on a surface of a sample; four electron detectors arranged around the optical axis of the electron beam with 90° intervals; and a signal processing unit which generates multiple pieces of image data of the observation region on the basis of detection signals from the electron detectors, the multiple pieces of image data respectively taken in different directions. When a pattern in the observation region is a line-and-space pattern, the defect inspection unit performs defect detection on the basis of a subtract between two pieces of the image data respectively taken in two predetermined directions with the optical axis of the electron beam in between. | 05-10-2012 |
20120112067 | SCANNING ELECTRON MICROSCOPE SYSTEM AND METHOD FOR MEASURING DIMENSIONS OF PATTERNS FORMED ON SEMICONDUCTOR DEVICE BY USING THE SYSTEM - The present invention is for providing a scanning electron microscope system adapted to output contour information fitting in with the real pattern edge end of a sample, and is arranged to generate a local projection waveform by projecting the scanning electron microscope image in the tangential direction with respect to the pattern edge at each point of the pattern edge of the scanning electron microscope image, estimate the cross-sectional shape of the pattern transferred on the sample by applying the local projection waveform generated at each point to a library, which has previously been created, correlating the cross-sectional shape with the electron beam signal waveform, obtain position coordinate of the edge end fitting in with the cross-sectional shape, and output the contour of the pattern as a range of position coordinates. | 05-10-2012 |
20120119084 | Method and Apparatus for Rapid Preparation of Multiple Specimens for Transmission Electron Microscopy - A method and apparatus for in-situ lift-out rapid preparation of TEM samples. The invention uses adhesives and/or spring-loaded locking-clips in order to place multiple TEM-ready sample membranes on a single TEM support grid and eliminates the use of standard FIB-assisted metal deposition as a bonding scheme. Therefore, the invention circumvents the problem of sputtering from metal deposition steps and also increases overall productivity by allowing for multiple samples to be produced without opening the FIB/SEM vacuum chamber. | 05-17-2012 |
20120119085 | SPECIMEN POTENTIAL MEASURING METHOD, AND CHARGED PARTICLE BEAM DEVICE - The present invention has an object to perform specimen charge measurement or focusing at a high speed and with high precision also for a specimen in which fixed charge and induced charge may be mixedly present. | 05-17-2012 |
20120126115 | SPECIMEN HOLDER HAVING ALIGNMENT MARKS - For the microscopy of an object or a specimen with a combination of optical microscopy and particle beam microscopy, an electrically conducting specimen carrier ( | 05-24-2012 |
20120126116 | PATTERN SHAPE SELECTION METHOD AND PATTERN MEASURING DEVICE - The present invention has an object to propose a method and an apparatus for selecting a pattern shape, wherein, when estimating a shape based on comparison between an actual waveform and a library, the method and the apparatus can appropriately estimate the shape. As an embodiment to achieve the object, a method and an apparatus for selecting a pattern shape by comparing an obtained shape with pattern shapes memorized in the library are proposed, wherein plural pieces of waveform information are obtained under a plurality of waveform acquiring conditions based on radiation of a charged particle beam onto a specimen; and a pattern shape memorized in the library is selected by referring, with respect to the plural pieces of waveform information, to a library memorizing plural pieces of waveform information acquired under different waveform acquiring conditions for each of a plurality of pattern shapes. | 05-24-2012 |
20120138791 | ELECTRON BEAM COLUMN AND METHODS OF USING SAME - In one embodiment, a first vacuum chamber of an electron beam column has an opening which is positioned along an optical axis so as to pass a primary electron beam that travels down the column. A source that emits electrons is positioned within the first vacuum chamber. A beam-limiting aperture is configured to pass a limited angular range of the emitted electrons. A magnetic immersion lens is positioned outside of the first vacuum chamber and is configured to immerse the electron source in a magnetic field so as to focus the emitted electrons into the primary electron beam. An objective lens is configured to focus the primary electron beam onto a beam spot on a substrate surface so as to produce scattered electrons from the beam spot. Controllable deflectors are configured to scan the beam spot over an area of the substrate surface. Other features and embodiments are also disclosed. | 06-07-2012 |
20120138792 | OPTICAL PROBING IN ELECTRON MICROSCOPES - The present invention relates to an optical arrangement and in particular to an optical arrangement for use in electron microscopy applications. This is used for sample characterization with simultaneous measurement with the electron microscopy of the sample and measurements with an optical setup and/or using a manipulator for probing of a light source or a scanning probe device. | 06-07-2012 |
20120138793 | Method of Making Axial Alignment of Charged Particle Beam and Charged Particle Beam System - A method of making axial alignment of a charged particle beam starts with obtaining at least first through sixth image data while controlling the focal position of the beam on a sample in the direction of incidence, the excitation current in a first alignment coil, and the excitation current in a second alignment coil. Then, values of the excitation currents in the first and second alignment coils for the axial alignment of the beam are calculated from the at least first through sixth image data. | 06-07-2012 |
20120145894 | METHOD AND APPARATUS FOR INSPECTION OF SCATTERED HOT SPOT AREAS ON A MANUFACTURED SUBSTRATE - One embodiment relates to a method of automated inspection of scattered hot spot areas on a manufactured substrate using an electron beam apparatus. A stage holding the substrate is moved along a swath path so as to move a field of view of the electron beam apparatus such that the moving field of view covers a target area on the substrate. Off-axis imaging of the hot spot areas within the moving field of view is performed. A number of hot spot areas within the moving field of view may be determined, and the speed of the stage movement may be adjusted based on the number of hot spot areas within the moving field of view. Another embodiment relates to an electron beam apparatus for inspecting scattered areas on a manufactured substrate. Other embodiments, aspects and features are also disclosed. | 06-14-2012 |
20120145895 | Method of Processing of an Object - A method of processing of an object comprises scanning a particle beam across a surface of the object and detecting electrons emerging from the object due to the scanning; determining a height difference between the surface of the object and a predetermined surface for each of plural of locations on the surface of the object based on the detected electrons; determining a processing intensity for each of the plural locations on the surface of the object based on the determined height differences; and directing a particle beam to the plural locations based on the determined processing intensities, in order to remove material from or deposit material on the object at the plural locations. | 06-14-2012 |
20120145896 | GAS DELIVERY IN A MICROSCOPE SYSTEM - Disclosed are systems and methods for applying a voltage gradient to a gas delivery system, delivering a gas through a length of the gas delivery system having the voltage gradient, the gas having a pressure-distance product of less than about 1×010 | 06-14-2012 |
20120145897 | Transmission Electron Microscope Sample Holder with Optical Features - A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member. | 06-14-2012 |
20120153144 | SYSTEM AND METHOD FOR PRODUCING AND USING MULTIPLE ELECTRON BEAMS WITH QUANTIZED ORBITAL ANGULAR MOMENTUM IN AN ELECTRON MICROSCOPE - A system and method for using electron beams with engineered phase dislocations as scanned probes in electron probe beam instruments such as scanning transmission electron microscopes. These types of electron beams have unique properties and can provide better information about a specimen than conventional electron beams. Phase dislocations may be created based on a pattern disposed on a nanoscale hologram, which may be placed in the electron optical column of the electron probe beam instrument. When an electron beam from the instrument is directed onto the hologram, phase dislocations may be imprinted onto the electron beam when electrons are diffracted from these holograms. For example, electron probe beams with spiral phase dislocations may occur. These spiral phase dislocations are formed using a hologram with a fork-patterned grating. Spiral phase dislocations may be used to provide magnetic contrast images of a specimen. | 06-21-2012 |
20120153145 | SCANNING ELECTRON MICROSCOPE AND SAMPLE OBSERVATION METHOD - A scanning electron microscope of the present invention performs scanning by changing a scanning line density in accordance with a sample when an image of a scanned region is formed by scanning a two-dimensional region on the sample with an electron beam or is provided with a GUI having sample information input means which inputs information relating to the sample and display means which displays a recommended scanning condition according to the input and performs scanning with a scanning line density according to the sample by selecting the recommended scanning condition. As a result, in observation using a scanning electron microscope, a suitable scanning device which can improve contrast of a profile of a two-dimensional pattern and suppress shading by suppressing the influence of charging caused by primary charged particle radiation and by improving a detection rate of secondary electrons and a scanning method are provided. | 06-21-2012 |
20120160999 | HIGH COLLECTION EFFICIENCY X-RAY SPECTROMETER SYSTEM WITH INTEGRATED ELECTRON BEAM STOP, ELECTRON DETECTOR AND X-RAY DETECTOR FOR USE ON ELECTRON-OPTICAL BEAM LINES AND MICROSCOPES - An X-ray spectrometer systems and methods are provided for implementing signal detection for use on electron-optical beam lines and microscopes. The X-ray Spectrometer System (XSS) includes an X-ray detector (XD) measuring the X-ray signal and positioned proximate to a specimen. An environmental isolation window together with an electron beam stop is disposed between XD and the specimen. The environmental isolation window and the electron beam stop protect XD from electrons directly transmitted through the specimen. An electron detector is located between the electron beam stop and the specimen allowing the measurement of scattered electrons. The XD measures an X-ray signal in the X-ray spectrometer system. | 06-28-2012 |
20120181425 | Electron Probe Microanalyzer and Data Processing Method Implemented Therein - In an electron probe microanalyzer (EPMA) and a method of use thereof, even if plural sets of X-ray image data are obtained at different timings from regions between which a positional deviation occurs, processing for obtaining the correlation is performed precisely. The sets of X-ray image data are obtained from the same region of a sample using the EPMA at different timings and stored in memory along with sets of electron image data based on detection of secondary or backscattered electrons arising from the region. The sets of electron image data obtained at the different timings are compared, and the amount of positional deviation is calculated. An operation for extracting a region common to the regions respectively producing the sets of X-ray image data obtained at the different timings is performed on these sets of X-ray image data based on the calculated amount of positional deviation. | 07-19-2012 |
20120181426 | Scanning Electron Microscope and a Method for Imaging a Specimen Using the Same - (1) part or all of the number, coordinates and size/shape and imaging sequence of imaging points each for observation, the imaging position change method and imaging conditions can be calculated automatically from CAD data, (2) a combination of input information and output information for imaging recipe creation can be set arbitrarily, and (3) decision is made of imaging or processing at an arbitrary imaging point as to whether to be successful/unsuccessful and in case a failure is determined, a relief process can be conducted in which the imaging point or imaging sequence is changed. | 07-19-2012 |
20120187291 | Method of Depositing Protective Structures - A process of preparing a lamella from a substrate includes manufacturing a protection strip on an edge portion of the lamella to be prepared from the substrate, and preparing the lamella, wherein the manufacturing the protection strip includes a first phase of activating a surface area portion of the substrate, and a second phase of electron beam assisted deposition of the protective strip on the activated surface area portion from the gas phase. | 07-26-2012 |
20120187292 | Charged Particle Beam Apparatus and Film Thickness Measurement Method - A charged particle beam apparatus of the present invention comprises a transmission electron detector ( | 07-26-2012 |
20120193530 | System and Method for Localization of Large Numbers of Fluorescent Markers in Biological Samples - A method and system for the imaging and localization of fluorescent markers such as fluorescent proteins or quantum dots within biological samples is disclosed. The use of recombinant genetics technology to insert “reporter” genes into many species is well established. In particular, green fluorescent proteins (GFPs) and their genetically-modified variants ranging from blue to yellow, are easily spliced into many genomes at the sites of genes of interest (GoIs), where the GFPs are expressed with no apparent effect on the functioning of the proteins of interest (PoIs) coded for by the GoIs. One goal of biologists is more precise localization of PoIs within cells. The invention is a method and system for enabling more rapid and precise PoI localization using charged particle beam-induced damage to GFPs. Multiple embodiments of systems for implementing the method are presented, along with an image processing method relatively immune to high statistical noise levels. | 08-02-2012 |
20120193531 | METHOD FOR LINE WIDTH MEASUREMENT - A method for line width measurement, comprising: providing a substrate, wherein a raised line pattern is formed on a surface of the substrate, and the line pattern has a width; forming a first measurement structure and a second measurement structure on opposite sidewalls of the line pattern in the width direction of the line pattern; removing the line pattern; and measuring the spacing between the first measurement structure and the second measurement structure, and obtaining the width of the line pattern by subtracting a predetermined offset from the spacing. The present invention facilitates to reduce the uncertainty associated with the measuring process and to improve the measurement precision. | 08-02-2012 |
20120199737 | SAMPLE PREPARATION - Disclosed are methods for preparing samples that include forming a first channel in a material by directing a first plurality of noble gas ions at the material, forming a second channel in the material by directing a second plurality of noble gas ions at the material, where the second channel is spaced from the first channel so that a portion of the material between channels has a mean thickness of 100 nm or less, and detaching the portion from the material to yield the sample. | 08-09-2012 |
20120199738 | IN-CHAMBER ELECTRON DETECTOR - A secondary particle detector | 08-09-2012 |
20120199739 | SCANNING CHARGED PARTICLE BEAM DEVICE AND METHOD FOR CORRECTING CHROMATIC SPHERICAL COMBINATION ABERRATION - Disclosed is a scanning charged particle beam apparatus equipped with an aberration corrector, contrived to eliminate resolution degradation in tilt observation by a chromatic third-order aperture aberration without relying on a specific optical system. A controller of the scanning charged particle beam apparatus provides a chromatic third-order aperture aberration measurement method relevant to tilt observation of a specimen. Further, the controller has a chromatic aberration control function relevant to tilt observation of a specimen. By means of the chromatic aberration control function, the controller controls a chromatic aberration to be positive or negative, rather than remaining at 0, in order to eliminate an image blur which occurs in a direction parallel to the specimen surface due to a chromatic third-order aperture aberration and a chromatic aberration at a tilt angle (t1) under observation and another tilt angle (−t1) axially opposite to the tilt angle. | 08-09-2012 |
20120205537 | MULTIPLE-POLE ELECTROSTATIC DEFLECTOR FOR IMPROVING THROUGHPUT OF FOCUSED ELECTRON BEAM INSTRUMENTS - One embodiment relates to a focused electron beam imaging apparatus. The apparatus includes an electron beam column, an electron source, a gun lens, a pre-scanning deflector, a main scanning deflector, an objective lens, and a detector. The pre-scanning deflector comprises a 12-pole electrostatic deflector which is configured to controllably deflect the electron beam away from the optical axis of the electron beam column. Another embodiment relates to a method of scanning an electron beam over a target substrate in a focused electron beam imaging instrument. The electron beam is controllably deflected, without third-order deflection aberrations, away from an optical axis of an electron beam column using a pre-scanning deflector. The electron beam is then controllably deflected back towards the optical axis using a main scanning deflector so that the electron beam passes through a center of an objective electron lens. Other embodiments, aspects and features are also disclosed. | 08-16-2012 |
20120205538 | PARTICLE BEAM DEVICE AND METHOD FOR PROCESSING AND/OR ANALYZING A SAMPLE - A particle beam device and method for processing and/or for analyzing a sample are provided. A sample carrier is arranged at a first position, in which a sample surface is oriented parallel to a first beam axis of a first particle beam column. The sample carrier is rotatable from the first position into a second position, in which the sample surface is oriented perpendicular to a second beam axis of a second particle beam column. The first and second beam axes intersect at a coincidence point. In the first position a distance between the coincidence point and the first particle beam column is greater than a distance between the sample surface and the first particle beam column. In the second position a distance between the coincidence point and the second particle beam column is greater than a distance between the sample surface and the second particle beam column. | 08-16-2012 |
20120205539 | Detector for Use in Charged-Particle Microscopy - A method of investigating a sample using a charged-particle microscope is disclosed. By directing an imaging beam of charged particles at a sample, a resulting flux of output radiation is detected from the sample. At least a portion of the output radiation is examined using a detector, the detector comprising a Solid State Photo-Multiplier. The Solid State Photo-Multiplier is biased so that its gain is matched to the magnitude of output radiation flux. | 08-16-2012 |
20120211652 | Charged Particle Beam Device, Position Specification Method Used for Charged Particle Beam Device, and Program - Observation using an FIB image is enabled without causing any damage to a designated region. To this end, an ion beam scanning-prohibited region is set in a sample by using an image acquired by a charged particle beam other than an ion beam, or an image prepared as external data as a peripheral image including the designated region of a sample. Thereafter, the image used to set the ion beam scanning-prohibited region is exactly superimposed on an FIB image acquired for regions except the ion beam scanning-prohibited region, thereby forming an image including the ion beam scanning-prohibited region on which ion beam scanning has not been performed. | 08-23-2012 |
20120217392 | PATTERN-HEIGHT MEASURING APPARATUS AND PATTERN-HEIGHT MEASURING METHOD - An electron beam is irradiated on an observation region of a sample surface. An image (SEM image) is acquired based on a detection signal of secondary electrons from a detector disposed obliquely above the observation region. A length of a shadow of a pattern appearing in the image is detected. Then, a height H of the pattern is calculated by a formula H=L× tan θ on the basis of the detected length L of the shadow and an apparent angle θ of the detector to the sample surface obtained in advance. An intensity distribution of the secondary electrons on a line orthogonal to an edge of the pattern is extracted, and the length L of the shadow of the pattern is obtained as a distance between two points where a recess portion of the intensity distribution intersects a predetermined threshold. | 08-30-2012 |
20120223227 | APPARATUS AND METHODS FOR REAL-TIME THREE-DIMENSIONAL SEM IMAGING AND VIEWING OF SEMICONDUCTOR WAFERS - One embodiment relates to a method of real-time three-dimensional electron beam imaging of a substrate surface. A primary electron beam is scanned over the substrate surface causing electrons to be emitted therefrom. The emitted electrons are simultaneously detection using a plurality of at least two off-axis sensors so as to generate a plurality of image data frames, each image data frame being due to electrons emitted from the substrate surface at a different view angle. The plurality of image data frames are automatically processed to generate a three-dimensional representation of the substrate surface. Multiple views of the three-dimensional representation are then displayed. Other embodiments, aspects and features are also disclosed. | 09-06-2012 |
20120228493 | WATER EQUIVALENT DEPTH MEASUREMENT - A method for determining a water equivalent depth between an entrance point and a reference point is disclosed. The method may comprise sending to a charged particle beam detector placed at a reference point within or beyond a body a charged particle beam whose energy is modulated between a minimum and maximum energy value, acquiring the time dependent response of said charged particle beam detector, determining from said time dependent response a value of a statistical parameter, providing a calibration curve expressing a relationship between values of said statistical parameter and water equivalent depths, and extracting from this calibration curve the water equivalent depth corresponding to the value of the statistical parameter determined from the time dependent response of the charged particle beam detector placed at the reference point. | 09-13-2012 |
20120228494 | METHOD FOR INSPECTING EUV RETICLE AND APPARATUS THEREOF - A method of inspecting an EUV reticle is proposed, which uses an original design layout information to align the plurality of patterns on an image, which is got by scanning the surface of an EUV reticle, such that the defect can be identified and classified according to the aligned patterns. In the scanning process, a step of conditioning surface charge is followed by a step of inspecting surface of the EUV reticle wherein the step of conditioning surface can neutralize the surface charge and the step of inspecting can obtain an image of the EUV reticle. The method of inspecting an EUV reticle also tuning a retarding electrode to attract more secondary electrons such that the greylevels of different patterns may be shown and the defect can be identified and classified. | 09-13-2012 |
20120235035 | Transmission Electron Microscope and Sample Observation Method - A transmission electron microscope includes an electron gun | 09-20-2012 |
20120241606 | MULTIPLE-BEAM SYSTEM FOR HIGH-SPEED ELECTRON-BEAM INSPECTION - One embodiment disclosed relates to a multiple-beamlet electron beam imaging apparatus for imaging a surface of a target substrate. A beam splitter lens array is configured to split the illumination beam to form a primary beamlet array, and a scanning system is configured to scan the primary beamlet array over an area of the surface of the target substrate. In addition, a detection system configured to detect individual secondary electron beamlets. Another embodiment disclosed relates to a method of imaging a surface of a target substrate using a multiple-beamlet electron beam column. Other features and embodiments are also disclosed. | 09-27-2012 |
20120241607 | MICROFLUIDIC BLOTLESS CRYO TEM DEVICE AND METHOD - A method and system is provided for automatically preparing transmission electron microscopy (TEM) samples for examination by depositing extremely small samples onto a grid without need for a blotting step. A sample liquid droplet is formed at the end of a capillary, wherein a portion of the liquid is transferred to the TEM sample grid by contact. The excess volume in the liquid droplet is then retracted by an adjacent capillary. After a predetermined time interval, the retraction capillary is moved toward the drop of the sample to remove the excess volume. As compared to a conventional machine, where the blotting procedure can deform the structure of the molecule of interest, the present invention utilizes a very low shear rate for removal of the excess sample fluid. | 09-27-2012 |
20120241608 | INTERFACE, A METHOD FOR OBSERVING AN OBJECT WITHIN A NON-VACUUM ENVIRONMENT AND A SCANNING ELECTRON MICROSCOPE - An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object. | 09-27-2012 |
20120248309 | SPECIMEN GRID HOLDER AND FOCUSED ION BEAM SYSTEM OR DUAL BEAM SYSTEM HAVING THE SAME - A specimen grid holder includes a base and two holding members disposed thereon. Each holding member has at least one inserting portion and at least one holding portion formed adjacently. The specimen grid can be inserted into the inserting portion and moved to the holding portion for securement. The two holding members can be used to secure specimens at different orientations for analyses. | 10-04-2012 |
20120256084 | ELECTRON BEAM DRIFT DETECTION DEVICE AND METHOD FOR DETECTING ELECTRON BEAM DRIFT - An electron beam drift detection device and a method for detecting electron beam drift are provided in which the method includes placing a predetermined characteristic identification pattern on a surface of a workpiece; emitting an electron beam, and focusing and deflecting the electron beam such that the focused and deflected electron beam scans the surface of the workpiece and the characteristic identification pattern; detecting backscattered electrons and secondary electrons; and detection signals; and receives the receiving detection signals and performs performing an image process on the detection signals to obtain an electronic image of the characteristic identification pattern, and measuring a drift degree by comparing the electronic image with the predetermined shape of the characteristic identification pattern. | 10-11-2012 |
20120256085 | Method of protecting a radiation detector in a charged particle instrument - The invention relates to a Method of protecting a direct electron detector ( | 10-11-2012 |
20120256086 | METHOD AND APPARATUS FOR DETERMINING A FLUID DENSITY - The invention provides an apparatus and method for measuring a property of a gas, such as the amount of liquid in a stream of the gas. The apparatus comprises a source of beta particles ( | 10-11-2012 |
20120261573 | ARRANGEMENT AND METHOD FOR THE CONTRAST IMPROVEMENT IN A CHARGED PARTICLE BEAM DEVICE FOR INSPECTING A SPECIMEN - A charged particle beam device for inspecting a specimen includes a charged particle beam source adapted to generate a primary charged particle beam; an objective lens device adapted to direct the primary charged particle beam onto the specimen; a retarding field device adapted to accelerate secondary charged particles starting from the specimen, a first detector device having a central opening, includes at least two azimuthal detector segments for detecting secondary particles, wherein the objective lens device is adapted such that particles with different starting angles from the specimen exhibit crossovers at substantially the same distance from the specimen between the objective lens and the detector device, and an aperture located between the objective lens and the crossovers, having an opening which is equal to or smaller than the central opening in the detector device. | 10-18-2012 |
20120267527 | A METHOD OF DETECTING CONTAMINATION OF TITANIUM ALLOYS OF TWO-PHASE TYPE HAVING AN ALPHA AND A BETA PHASE - The invention relates to a method of examining a titanium alloy of two-phase type with an alpha phase and a beta phase. The method comprises the following steps:
| 10-25-2012 |
20120267528 | Pattern Measuring Apparatus and Computer Program - A pattern measuring apparatus which can identify a kind of gaps formed by a manufacturing process having a plurality of exposing steps such as SADP, particularly, which can suitably access a gap even if a sample has the gap that is not easily accessed is disclosed. A feature amount regarding one end side of a pattern having a plurality of patterns arranged therein and a plurality of kinds of feature amounts regarding the other end side of the pattern are extracted from a signal detected on the basis of scanning of a charged particle beam. With respect to proper kinds of feature amounts among the plurality of kinds of feature amounts, the feature amount on one side of the pattern and that on the other end side of the pattern are compared. On the basis of the comparison, the kinds of spaces among the patterns are determined. | 10-25-2012 |
20120267529 | ELECTRON MICROSCOPE SYSTEM AND METHOD FOR EVALUATING FILM THICKNESS REDUCTION OF RESIST PATTERNS - The invention provides a system for achieving detection and measurement of film thickness reduction of a resist pattern with high throughput which can be applied to part of in-line process management. By taking into consideration the fact that film thickness reduction of the resist pattern leads to some surface roughness of the upper surface of the resist, a film thickness reduction index value is calculated by quantifying the degree of roughness of the part corresponding to the upper surface of the resist on an electron microscope image of the resist pattern which has been used in the conventional line width measurement. The amount of film thickness reduction of the resist pattern is estimated by applying the calculated index value to a database previously made for relating a film thickness reduction index value to an amount of film thickness reduction of the resist pattern. | 10-25-2012 |
20120273676 | METHOD FOR DETERMINING A RECONSTRUCTED IMAGE USING A PARTICLE-OPTICAL APPARATUS - The invention relates to a method for determining a reconstructed image using a particle-optical apparatus. The particle-optical apparatus comprises a particle source for producing a beam of particles, an object plane on which an object to be imaged may be placed, a condenser system for illuminating the object plane with the beam of particles, a projection system for forming an image of the object plane by imaging particles transmitted through the object on an image plane, and a detector for detecting the image, the detector comprising a semiconductor sensor having an array of pixels for providing a plurality of pixel signals from respective pixels of the array in response to particles incident on the detector. | 11-01-2012 |
20120273677 | IN-COLUMN DETECTOR FOR PARTICLE-OPTICAL COLUMN - The invention relates to an in-column back-scattered electron detector, the detector placed in a combined electrostatic/magnetic objective lens for a SEM. The detector is formed as a charged particle sensitive surface, preferably a scintillator disk that acts as one of the electrode faces forming the electrostatic focusing field. The photons generated in the scintillator are detected by a photon detector, such as a photo-diode or a multi-pixel photon detector. The objective lens may be equipped with another electron detector for detecting secondary electrons that are kept closer to the axis. A light guide may be used to offer electrical insulation between the photon detector and the scintillator. | 11-01-2012 |
20120273678 | METHOD FOR EXAMINING A SAMPLE BY USING A CHARGED PARTICLE BEAM - A method for examining a sample with a scanning charged particle beam imaging apparatus. First, an image area and a scan area are specified on a surface of the sample. Herein, the image area is entirely overlapped within the scan area. Next, the scan area is scanned by using a charged particle beam along a direction neither parallel nor perpendicular to an orientation of the scan area. It is possible that only a portion of the scan area overlapped with the image area is exposed to the charged particle beam. It also is possible that both the shape and the size of the image area are essentially similar with that of the scan area, such that the size of the area projected by the charged particle beam is almost equal to the size of the image area. | 11-01-2012 |
20120286158 | SCANNING ELECTRON MICROSCOPE AND INSPECTION METHOD USING SAME - Provided is a high-resolution scanning electron microscope with minimal aberration, and equipped with an electro-optical configuration that can form a tilted beam having wide-angle polarization and a desired angle, without interfering with an electromagnetic lens. In the scanning electron microscope, an electromagnetic deflector ( | 11-15-2012 |
20120292502 | HIGH ELECTRON ENERGY BASED OVERLAY ERROR MEASUREMENT METHODS AND SYSTEMS - A method, a system and a computer readable medium are provided. The method may include obtaining or receiving first area information representative of a first area of a first layer of an inspected object; wherein the inspected object further comprises a second layer that comprises a second area; wherein the second layer is buried under the first layer; directing electrons of a primary electron beam to interact with the first area; directing electrons of the primary electron beam to interact with the second area; generating detection signals responsive to electrons that were scattered or reflected from at least one of the first and second areas; and determining at least one spatial relationship between at least one feature of the first area and at least one feature of the second area based on the detection signals and on the first area information. | 11-22-2012 |
20120292503 | CHARGED-PARTICLE MICROSCOPY WITH OCCLUSION DETECTION - This invention relates to a method of examining a sample using a charged-particle microscope. This invention solves the problem of occlusion effects, whereby a given line-of-sight behind a particular region on a sample and a given detector is blocked by a topographical feature on the sample, thus hampering detection of the emitted radiation emanating from the occluded region. This problem is solved by using at least a first and second detector configuration to detect each portion of the emitted radiation and to produce at least a first and second corresponding image based thereupon; and using computer processing apparatus to automatically compare different members of the set of corresponding images and mathematically identify on the sample at least one occlusion region with an occluded line-of-sight relative to at least one of the detector configurations. | 11-22-2012 |
20120292504 | METHOD AND SYSTEM OF EVALUATING DISTRIBUTION OF LATTICE STRAIN ON CRYSTAL MATERIAL - A crystal material lattice strain evaluation method includes illuminating a sample having a crystal structure with an electron beam in a zone axis direction, and selectively detecting a certain diffracted wave diffracted in a certain direction among a plurality of diffracted waves diffracted by the sample. The method further includes repeating the illuminating step and the selectively detecting step while scanning the sample, and obtaining a strain distribution image in a direction corresponding to the certain diffracted wave from diffraction intensity at each point of the sample. | 11-22-2012 |
20120292505 | METHODS OF USING TEMPERATURE CONTROL DEVICES IN ELECTRON MICROSCOPY - Methods of using temperature control devices in electron microscopes. The temperature of the device structure may be controlled to extract information about reactions and processes that was previously unobtainable. | 11-22-2012 |
20120292506 | SAMPLE OBSERVATION METHOD USING ELECTRON BEAMS AND ELECTRON MICROSCOPE - A disclosed method for observing the structure and characteristics of a specimen by an electron microscope realizes high-density charge accumulation on a specimen and improves the quality of voltage contrast images. For structural observation of a specimen and evaluation of its electrical characteristic using an electron beam, charging the specimen is performed. In this charging process, high-density charge accumulation on the specimen is achieved by irradiating the specimen with an electron beam set to have injection energy that falls within an injection energy band for which high charging efficiency is attained during electron beam irradiation and changing irradiation energy, while maintaining the injection energy. | 11-22-2012 |
20120292507 | Charged Particle Beam Device and Sample Observation Method - There is provided a charged particle beam device which has a mechanism adjusting the shape of an ionic liquid droplet to be adhered to a sample and the thickness of a film of the ionic liquid, in such a manner that they are suitable for various types of observations by an electronic microscope and the like, and for processing using ion beams. | 11-22-2012 |
20120298862 | CONTOUR-BASED DEFECT DETECTION USING AN INSPECTION APPARATUS - One embodiment relates to a method of inspecting a site location on a target substrate. Contours are obtained, the contours having been generated from a reference image using a design clip. A target image of the site location is acquired. The contours are aligned to the target image, and contrast values are computed for pixels on the contours. A threshold is applied to the contrast values to determine contour-based defect blobs. Another embodiment relates to a method of generating contours for use in inspecting a site location for defects. Other embodiments, aspects and features are also disclosed. | 11-29-2012 |
20120298863 | Method for Detecting Information of an Electronic Potential on a Sample and Charged Particle Beam Apparatus - An object of the present invention is to provide a method and apparatus for measuring a potential on a surface of a sample using a charged particle beam while restraining a change in the potential on the sample induced by the charged particle beam application, or detecting a compensation value for a change in a condition for the apparatus caused by the sample being electrically charged. In order to achieve the above object, the present invention provides a method and apparatus for applying a voltage to a sample so that a charged particle beam does not reach the sample (hereinafter, this may be referred to as “mirror state”) in a state in which the charged particle beam is applied toward the sample, and detecting information relating to a potential on the sample using signals obtained by that voltage application. | 11-29-2012 |
20120305763 | SYSTEM AND METHOD FOR COMPENSATING FOR MAGNETIC NOISE - A system and method for noise compensation of a charged particle beam location includes one or more sensors that are spaced apart from each other for sensing magnetic noises within at least one predefined frequency band thereby to provide magnetic noise measurements with synchronous detection of the location of a charged particle beam. Based on the magnetic noise measurements and on relationships between values of the magnetic noises and particle beam location errors, magnetic noise compensations signals are generated. An object is then scanned by a particle beam in response to a desired particle beam scan pattern and the magnetic noise compensation signals. | 12-06-2012 |
20120305764 | METHOD OF DETERMINING THE CONCAVITY AND CONVEXITY ON SAMPLE SURFACE, AND CHARGED PARTICLE BEAM APPARATUS - A method and apparatus suitable for determining the concavity and convexity of line and space patterns formed on a sample. A profile is formed based on a charged-particle beam scan, the profile having a peak. When one foot portion of the peak converges more gradually than the other foot portion, a portion of the sample corresponding to the one foot portion is determined to be a convex portion. Alternatively, when one foot portion of the peak converges more steeply than the other foot portion, a portion of the sample corresponding to the one foot portion is determined to be a concave portion. | 12-06-2012 |
20120305765 | PARTICLE BEAM DEVICE AND METHOD FOR USE IN A PARTICLE BEAM DEVICE - A particle beam device includes a movable carrier element with at least one receiving element for receiving a specimen and in which the receiving element is situated on the carrier element. In various embodiments, the receiving element may be situated removably on the carrier element and/or multiple receiving elements may be situated on the carrier element in such a way that a movement of the carrier element causes a movement of the multiple receiving elements in the same spatial direction or around the same axis. The carrier element may be movable in three spatial directions situated perpendicular to one another and rotatable around a first axis which is parallel to an optical axis of the particle beam device and around a second axis which is situated perpendicular to the optical axis. A method for using the particle beam device in connection with specimen study and preparation is also disclosed. | 12-06-2012 |
20120312986 | CHARACTERIZATION OF NANOSCALE STRUCTURES USING AN ULTRAFAST ELECTRON MICROSCOPE - The present invention relates to methods and systems for 4D ultrafast electron microscopy (UEM)—in situ imaging with ultrafast time resolution in TEM. Single electron imaging is used as a component of the 4D UEM technique to provide high spatial and temporal resolution unavailable using conventional techniques. Other embodiments of the present invention relate to methods and systems for convergent beam UEM, focusing the electron beams onto the specimen to measure structural characteristics in three dimensions as a function of time. Additionally, embodiments provide not only 4D imaging of specimens, but characterization of electron energy, performing time resolved electron energy loss spectroscopy (EELS). | 12-13-2012 |
20120312987 | ULTRAFAST ELECTRON DIFFRACTION DEVICE - An ultrafast electron diffraction device for irradiating a sample with a bunch of electrons in an ultrashort pulse in order to perform an ultrafast analysis of the sample. The ultrafast electron diffraction device includes: a) a laser emitter for delivering an ultrashort pulse laser having a pulse width of not more than 1 ps onto a target which is a material for generating electrons at an intensity of not less than 1017 W/cm | 12-13-2012 |
20120318976 | PATTERN MEASUREMENT APPARATUS AND PATTERN MEASUREMENT METHOD - A pattern measurement apparatus scans an observation region of a sample surface with an electron beam and detects secondary electrons emitted from the sample surface with the irradiation of the electron beam, by using a plurality of electron detectors arranged around the optical axis of the electron beam. Images are taken in two directions that are orthogonal to a pattern extending direction, and are opposite to each other across the optical axis. Then, profiles of a line orthogonal to each of edges are extracted from the images, and a subtraction between the line profiles is taken to obtain a subtractive profile. The position of an upper end of each edge is detected based on a descending portion of the subtractive profile, and the position of a lower end of the edge is detected based on a rising portion or a descending portion of one of the line profiles. | 12-20-2012 |
20120318977 | Scanning Electron Microscope Optical Condition Setting Method and Scanning Electron Microscope - It is an object of the present invention to provide an optical-condition setting method for a charged-particle beam device, and the charged-particle beam device which make it possible to set the following optical condition: Namely, an optical condition which allows the suppression of a lowering in the measurement and inspection accuracy caused by the influence of electrification, even if there exist a large number of measurement and inspection points. | 12-20-2012 |
20120326028 | CHARGED PARTICLE BEAM APPARATUS, AND SAMPLE PROCESSING AND OBSERVATION METHOD - An object of the present invention relates to realizing the processing of a sample by charged particle beams and the monitoring of the processed cross section with a high throughput. | 12-27-2012 |
20130001417 | BACKGROUND REDUCTION SYSTEM INCLUDING LOUVER - A background reduction system may include, but is not limited to: a charged particle source configured to generate a charged-particle beam; a louvered structure including one or more apertures configured to selectively transmit charged particles according to their angle of incidence; and a charged-particle detector configured to receive charged particles selectively transmitted by the louvered structure. | 01-03-2013 |
20130001418 | MULTIPLE-COLUMN ELECTRON BEAM APPARATUS AND METHODS - One embodiment disclosed relates an apparatus which includes an electromagnet arranged to provide a large-scale magnetic field in a region. The apparatus further includes an array of multiple electron beam columns formed in the region using an array of bores through magnetic material. Another embodiment relates to a method of generating an array of electron beams. A large-scale magnetic field is generated in a region using at least two magnetic poles. The array of electron beams is generated using an array of columns formed using bores through a magnetic material positioned in the region. Other embodiments, aspects and features are also disclosed. | 01-03-2013 |
20130009056 | Integrable magnetic field compensation for use in scanning and transmission electron microscopes - An arrangement and a method for imaging, examining and processing a sample using electrons. The arrangement comprises an electron microscope for providing electrons, a chamber with a sample holder on which a sample is positionable such that it can be imaged, examined and processed using the electrons. A system for magnetic field compensation in at least one spatial direction, including a compensation coil, wherein a wall of the chamber has an accommodation area, in sections thereof, for a portion of the compensation coil. Generally, only the chamber in which the sample is arranged is considered as a compensation volume. It suffice to reduce the compensation volume to the sensitive region of the electron microscope, since it is in the chamber, shortly following a final focusing and filtering, where the electron beam is most sensitive in terms of image quality when subjected to external electromagnetic interference. | 01-10-2013 |
20130009057 | Electron Beam Irradiation Method and Scanning Electron Microscope - The present invention has for its object to provide a charged particle beam irradiation method and a charged particle beam apparatus which can suppress unevenness of electrification even when a plurality of different kinds of materials are contained in a pre-dosing area or degrees of density of patterns inside the pre-dosing area differs with positions. | 01-10-2013 |
20130015350 | Electron-Beam Image ReconstructionAANM Chen; DongxueAACI Palo AltoAAST CAAACO USAAGP Chen; Dongxue Palo Alto CA USAANM Hu; ChangqingAACI SunnyvaleAAST CAAACO USAAGP Hu; Changqing Sunnyvale CA USAANM Pang; LinyongAACI Los GatosAAST CAAACO USAAGP Pang; Linyong Los Gatos CA US - A technique for reconstructing an electron-beam (EB) image, which can be a scanning-electron-microscope (SEM) image or an EB-inspection image, is described. This reconstruction technique may involve an inverse electro-optical calculation that corrects for the influence of an electro-optical transfer function associated with an EB system on the EB image. In particular, in the inverse calculation a multi-valued representation of an initial EB image is at an image plane in the model of the electro-optical transfer function and a resulting EB image is at an object plane in the model of the electro-optical transfer function. Furthermore, the model of the electro-optical transfer function may have an analytical derivative and/or may be represented by a closed-form expression. | 01-17-2013 |
20130015351 | CLUSTERING OF MULTI-MODAL DATA - Information from multiple detectors acquiring different types of information is combined to determine one or more properties of a sample more efficiently than the properties could be determined using a single type of information from a single type of detector. In some embodiments, information is collected simultaneously from the different detectors which can greatly reduce data acquisition time. In some embodiments, information from different points on the sample are grouped based on information from one type of detector and information from the second type of detector related to these points is combined, for example, to create a single spectrum from a second detector of a region of common composition as determined by the first detector. In some embodiments, the data collection is adaptive, that is, the data is analyzed during collection to determine whether sufficient data has been collected to determine a desired property with the desired confidence. | 01-17-2013 |
20130015352 | HIGH PERFORMANCE COMPUTING FOR THREE DIMENSIONAL PROTON COMPUTED TOMOGRAPHY (HPC-PCT) - A proton computed tomography (pCT) detector system, including two tracking detectors in sequence on a first side of an object to be imaged, two tracking detectors in sequence on an opposite side of the object to be imaged, a calorimeter, and a computer cluster, wherein the tracking detectors include plastic scintillation fibers. All fibers in the detector system are read out by Silicon Photomultipliers (SiPM). A method of imaging an object by emitting protons from a source through two tracking detectors, through and around the object, and through two opposite tracking detectors, detecting energy of the protons with a calorimeter, and imaging the object. | 01-17-2013 |
20130026361 | PATTERN EVALUATION METHOD, DEVICE THEREFOR, AND ELECTRON BEAM DEVICE - An amount of pattern position displacement between observation images acquired by irradiating from two different directions is changed depending on beam deflection for moving an image acquisition position. In a pattern evaluation method that measures astigmatic difference or focus position displacement having a small amount of dose at a high speed using parallax caused by the tilted beam, a correction value obtained in advance by measurement is reflected in an amount of pattern position displacement between observation images obtained by irradiating from at least two different directions and generated in accordance with the amount of beam deflection for moving an image acquisition position. A processing unit calculates an amount of correction of an amount of pattern position displacement depending on beam deflection of a beam deflecting unit for moving an image acquisition position on the sample at a high speed. | 01-31-2013 |
20130032712 | OVERLAY ALIGNMENT MARK AND METHOD OF DETECTING OVERLAY ALIGNMENT ERROR USING THE MARK - A method comprises providing a semiconductor substrate having a first layer and a second layer above the first layer. The first layer haw a plurality of first patterns, vias or contacts. The second layer has second patterns corresponding to the first patterns, vias or contacts. The second patterns have a plurality of in-plane offsets relative to the corresponding first patterns, vias or contacts. A scanning electron microscope is used to measure line edge roughness (LER) values of the second patterns. An overlay error is calculated between the first and second layers based on the measured LER values. | 02-07-2013 |
20130032713 | ELECTRON DETECTOR INCLUDING ONE OR MORE INTIMATELY-COUPLED SCINTILLATOR-PHOTOMULTIPLIER COMBINATIONS, AND ELECTRON MICROSCOPE EMPLOYING SAME - An electron detector includes a plurality of assemblies, the plurality of assemblies including a first assembly having a first SiPM and a first scintillator made of a first scintillator material directly connected to an active light sensing surface of the first SiPM, and a second assembly having a second SiPM and a second scintillator made of a second scintillator material directly connected to an active light sensing surface of the second SiPM, wherein the first scintillator material and the second scintillator material are different than one another. Alternatively, an electron detector includes an assembly including an SiPM and a scintillator member having a front surface and a back surface, the scintillator member being a film of a scintillator material directly deposited on to an active light sensing surface of the SiPM. | 02-07-2013 |
20130032714 | ION BEAM APPARATUS AND ION-BEAM PROCESSING METHOD - There is provided an apparatus and a method capable of preparing a standardized probe without need for working skill of probe processing. According to the present invention, a probe shape generation process of detecting a probe shape based on the probe incoming current detected by a probe current detection unit, a probe tip coordinate extraction process of detecting a tip position of the probe from the probe shape, a probe contour line extraction process of generating a probe contour line obtained by approximating a contour of the probe from the tip position of the probe and the probe shape, a probe center line extraction process of generating a center line and a vertical line of the probe from the probe contour line, a processing pattern generation process of generating a processing pattern based on the probe tip position, the probe center line, the probe vertical line, and a preset shape and dimension of a probe acute part, and an ion beam termination process of performing, based on the processing pattern, termination of ion-beam processing are performed. | 02-07-2013 |
20130037712 | OPTICAL-CAVITY PHASE PLATE FOR TRANSMISSION ELECTRON MICROSCOPY - An optical phase plate system and method for enhancing phase contrast in electron beam imaging includes a transmission electron microscope (TEM) having a back focal plane; an optical cavity having a high internal surface reflectance, the center of the optical cavity located at the back focal plane of the TEM, the optical cavity having first and second ports arranged oppositely along a symmetrical axis of the optical cavity to admit an electron beam provided by the TEM through the first port to pass through and focus at the center of the optical cavity, and to exit through the second port, and wherein the optical cavity further has an optical port on an axis transverse to and intersecting the electron beam axis to admit a laser beam; a laser coupled to the optical cavity to provide a laser beam of a selected wavelength to enter the optical cavity through the optical port, wherein the laser beam is multiply reflected from the high internal surface reflectance to provide a high intensity standing wave optical phase plate focused at the back focal plane of the TEM to cause a modulation of the electron beam; and an image plane of the TEM placed opposite the second port of the optical cavity to receive the electron beam modulated by the high intensity standing wave optical phase plate. | 02-14-2013 |
20130037713 | METHOD FOR PROCESSING SAMPLES HELD BY A NANOMANIPULATOR - A method for processing a sample in a charged-particle beam microscope. A sample is collected from a substrate and the sample is attached to the tip of a nanomanipulator. The sample is optionally oriented to optimize further processing. The nanomanipulator tip is brought into contact with a stabilizing support to minimize drift or vibration of the sample. The attached sample is then stabilized and available for preparation and analysis. | 02-14-2013 |
20130037714 | Charged-Particle Microscopy Imaging Method - Charged-particle microscopy includes
| 02-14-2013 |
20130037715 | CHARGED-PARTICLE MICROSCOPE PROVIDING DEPTH-RESOLVED IMAGERY - A method of examining a sample using a charged-particle microscope, comprising the following steps:
| 02-14-2013 |
20130037716 | SCANNING ELECTRON MICROSCOPE AND SAMPLE OBSERVATION METHOD - The present invention provides a contact hole observation technology for avoiding a situation in which it is difficult to observe a contact hole as a nonuniform charge is formed in the contact hole due to a tilted electron beam during a process for forming a preliminary charge on a sample. The present invention also provides a scanning electron microscope based on such a contact hole observation technology. During a preliminary charge process, an electron beam is allowed to become incident in a plurality of directions to perform a precharge, thereby reducing a region within the contact hole that is not irradiated with the electron beam. This reduces the number of secondary electrons that become lost on the wall surface of the contact hole, thereby making it possible to acquire information about the bottom of the contact hole. Further, the precharge is processed by dividing a precharge irradiation region into a plurality of ring-shaped regions concentric with an observation region and precharging each of the ring-shaped regions in a plurality of scanning directions. | 02-14-2013 |
20130043386 | IMAGE PROCESSING APPARATUS, AN IMAGE GENERATING METHOD, AND A SYSTEM - The method disclosed in this specification includes: acquiring a dark-field image produced by capturing an image of a sample with a scanning transmission electron microscope by detecting electrons scattered at angles between a first angle to the optical axis of the scanning transmission electron microscope and a second angle which is larger than the first angle; acquiring a bright-field image captured simultaneously with the dark-field image by detecting electrons scattered within a third angle which is smaller than the first angle; generating a reverse image by reversing lightness and darkness of the dark-field image; and generating a difference image each of whose pixels has a brightness value equal to the difference between the brightness of the corresponding pixel in the reverse image and the brightness of the corresponding pixel in the bright-field image. | 02-21-2013 |
20130043387 | ABERRATION-CORRECTING DARK-FIELD ELECTRON MICROSCOPY - A transmission electron microscope includes an electron beam source to generate an electron beam. Beam optics are provided to converge the electron beam. An aberration corrector comprising either a foil or a set of concentric elements corrects the electron beam for at least a spherical aberration. A specimen holder is provided to hold a specimen in the path of the electron beam. A detector is used to detect the electron beam transmitted through the specimen. The transmission electron microscope may be configured to operate in a dark-field mode in which a zero beam of the electron beam is not detected. The microscope may also be capable of operating in an incoherent illumination mode. | 02-21-2013 |
20130056634 | Charged Particle Detector System Comprising a Conversion Electrode - The invention relates to a charged particle detector system comprising a conversion plate ( | 03-07-2013 |
20130062519 | ELECTRON MICROSCOPE, AND METHOD FOR ADJUSTNG OPTICAL AXIS OF ELECTRON MICROSCOPE - An electron microscope is provided that can automatically adjust the optical axis even in a state of deviation of the optical axis according to which the position of an electron beam on a fluorescent plate cannot be verified after replacement of an electron source. The microscope measures current of a fluorescent plate and determining whether the fluorescent plate is irradiated with an electron beam or not; without irradiation, controls a deflector to move the electron beam such that the fluorescent plate is irradiated with the electron beam; and, with irradiation, controls the deflector such that the current becomes a local maximum and a magnitude of luminance acquired from the image of the electron beam with which the fluorescent plate is irradiated becomes a local maximum. | 03-14-2013 |
20130068947 | Pattern inspection apparatus and pattern inspection method - A pattern inspection apparatus includes: an irradiator irradiating a sample with an electron beam; an electron detector detecting an amount of electrons generated on the sample having a pattern formed thereon, by the irradiation of the electron beam; an image processor generating a SEM image of the pattern on the basis of the electron amount; and a controller acquiring defect position information on the pattern formed on the sample from an optical defect inspection device is provided. The controller specifies a defect candidate pattern from the SEM image and judges whether a defect in the defect candidate pattern is to be transferred onto a wafer. The controller determines a view field of the SEM image and specifies the defect candidate pattern from information on patterns in the SEM image in the view field. | 03-21-2013 |
20130068948 | METHOD OF PLANAR IMAGING ON SEMICONDUCTOR CHIPS USING FOCUSED ION BEAM - A method of planar imaging on semiconductor chips using focused ion beam is provided, comprising the steps of: (A)disposing at least a positioning symbol to designate a testing area thereon; (B)disposing a metal membrane on the testing area; (C)trimming the testing chip to form a first testing chip; (D)cutting a blind opening proximate the testing area on the first testing chip to form a second testing chip; (E)disposing and erecting the second testing chip on an inclinable platform; (F)rotating the erected second testing chip with the inclinable platform, thereby allowing ion beams from the FIB to emit into the opening in an angle of inclination; (G)emitting ion beams in the direction of the incident ray to form planar images of different depths parallel to the metal membrane on the testing area. | 03-21-2013 |
20130075605 | CONDUCTIVE ELEMENT FOR ELECTRICALLY COUPLING AN EUVL MASK TO A SUPPORTING CHUCK - A coupling module may include an upper portion that defines an aperture, mask contact elements, chuck contact elements and an intermediate element that is connected between the mask contact elements and the upper portion. A shape and a size of the aperture may correspond to a shape and size of a pattern transfer area of an extreme ultra violet (EUVL) mask. The coupling module may be shaped and sized so that once the mask contact elements contact the upper portion of the EUVL mask, the chuck contact elements contact a chuck that supports the mask. The coupling module may further provide at least one conductive path between the upper portion of the EUVL mask and the chuck when the EUVL mask is positioned on the chuck. | 03-28-2013 |
20130082174 | METHODS AND APPARATUS FOR CLASSIFICATION OF DEFECTS USING SURFACE HEIGHT ATTRIBUTES - One embodiment relates to a method of classifying a defect on a substrate surface. The method includes scanning a primary electron beam over a target region of the substrate surface causing secondary electrons to be emitted therefrom, wherein the target region includes the defect. The secondary electrons are detected from the target region using a plurality of at least two off-axis sensors so as to generate a plurality of image frames of the target region, each image frame of the target region including data from a different off-axis sensor. The plurality of image data frames are processed to generate a surface height map of the target region, and surface height attributes are determined for the defect. The surface height attributes for the defect are input into a defect classifier. Other embodiments, aspects and features are also disclosed. | 04-04-2013 |
20130082175 | METHOD AND PARTICLE BEAM DEVICE FOR PRODUCING AN IMAGE OF AN OBJECT - A system for producing an image of an object using a particle beam device is provided. A particle source is used to generate primary particles, in which the primary particles have a primary energy. The primary particles are delivered to an object, in which the primary particles form a particle beam. Interaction particles which are scattered back by the object in the direction of the particle source are detected with at least one energy-resolving detector. Detection signals, which are obtained through the detection, are evaluated in terms of an energy which the detected interaction particles have. The detection signals which stem from the detected interaction particles whose energy deviates by less than 500 eV from the primary energy are selected. An image of the object is produced, in which only the selected detection signals are used to produce the image. | 04-04-2013 |
20130087704 | GAS FIELD IONIZATION ION SOURCE, SCANNING CHARGED PARTICLE MICROSCOPE, OPTICAL AXIS ADJUSTMENT METHOD AND SPECIMEN OBSERVATION METHOD - A gas field ionization ion source (GFIS) is characterized in that the aperture diameter of the extraction electrode can be set to any of at least two different values or the distance from the apex of the emitter to the extraction electrode can be set to any of at least two different values. In addition, solid nitrogen is used for cooling. It may be possible to not only let divergently emitted ions go through the aperture of the extraction electrode but also, in behalf of differential pumping, reduce the diameter of the aperture. In addition, it may be possible to reduce the physical vibration of the cooling means. Consequently, it may be possible to provide a highly stable GFIS and a scanning charged particle microscope equipped with such a GFIS. | 04-11-2013 |
20130087705 | METHOD FOR DETERMINING NUMBER OF LAYERS OF TWO-DIMENSIONAL THIN FILM ATOMIC STRUCTURE AND DEVICE FOR DETERMINING NUMBER OF LAYERS OF TWO-DIMENSIONAL THIN FILM ATOMIC STRUCTURE - Provided is a versatile method of determining the number of layers of a two-dimensional atomic layer thin film as compared with conventional methods. An electron beam is radiated to a two-dimensional thin film atomic structure having an unknown number of layers to determine the number of layers based on an intensity of reflected electrons or secondary electrons generated thereby. In particular, this method is effective for determining the number of layers of graphene. | 04-11-2013 |
20130099114 | DETECTOR FOR USE IN A CHARGED PARTICLE APPARATUS - A detector with a Silicon Diode and an amplifier, and a feedback element in the form of, for example, a resistor or a diode, switchably connected to the output of the amplifier. When the feedback element is selected via a switch, the detector operates in a Current Measurement Mode for determining electron current, and when the element is not selected the detector operates in its well-known Pulse Height Measurement Mode for determining the energy of X-ray quanta. | 04-25-2013 |
20130099115 | MICROFABRICATED HIGH-BANDPASS FOUCAULT APERTURE FOR ELECTRON MICROSCOPY - A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example. | 04-25-2013 |
20130105688 | Method of Characterizing a Crystalline Specimen by Ion or Atom Scattering | 05-02-2013 |
20130105689 | METHOD FOR ADJUSTING A STEM EQUIPPED WITH AN ABERRATION CORRECTOR | 05-02-2013 |
20130105690 | CHARGED PARTICLE BEAM APPARATUS | 05-02-2013 |
20130112871 | Inspection Method and Device - The high magnification, high resolution and real-time property of an SEM image are realized when the electrical characteristics of an inspection object are measured, without affecting the electrical characteristics of the inspection object. A high-quality, high-magnification first image including an image of a target position in the inspection object on a sample is acquired. Next, a low-quality, low-magnification second image including the image of the target position in the inspection object on the sample and probe images is acquired. Next, data on the first image is built into the second image to generate an image for coarse-access observation which is the same in magnification as the second image. The generation of the image for coarse-access observation is repeated until a probe comes close to the target position in the inspection object. | 05-09-2013 |
20130119250 | DEFECT INSPECTION METHOD, AND DEVICE THEREOF - A conventional pattern inspection, which compares an image to be inspected with a reference image and subjects the resulting difference value to the defect detection using the threshold of defect determination, has difficulty in highly-sensitive inspection. Because defects occur only in specific circuit pattern sections, false reports occur in the conventional pattern inspections which are not based on the position. Disclosed are a defect inspection method and a device thereof which perform a pattern inspection by acquiring a GP image in advance, designating a place to be inspected and a threshold map to the GP image on the GUI, setting the identification reference of the defects, next acquiring the image to be inspected, applying the identification reference to the image to be inspected, and identifying the defects with the identification reference, thereby enabling the highly-sensitive inspection. | 05-16-2013 |
20130119251 | METHOD AND APPARATUS FOR CHARGED PARTICLE BEAM INSPECTION - A charged particle beam inspection apparatus comprises: an electron gun for irradiating an electron beam onto a sample; a detector for detecting a signal obtained from the sample; an image processor for forming an image from the signal obtained from the detector, and an energy controller for controlling the beam energy of the electron beam to be irradiated onto the sample. An identical charged particle beam inspection apparatus carries out a plurality of types of inspections. An inspection apparatus of a projection type may be applied thereto. A pattern defect inspection, a foreign material inspection, and an inspection for a defect in a multilayer are carried out. Beam energies E | 05-16-2013 |
20130126729 | Scanning Transmission Electron Microscopy for Polymer Sequencing - A scanning transmission electron microscope includes an electron beam source to generate an electron beam. Beam optics are provided to converge the electron beam to a probe, such as a longitudinally stretched probe. A stage is provided to hold a specimen in the path of the electron beam. The specimen comprises one or more polymers to be sequenced. A beam scanner scans the electron beam across the specimen. A controller may define one or more scanning areas corresponding to the locations of the polymers, and control one or more of the beam scanner and stage to selectively scan the electron beam probe in the scanning areas. The controller may also tune the beam optics during imaging. One or more detectors are provided to detect electrons transmitted through the specimen to generate an image for each of the scanning areas. The controller may also analyze the one or more images to sequence the polymers. | 05-23-2013 |
20130126730 | SEQUENTIAL RADIAL MIRROR ANALYSER - A sequential radial mirror analyser (RMA) ( | 05-23-2013 |
20130134308 | SAMPLE OBSERVATION APPARATUS AND METHOD OF MARKING - If an indentation mark is put in the vicinity of a defect under constant conditions regardless of the film type of samples, surroundings of the mark become cracked or the mark may be too small to view, thus causing the problem of difficulty in viewing the mark or the defect. Another problem is that in a patterned wafer, an indentation mark is coincidentally put on a film not suited for marking. To solve such problems, an elemental analysis is conducted of a position to be marked and, on the basis of the analysis results, such indentation marking conditions as the pressing load, descending rate, and marking depth of an indenter are varied to perform marking suited for a film type. If the film type of the location to be marked cannot be concluded to be a registered film type, marking under wrong conditions is prevented by switching to manual setting. It is also possible to avoid putting marks on a material if the material is not suited for marking. | 05-30-2013 |
20130140457 | DEFECT OBSERVATION METHOD AND DEFECT OBSERVATION DEVICE - A defect observation device supplied with a taught defect and an ideal output obtained by conducting image processing on the taught defect as its input and capable of conducting work of setting image processing parameters required to classify defect kinds easily and fast is provided. | 06-06-2013 |
20130140458 | Specimen Holder for Charged-Particle Beam Apparatus - The present invention realizes a specimen holder for a charged-particle beam apparatus capable for moving at least one specimen support, and for obtaining the image of the transmission electron microscopy, or the like of all specimens arranged in the specimen holder with high spatial resolution. The retainer plates are put on the specimen supports after the specimen supports are set on the specimen stages at the end portion of the specimen holder respectively. Thereafter, the specimen supports and the retainer plates are fixed to the specimen stages. The vibration damping mechanism is arranged on the end portion side of the specimen holder. The vibration of the specimen support can be prevented or restricted by the condition that the vibration damping mechanism contacts to the specimen support. Accordingly, the transmission electron microscopy image can be obtained with high spatial resolution power. | 06-06-2013 |
20130146764 | INCOHERENT TRANSMISSION ELECTRON MICROSCOPY - A transmission electron microscope includes an electron beam source to generate an electron beam. Beam optics are provided to converge the electron beam. An aberration corrector corrects the electron beam for at least a spherical aberration. A specimen holder is provided to hold a specimen in the path of the electron beam. A detector is used to detect the electron beam transmitted through the specimen. The transmission electron microscope may operate in an incoherent mode and may be used to locate a sequence of objects on a molecule. | 06-13-2013 |
20130146765 | Charged Particle Beam Device and Sample Observation Method - Provided is a charged particle beam device that outputs both an ion beam and an electron beam at a sample, has a common detector for both the ion beam and the electron beam in the charged particle beam device that processes and observes the sample, and is able to provide a detection unit to an appropriate position corresponding to the process details and observation technique of the sample. Provided are an electron beam optical column in which an electron beam for observing the observation surface of a sample is generated, an ion beam optical column in which an ion beam that processes the sample is generated, a detection device that detects a secondary signal generated from the sample or transmitted electrons, and a sample stage that is capable of mounting the detection device thereon; is rotatable in a horizontal plane that includes the optical axis of the electron beam and the optical axis of the ion beam about a cross point where both optical axes intersect; and is able to change the distance between the observation surface of the sample and the cross point. | 06-13-2013 |
20130161511 | SAMPLE OBSERVING DEVICE AND SAMPLE OBSERVING METHOD - An electron beam inspection device observes a sample by irradiating the sample set on a stage with electron beams and detecting the electron beams from the sample. The electron beam inspection device has one electron column which irradiates the sample with the electron beams, and detects the electron beams from the sample. In this one electron column, a plurality of electron beam irradiation detecting systems are formed which each form electron beam paths in which the electron beams with which the sample is irradiated and the electron beams from the sample pass. The electron beam inspection device inspects the sample by simultaneously using a plurality of electron beam irradiation detecting systems and simultaneously irradiating the sample with the plurality of electron beams. | 06-27-2013 |
20130168549 | Method of Evacuating Sample Holder, Pumping System, and Electron Microscope - Method and system are offered which evacuate a sample holder such that a sample can be inserted into the electron optical column of a microscope while certainly preventing exposure to the atmosphere. The system has pumping control means for controlling a vacuum pumping sequence. The inside of a microscope goniometer is evacuated to a given low vacuum state while the pressure inside a hermetic sample chamber is kept constant by the pumping control means. Then, the partition valve of the sample chamber is opened by the pumping control means and the sample chamber is brought to the low vacuum state. Then, the goniometer and sample chamber are brought to a high vacuum state by the pumping control means. Then, the sample is brought into the front end of the goniometer, and the sample holder is inserted into the electron optical column. | 07-04-2013 |
20130175444 | ISOTOPE ION MICROSCOPE METHODS AND SYSTEMS - Ion microscope methods and systems are disclosed. In general, the systems and methods involve relatively light isotopes, minority isotopes or both. In some embodiments, an isotope of Neon is used. | 07-11-2013 |
20130187045 | ELECTRON BEAM IRRADIATION METHOD AND SCANNING ELECTRONIC MICROSCOPE - Provided is an electron beam scanning method for forming an electric field for appropriately guiding electrons emitted from a pattern to the outside of the pattern, and also provided is a scanning electron microscope. When an electron beam for forming charge is irradiated to a sample, a first electron beam is irradiated to a first position ( | 07-25-2013 |
20130200262 | INSPECTION APPARATUS AND REPLACEABLE DOOR FOR A VACUUM CHAMBER OF SUCH AN INSPECTION APPARATUS AND A METHOD FOR OPERATING AN INSPECTION APPARATUS - An inspection apparatus is provided comprising in combination at least an optical microscope ( | 08-08-2013 |
20130206983 | POSITIONING SYSTEM AND METHOD FOR PRECISE STAGE AND PATTERN USED THEREOF - A positioning system for precise stage is provided. It includes a designed pattern on a stage; an electron beam column generating a focused electron beam to scan the designed pattern and produce electron signal; an electron detection unit to detect the electronic signal; and a control unit converting the electron signal to a clock signal to determine the relative position of the electron beam column and the designed pattern, so as to adjust the displacement of the stage. A nanometer scale positioning method for a precise stage is provided, which can resolve the problem of mechanical drift of the stage when the stage is multi-axis positioning or rotating. | 08-15-2013 |
20130206984 | SPECIMEN HOLDER USED FOR MOUNTING SAMPLES IN ELECTRON MICROSCOPES - A novel specimen holder for specimen support devices for insertion in electron microscopes. The novel specimen holder of the invention provides mechanical support for specimen support devices and as well as electrical contacts to the specimens or specimen support devices. | 08-15-2013 |
20130214155 | CHARGED PARTICLE BEAM DEVICE WITH DYNAMIC FOCUS AND METHOD OF OPERATING THEREOF - A retarding field scanning electron microscope is described. The microscope includes a scanning deflection assembly configured for scanning an electron beam over a specimen, one or more controllers in communication with the scanning deflection assembly for controlling the electron beam scanning pattern, and a combined magnetic-electrostatic objective lens configured for focusing the electron beam including an electrostatic lens portion. The electrostatic lens portion includes a first electrode with a high potential bias, and a second electrode disposed between the first electrode and the specimen plane with a potential bias lower than the first electrode, wherein the second electrode is configured for providing a retarding field. The microscope further includes a voltage supply connected to the second electrode for biasing the second electrode and being in communication with the controllers, wherein the controllers synchronize a variation of the potential of the second electrode with the scanning pattern. | 08-22-2013 |
20130214156 | CHARGED PARTICLE DETECTOR - A charged particle beam system for imaging and processing targets is disclosed, comprising a charged particle column, a secondary particle detector, and a secondary particle detection grid assembly between the target and detector. In one embodiment, the grid assembly comprises a multiplicity of grids, each with a separate bias voltage, wherein the electric field between the target and the grids may be adjusted using the grid voltages to optimize the spatial distribution of secondary particles reaching the detector. Since detector lifetime is determined by the total dose accumulated at the area on the detector receiving the largest dose, detector lifetime can be increased by making the dose into the detector more spatially uniform. A single resistive grid assembly with a radial voltage gradient may replace the separate grids. A multiplicity of deflector electrodes may be located between the target and grid to enhance shaping of the electric field. | 08-22-2013 |
20130221217 | METHOD FOR SCANNING ELECTRON MICROSCOPE OBSERVATION OF SAMPLE FLOATING ON LIQUID SURFACE - A micro sample floating on the surface of an ionic liquid is observed by scanning electron microscopy without the sample being covered with the ionic liquid. A floating or hydrophobic sample is floated on the surface of a hydrophilic ionic liquid aqueous solution to prevent the micro sample from being covered with the ionic liquid. A hydrophobic ionic liquid is used for hydrophilic samples. With the use of an ionic liquid aqueous solution of low viscosity and large flowability, the micro sample is allowed to freely aggregate, disperse, and align on the surface of the ionic liquid, and to refloat even when settled in the ionic liquid. For easy observation with a scanning electron microscope, the ionic liquid aqueous solution is dried to lower the flowability of the ionic liquid aqueous solution, after the form of the micro sample has stabilized and before electron microscope observation. | 08-29-2013 |
20130228683 | Charged-Particle Microscope Providing Depth-Resolved Imagery - A method of examining a sample using a charged-particle microscope, comprising mounting the sample on a sample holder; using a particle-optical column to direct at least one beam of particulate radiation onto a surface S of the sample, thereby producing an interaction that causes emitted radiation to emanate from the sample; using a detector arrangement to detect at least a portion of said emitted radiation, the method of which comprises embodying the detector arrangement to detect electrons in the emitted radiation; recording an output O | 09-05-2013 |
20130234020 | PATTERN INSPECTION APPARATUS AND METHOD - A pattern inspection apparatus configured to perform pattern inspection based on a SEM image previously measures distortion amount data representing a magnitude distribution of positional displacement caused by distortion of the SEM image in a scanning direction. When the pattern inspection is performed, the apparatus makes design data and the SEM image correspond to each other by adjusting at least one of the design data and the SEM image on the basis of the distortion amount data, and places a measurement region on the SEM image on the basis of a correspondence between the design data and the SEM image. The apparatus may further find a matching rate between a pattern of the design data and a pattern of the SEM image. | 09-12-2013 |
20130234021 | METHOD AND APPARATUS TO MEASURE STEP HEIGHT OF DEVICE USING SCANNING ELECTRON MICROSCOPE - A method of measuring a step height of a device using a scanning electron microscope (SEM), the method may include providing a device which comprises a first region and a second region, wherein a step is formed between the first region and the second region, obtaining a SEM image of the device by photographing the device using a SEM, wherein the SEM image comprises a first SEM image region for the first region and a second SEM image region for the second region, converting the SEM image into a gray-level histogram and calculating a first peak value related to the first SEM image region and a second peak value related to the second SEM image region, wherein the first peak value and the second peak value are repeatedly calculated by varying a focal length of the SEM, and determining a height of the step by analyzing a trend of changes in the first peak value according to changes in the focal length and a trend of changes in the second peak value according to the changes in the focal length. | 09-12-2013 |
20130234022 | PHOTON INDUCED NEAR FIELD ELECTRON MICROSCOPE AND BIOLOGICAL IMAGING SYSTEM - A method of obtaining PINEM images includes providing femtosecond optical pulse, generating electron pulses, and directing the electron pulses towards a sample. The method also includes overlapping the femtosecond optical pulses and the electron pulses spatially and temporally at the sample and transferring energy from the femtosecond optical pulses to the electron pulses. The method further includes detecting electron pulses having an energy greater than a zero loss value, providing imaging in space and time. | 09-12-2013 |
20130234023 | CHARACTERIZATION OF NANOSCALE STRUCTURES USING AN ULTRAFAST ELECTRON MICROSCOPE - The present invention relates to methods and systems for 4D ultrafast electron microscopy (UEM)—in situ imaging with ultrafast time resolution in TEM. Single electron imaging is used as a component of the 4D UEM technique to provide high spatial and temporal resolution unavailable using conventional techniques. Other embodiments of the present invention relate to methods and systems for convergent beam UEM, focusing the electron beams onto the specimen to measure structural characteristics in three dimensions as a function of time. Additionally, embodiments provide not only 4D imaging of specimens, but characterization of electron energy, performing time resolved electron energy loss spectroscopy (EELS). | 09-12-2013 |
20130234024 | ELECTRON MICROSCOPE, ELECTRON-MICROSCOPE IMAGE-RECONSTRUCTION SYSTEM AND ELECTRON-MICROSCOPE IMAGE-RECONSTRUCTION METHOD - There is provided an image-reconstruction system capable of implementing a multi-axes reconstruction technique for lessening a burden on the part of a user, and precluding artifacts high in contrast, contamination of a sample, and restrictions imposed on a sample for use, occurring due to use of markings | 09-12-2013 |
20130248705 | DEFECT INSPECTION APPARATUS AND DEFECT INSPECTION METHOD - In accordance with an embodiment, a defect inspection apparatus includes a charged beam irradiation unit, a detection unit, an energy filter, and an inspection unit. The charged beam irradiation unit generates a charged beam and irradiates a sample including a pattern as an inspection target thereon with the generated charged beam. The detection unit detects secondary charged particles or reflected charged particles generated from the sample by irradiation of the charged beam and outputs a signal. The energy filter is arranged between the detection unit and the sample to selectively allow the secondary charged particles or the reflected charged particles with energy associated with an applied voltage to pass therethrough. The inspection unit applies voltages different from each other to the energy filter and outputs information concerning a defect of the pattern from an intensity difference between signals obtained under application voltage different from each other. | 09-26-2013 |
20130248706 | SAMPLE ANALYZING APPARATUS AND SAMPLE ANALYZING METHOD - In accordance with an embodiment, a sample analyzing apparatus includes a charged beam generating unit, a detecting unit, and an analyzing unit. The charged beam generating unit is configured to generate a charged beam and apply the charged beam to a sample. The detecting unit is configured to detect charged particles and then output a signal, the charged particles being generated from the sample by the application of the charged beam in a manner depending on a three-dimensional structure and material characteristics of the sample. The analyzing unit is configured to process the signal to analyze the sample. | 09-26-2013 |
20130248707 | SAMPLE OBSERVATION METHOD, SAMPLE PREPARATION METHOD, AND CHARGED PARTICLE BEAM APPARATUS - A sample observation method including: placing a sample stage at a first tilt angle with respect to a charged particle beam, and irradiating an observation surface of a sample with the charged particle beam to acquire a first charged particle image; tilting the sample stage to a second tilt angle different from the first tilt angle about a first sample stage axis, and irradiating the observation surface with the charged particle beam to acquire a second charged particle image; tilting the sample stage to a tilt angle at which an area of the observation surface in the acquired charged particle image is larger between the first charged particle image and the second charged particle image; and irradiating the observation surface with the charged particle beam to observe the observation surface. | 09-26-2013 |
20130248708 | CROSS-SECTION PROCESSING AND OBSERVATION METHOD AND CROSS-SECTION PROCESSING AND OBSERVATION APPARATUS - A cross-section processing and observation method including: acquiring a surface image by scanning and irradiating a surface of a sample with ion beam; setting, on the surface image, a first sliced region and a second sliced region for performing the slice processing, the second sliced region being adjacent to the first sliced region and having a longitudinal length obtained by subtracting a slice width of the second sliced region from a longitudinal length of the first sliced region; forming a cross-section by irradiating the first sliced region and the second sliced region with the ion beam; and acquiring a cross-sectional image by irradiating the cross-section with electron beam. | 09-26-2013 |
20130256528 | METHOD AND APPARATUS FOR DETECTING BURIED DEFECTS - One embodiment relates to a method of detecting a buried defect in a target microscopic metal feature. An imaging apparatus is configured to impinge charged particles with a landing energy such that the charged particles, on average, reach a depth within the target microscopic metal feature. In addition, the imaging apparatus is configured to filter out secondary electrons and detect backscattered electrons. The imaging apparatus is then operated to collect the backscattered electrons emitted from the target microscopic metal feature due to impingement of the charged particles. A backscattered electron (BSE) image of the target microscopic metal feature is compared with the BSE image of a reference microscopic metal feature to detect and classify the buried defect. Other embodiments, aspects and features are also disclosed. | 10-03-2013 |
20130256529 | SURFACE-MODIFIED FLUORESCENT CARBON NANOTUBES FOR PRODUCT VERIFICATION - A material may include a medium and carbon nanotubes dispersed in the medium. Fluorescent moieties may be attached to functional groups on a first quantity of the carbon nanotubes. The fluorescent moieties may be in a concentration in the material sufficient to make the material fluoresce in the presence of radiation. The fluorescent moieties may have an emission wavelength that is in or below the visible spectrum. The carbon nanotubes may be dispersed in the medium in a concentration sufficient to make the material electrically conductive at or above the material's electrical percolation threshold. Any suitable product may include the material. Methods for verifying the authenticity of the product may include detecting emissive radiation, testing electrical conductivity, and determining the presence of a structural characteristic of the carbon nanotubes. | 10-03-2013 |
20130256530 | APPARATUS AND METHODS FOR HIGH-RESOLUTION ELECTRON BEAM IMAGING - One embodiment relates to an apparatus for high-resolution electron beam imaging. The apparatus includes an energy filter configured to limit an energy spread of the electrons in the incident electron beam. The energy filter may be formed using a stigmatic Wien filter and a filter aperture. Another embodiment relates to a method of forming an incident electron beam for a high-resolution electron beam apparatus. Another embodiment relates to a stigmatic Wien filter that includes curved conductive electrodes. Another embodiment relates to a stigmatic Wien filter that includes a pair of magnetic yokes and a multipole deflector. Other embodiments, aspects and features are also disclosed. | 10-03-2013 |
20130256531 | CHARGED PARTICLE OPTICAL EQUIPMENT AND METHOD FOR MEASURING LENS ABERRATION - Beam scanning for obtaining a scanned image is performed by an aberration corrector, which is an aberration measured lens, and a scanning coil disposed above an objective lens, instead of a scanning coil ordinarily placed on the objective lens. Thus, distortion with an aberration of an aberration measured lens is scanned on the surface of a sample, and then a scanned image is formed from a scattered electron beam, a transmission electron beam, or a reflected/secondary electron beam that is generated by the scan, achieving a scanning aberration information pattern equivalent to a conventional Ronchigram. Such means is a feature of the present invention. | 10-03-2013 |
20130256532 | ION SOURCES, SYSTEMS AND METHODS - Ion sources, systems and methods are disclosed. In some embodiments, the ion sources, systems and methods can exhibit relatively little undesired vibration and/or can sufficiently dampen undesired vibration. This can enhance performance (e.g., increase reliability, stability and the like). In certain embodiments, the ion sources, systems and methods can enhance the ability to make tips having desired physical attributes (e.g., the number of atoms on the apex of the tip). This can enhance performance (e.g., increase reliability, stability and the like). | 10-03-2013 |
20130264476 | ELECTRON MICROSCOPE SAMPLE HOLDER FOR FORMING A GAS OR LIQUID CELL WITH TWO SEMICONDUCTOR DEVICES - A novel sample holder for specimen support devices for insertion in electron microscopes. The novel sample holder of the invention allows for the introduction of gases or liquids to specimens for in situ imaging, as well as electrical contacts for electrochemical or thermal experiments. | 10-10-2013 |
20130264477 | PARTICLE-BEAM COLUMN CORRECTED FOR BOTH CHROMATIC AND SPHERICAL ABERRATION - An objective lens for use in probe-forming particle-optical columns such as focused ion beam equipment, scanning electron microscopes, and helium microscopes is described. It comprises two interleaved (quadrupole/octopole) lenses and two or three ancillary octopole lenses, and is capable of simultaneous compensation of spherical (Cs) and chromatic (Cc) aberrations of the objective lens alone or of the complete particle-optical column. Additional apparatus comprising a gridded aperture and position-sensitive detector is specified, together with a method to measure and minimize all of the five independent third-order aberration coefficients of the objective lens. | 10-10-2013 |
20130264478 | CHARGED PARTICLE BEAM LITHOGRAPHY APPARATUS, INSPECTION APPARATUS AND INSPECTION METHOD OF PATTERN WRITING DATA - An inspection method of pattern writing data includes creating an area map of a figure pattern written on a target object for each modulation rate for modulating a dose by using modulation rate data to modulate the dose in a case that a plurality of figure patterns is written on the target object by using a charged particle beam, and layout data in which the plurality of figure patterns is defined; converting the layout data into pattern writing data to be input into a lithography apparatus; and inspecting an amount of electric charge for each predetermined region by using the area map when a pattern is written on the target object by using the pattern writing data. | 10-10-2013 |
20130264479 | METHOD AND APPARATUS FOR MEASURING DISPLACEMENT BETWEEN PATTERNS AND SCANNING ELECTRON MICROSCOPE INSTALLING UNIT FOR MEASURING DISPLACEMENT BETWEEN PATTERNS - In order that a displacement between patterns of different heights, formed on a sample in a plurality of different pattern-forming steps, can be measured at fixed throughput and with high accuracy, correspondence between parameters of lenses and beam deflector of an electron optical system and an angle of incidence of a beam upon the sample is recorded as data, then a correction value for the amount of displacement or edge positions is calculated, and a true amount of displacement is calculated from the correction value and an image under observation. | 10-10-2013 |
20130264480 | PATTERN MEASUREMENT METHOD AND PATTERN MEASUREMENT APPARATUS - A pattern measurement method and a pattern measurement apparatus which use a scanning electron microscope are provided. SEM images of a measurement target pattern are respectively acquired at least two predetermined acceleration voltages. White band widths of the measurement target pattern are detected from the acquired SEM images. Then, an amount of change in the white band width between the predetermined acceleration voltages is calculated. A side wall angle of the measurement target pattern is calculated on the basis of a relation between an amount of change in a white band width and a side wall angle experimentally obtained in advance by using a sample with a known side wall angle. | 10-10-2013 |
20130270436 | PATTERN DETERMINATION DEVICE AND COMPUTER PROGRAM - An object of the invention is to provide: a sample unevenness device that stably identifies unevenness formed on a sample, regardless of a pattern formation state or image acquisition conditions; and a computer program. As an aspect to achieve the above object, a device and computer program are proposed that obtain the area of a plurality of regions formed by a profile waveform of a given threshold or lower for a profile formed based on a detection signal obtained by scanning with a charged particle beam with respect to the sample; and determine either or both of that a site corresponding to a region with a relatively large area is a concave portion or that a space portion and a site corresponding to a space with a relatively small area is a convex portion or a line portion. | 10-17-2013 |
20130270437 | METHOD FOR PRODUCING A REPRESENTATION OF AN OBJECT BY MEANS OF A PARTICLE BEAM, AS WELL AS A PARTICLE BEAM DEVICE FOR CARRYING OUT THE METHOD - A method for producing a representation of an object using a particle beam, as well as a particle beam device for carrying out the method are disclosed. The system described herein is based on the object of specifying the method and the particle beam device for producing a representation of an object such that images which are produced, in particular including FFT images, are as free as possible of artifacts which are not caused by the object to be examined. This is achieved in particular in that pixel lives, line flyback times and pixel pause times are varied in raster patterns. | 10-17-2013 |
20130277552 | CHARGED PARTICLE BEAM DEVICE AND METHOD OF MANUFACTURE OF SAMPLE - A precision of removal of a damaged layer of a sample created by machining with an FIB machining device depends on a skill of an operator. During removal machining of the damaged layer generated by an ion beam, transmitted electrons which are generated by irradiating an electron beam formed in an electron beam optics system onto a sample are detected by a two-dimensional detector, and a moment for finishing the removal machining of the damaged layer is determined based on the amount of blur of a diffraction pattern acquired with the two-dimensional detector. | 10-24-2013 |
20130277553 | METHOD AND APPARATUS FOR OBSERVING DEFECTS - Disclosed are a method and an apparatus for observing defects by using an SEM, wherein, in order to observe defects on a wafer at high speed and high sensitivity, positional information of defects on a sample, which has been optically inspected and detected by other inspecting apparatus, and information of the conditions of the optical inspection having been performed by other inspecting apparatus are obtained, and optically detecting the defects on the sample placed on a table, on the basis of the thus obtained information, and on the basis of the detected positional information of the defect on the sample placed on the table, the positional information of the defect having been inspected and detected by other inspecting apparatus is corrected, then, the defects on the sample placed on the table are observed by the SEM using the thus corrected positional information of the defects. | 10-24-2013 |
20130284920 | System, Method and Applications Involving Identification of Biological Circuits Such as Neurological Characteristics - Various aspects are directed to systems and methods for assessing neural activity of a neural region having multiple subfields. In certain embodiments, a method includes evoking a cellular electrical response in at least one subfield due to neural activity in the neural region, capturing image data of the electrical response at a level sufficiently detailed in space and time to differentiate between polarization-based events of two respective portions of the subfield, and then assessing neural activity by correlating space and time information, from the captured data, for the two respective portions of the sub-field. Other more specific aspects of the invention involve different preparation and neural stimulation approaches which can vary depending on the application. | 10-31-2013 |
20130284921 | Method for Detecting Information of an Electric Potential on a Sample and Charged Particle Beam Apparatus - An object of the present invention is to provide a method and apparatus for measuring a potential on a surface of a sample using a charged particle beam while restraining a change in the potential on the sample induced by the charged particle beam application, or detecting a compensation value for a change in a condition for the apparatus caused by the sample being electrically charged. In order to achieve the above object, the present invention provides a method and apparatus for applying a voltage to a sample so that a charged particle beam does not reach the sample (hereinafter, this may be referred to as “mirror state”) in a state in which the charged particle beam is applied toward the sample, and detecting information relating to a potential on the sample using signals obtained by that voltage application. | 10-31-2013 |
20130292566 | Transmission Electron Microscopy System and Method of Operating a Transmission Electron Microscopy System - A transmission electron microscopy system comprises: an illumination system ( | 11-07-2013 |
20130292567 | METHOD OF DETERMINING AN APPLICABLE THRESHOLD FOR DETERMINING THE CRITICAL DIMENSION OF AT LEAST ONE CATEGORY OF PATTERNS IMAGED BY ATOMIC FORCE SCANNING ELECTRON MICROSCOPY - A method of determining an applicable threshold for determining the critical dimension of a category of patterns imaged by atomic force scanning electron microscopy is presented. The method includes acquiring, from a plurality of patterns, a pair of images for each pattern; for each pair of images determining a reference critical dimension via an image obtained by a reference instrumentation and determining an empirical threshold applicable to an image obtained by a CD-SEM instrumentation such that the empirical threshold substantially corresponds to the reference critical dimension; determining a threshold applicable to a category of patterns, the threshold being determined from a plurality of empirical thresholds. | 11-07-2013 |
20130292568 | SCANNING ELECTRON MICROSCOPE AND LENGTH MEASURING METHOD USING THE SAME - This electron scanning microscope comprises an electron source ( | 11-07-2013 |
20130299696 | Transmission Electron Microscope and Method of Observing TEM Images - A transmission electron microscope (TEM) includes an electron beam source ( | 11-14-2013 |
20130299697 | CHARGED PARTICLE BEAM APPLIED APPARATUS, AND IRRADIATION METHOD - Provided is a charged particle beam applied apparatus for observing a sample, provided with: a beam-forming section that forms a plurality of charged particle beams on a sample; an energy control unit that controls the incident energy of the plurality of charged particle beams that are irradiated onto the sample; a beam current control unit that controls the beam current of the plurality of charged particle beams that are irradiated onto the sample; and a beam arrangement control unit that controls the arrangement in which the plurality of charged particle beams is irradiated onto the sample. The beam-forming section includes a beam splitting electrode, a lens array upper electrode, a lens array middle electrode, a lens array lower electrode and a movable stage, and functions as the beam current control unit or the beam arrangement control unit through selection, by the movable stage, of a plurality of aperture pattern sets. | 11-14-2013 |
20130306862 | AUTOMATED SLICE MILLING FOR VIEWING A FEATURE - A method and apparatus for performing a slice and view technique with a dual beam system. The feature of interest in an image of a sample is located by machine vision, and the area to be milled and imaged in a subsequent slice and view iteration is determined through analysis of data gathered by the machine vision at least in part. A determined milling area may be represented as a bounding box around a feature, which dimensions can be changed in accordance with the analysis step. The FIB is then adjusted accordingly to slice and mill a new face in the subsequent slice and view iteration, and the SEM images the new face. Because the present invention accurately locates the feature and determines an appropriate size of area to mill and image, efficiency is increased by preventing the unnecessary milling of substrate that does not contain the feature of interest. | 11-21-2013 |
20130306863 | ELEMENT FOR FAST MAGNETIC BEAM DEFLECTION - A deflector system for fast magnetic deflection of a charged particle beam is described. The deflector system includes a tube for separating the beam from the magnetic deflector coil arrangement, the tube having a middle section, at least a first end section, and a second end section, wherein a wall thickness of the middle section is lower than a wall thickness of at least one of the first end section and the second end section. | 11-21-2013 |
20130306864 | SCANNING ELECTRON MICROSCOPE - In conventional electron microscopes, orthogonality has been defined for each electron microscope individually in such a manner that a lattice sample is observed, and correction is applied to a control circuit so that the sample is observed as being orthogonal on a screen. Further, the correction has been determined by visual observation on a screen, and manually performed by a human operator. However, in this method, due to manufacturing variation of a lattice sample, the orthogonality may vary between devices. Further, there has been a problem in that the accuracy of correction varies by manually performing the correction. In order to solve the above problems, a particulate sample is used instead of a lattice sample for defining orthogonality, and adjustment is performed so that an image that should be a circle is observed as a circle, thereby making it possible to define the orthogonality. | 11-21-2013 |
20130306865 | METHOD FOR EVALUATING POLYMER MATERIAL - Provided is a method for evaluating a polymer material, wherein the state of dispersion of a filler in a polymer material can be quickly and quantitatively evaluated. | 11-21-2013 |
20130313428 | Phase Plate for a TEM - A phase plate, specifically a Zernike type phase plate, for use in an electron microscope, comprises a central hole, and a thin film causing a phase shift of the electrons passing through said film. This phase shift causes the Contrast Transfer Function (CTF) to change from a sine-like function to a cosine-like function. | 11-28-2013 |
20130313429 | METHOD AND APPARATUS FOR INSPECTING SAMPLE SURFACE - Provided is a method and an apparatus for inspecting a sample surface with high accuracy. Provided is a method for inspecting a sample surface by using an electron beam method sample surface inspection apparatus, in which an electron beam generated by an electron gun of the electron beam method sample surface inspection apparatus is irradiated onto the sample surface, and secondary electrons emanating from the sample surface are formed into an image toward an electron detection plane of a detector for inspecting the sample surface, the method characterized in that a condition for forming the secondary electrons into an image on a detection plane of the detector is controlled such that a potential in the sample surface varies in dependence on an amount of the electron beam irradiated onto the sample surface. | 11-28-2013 |
20130313430 | CHARGED PARTICLE BEAM DEVICE - Provided is a charged particle beam device or charged particle microscope permitting observation of even a large-sized specimen in the air atmosphere or a gaseous atmosphere. | 11-28-2013 |
20130320209 | ION BEAM PROCESSING APPARATUS - An ion beam processing apparatus includes an ion beam irradiation optical system that irradiates a rectangular ion beam to a sample on a first sample stage, an electron beam irradiation optical system that irradiates an electron beam to the sample, and a second sample stage to hold a test piece, extracted from the sample. The ion beam can be tilted by rotating the second sample stage about a tilting axis. A controller controls the width of skew of an intensity profile representing an edge of the rectangular ion beam in a direction perpendicular to a first direction in which the tilting axis of the second sample stage is projected on the second sample stage surface so that the width will be smaller than the width of skew of an intensity profile representing another edge of the ion beam in a direction parallel to the first direction. | 12-05-2013 |
20130320210 | Charged Particle Beam System and Method of Axial Alignment of Charged Particle Beam - A method of axially aligning a charged particle beam involves an image data acquisition step and a calculation step. The image data acquisition step consists of obtaining first to third sets of image data by scanning a shielding member placed in the path of the beam with the beam while varying conditions of the excitation currents through first and second alignment coils, respectively. The calculation step consists of calculating the values of the excitation currents through the first and second alignment coils, respectively, for axial alignment of the beam, based on the obtained first to third sets of image data. | 12-05-2013 |
20130327937 | METHOD FOR MEASURING LIGHT INTENSITY DISTRIBUTION - A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array having a top surface. The carbon nanotube array is located in an inert gas environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a radiation light. An imaging element images the radiation light, to obtain an intensity distribution of the light source. | 12-12-2013 |
20130327938 | Electron Microscope and Method of Adjusting the Same - An electron microscope is offered which has a detector and a noise canceling circuit whose offset can be easily adjusted if any information about the offset of the detector is not available. Also, a method of adjusting this microscope is offered. The method of adjusting the electron microscope ( | 12-12-2013 |
20130341505 | METHOD FOR S/TEM SAMPLE ANALYSIS - An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (<100 nm thick) TEM lamellae. Preferred embodiments of the present invention also provide an in-line process for S/TEM based metrology on objects such as integrated circuits or other structures fabricated on semiconductor wafer by providing methods to partially or fully automate TEM sample creation, to make the process of creating and analyzing TEM samples less labor intensive, and to increase throughput and reproducibility of TEM analysis. | 12-26-2013 |
20130341506 | Method and Apparatus for Electron Pattern Imaging - A system for electron pattern imaging includes: a device for converting electron patterns into visible light provided to receive an electron backscatter diffraction (EBSD) pattern from a sample and convert the EBSD pattern to a corresponding light pattern; a first optical system positioned downstream from the device for converting electron patterns into visible light for focusing the light pattern produced by the device for converting electron patterns into visible light; a camera positioned downstream from the first optical system for obtaining an image of the light pattern; an image intensifier positioned between the device for converting electron patterns into visible light and the camera for amplifying the light pattern produced by the device for converting electron patterns into visible light; and a device positioned within the system for protecting the image intensifier from harmful light. | 12-26-2013 |
20140001356 | CLUSTER ANALYSIS OF UNKNOWNS IN SEM-EDS DATASET | 01-02-2014 |
20140001357 | On-Axis Detector for Charged Particle Beam System | 01-02-2014 |
20140001358 | Multiple Pass Cargo Inspection System | 01-02-2014 |
20140001359 | METHOD FOR INSPECTING AND MEASURING SAMPLE AND SCANNING ELECTRON MICROSCOPE | 01-02-2014 |
20140001360 | Charged Particle Ray Apparatus and Pattern Measurement Method | 01-02-2014 |
20140001361 | MICRO-GRIPPER | 01-02-2014 |
20140008534 | MEASURING/INSPECTING APPARATUS AND MEASURING/INSPECTING METHOD - Technique capable of achieving shortening of settling time, which is caused by ringing, etc. of a blanking control signal is provided. A measuring/inspecting apparatus is configured to have a main blanking unit and a correction blanking control unit as a high-speed switching control unit of an electron beam. During the period of switching of a main blanking control signal from ON to OFF, a correction blanking control signal is applied in real time in synchronization with the switching. The ringing, etc. caused by the main blanking are corrected so as to be cancelled out by that, the settling time is shortened as a result. | 01-09-2014 |
20140008535 | METHOD AND SYSTEM OF EVALUATING DISTRIBUTION OF LATTICE STRAIN ON CRYSTAL MATERIAL - A crystal material lattice strain evaluation method includes illuminating a sample having a crystal structure with an electron beam in a zone axis direction, and selectively detecting a certain diffracted wave diffracted in a certain direction among a plurality of diffracted waves diffracted by the sample. The method further includes repeating the illuminating step and the selectively detecting step while scanning the sample, and obtaining a strain distribution image in a direction corresponding to the certain diffracted wave from diffraction intensity at each point of the sample. | 01-09-2014 |
20140014834 | FORMING AN ELECTRON MICROSCOPE SAMPLE FROM HIGH-PRESSURE FROZEN MATERIAL - A method of forming a sample from a capillary with high-pressure frozen sample material comprises providing a high-pressure capillary with vitrified sample material at a temperature T | 01-16-2014 |
20140014835 | ELECTRON MICROSCOPE SAMPLE HOLDER AND SAMPLE OBSERVATION METHOD - The present invention makes it possible, even when using an ordinary electron beam device (not an environment-controlled electron beam device), to create locally a low vacuum condition in the vicinity of a sample and cool said sample by means of a sample holder alone, without modifying the device or adding equipment such as a gas cylinder. The sample to be observed is placed in a sample holder provided with: a vessel that can contain a substance to serve as a gas source; and a through-hole in the bottom of a sample mount on said vessel. Via the through-hole, gas evaporating or volatilizing from the vessel is supplied to the sample under observation, thereby creating a localized low-vacuum state at or in the vicinity of the sample. Also, the heat of vaporization required for volatilization can be used to cool the sample. | 01-16-2014 |
20140021346 | Spectroscopy Technique Using Merged Spectral Data - A method of examining a sample comprises | 01-23-2014 |
20140021347 | CHARGED PARTICLE BEAM APPARATUS - Provided is a charged particle beam apparatus or charged particle microscope capable of observing an observation target sample in an air atmosphere or a gas environment without making significant changes to the configuration of a conventional high vacuum charged particle microscope. In a charged particle beam apparatus configured such that a thin film ( | 01-23-2014 |
20140027633 | METHOD FOR MEASURING FILM THICKNESS OF SOI LAYER OF SOI WAFER - A method for measuring a film thickness of an SOI layer of an SOI wafer including at least an insulator layer and the SOI layer which is formed on the insulator layer and is formed of a silicon single crystal, wherein a surface of the SOT layer is irradiated with an electron beam, characteristic X-rays are detected from a side of the SOI layer surface irradiated with the electron beam, the characteristic X-rays being generated by exciting a specific element in the insulator layer with the electron beam that has passed through the SOI layer and has been attenuated in the SOI layer, and the film thickness of the SOI layer is calculated on the basis of an intensity of the detected characteristic X-rays. | 01-30-2014 |
20140034829 | SYSTEM AND METHOD FOR IRRADIATING AN ETEM-SAMPLE WITH LIGHT - A system and method for transmission electron microscopy (TEM) of a photocatalyst sample exposed to UV and/or visible light at irradiance levels comparable to those provided by irradiation with sunlight or at least 1,000 W/cm | 02-06-2014 |
20140034830 | Environmental SEM Gas Injection System - A gas injection system provides a local region at the sample surface that has sufficient gas concentration to be ionized by secondary electrons to neutralize charged on the sample surface. In some embodiments, a gas concentration structure concentrates the gas near the surface. An optional hole in the gas concentration structure allows the charged particle beam to impact the interior of a shrouded region. In some embodiments, an anode near the surface increases the number of ions that return to the work piece surface for charge neutralization, the anode in some embodiments being a part of the gas injection system and in some embodiments being a separate structure. | 02-06-2014 |
20140042316 | X-ray detector including integrated electron detector - An X-ray detector includes a housing and an X-ray sensing device provided within the housing along the axis of the housing, wherein the housing is structured to be coupled to the electron column or sample chamber of a charged particle beam device. The X-ray detector also includes an electron detector structured to detect a plurality of electrons ejected from a sample in response to an electron beam impinging on the sample, the electron detector being coupled to the housing on or near the axis such that a first line of sight to the electron detector from a point at which the electron beam impinges on the sample is similar to a second line of sight to the X-ray sensing device from the point at which the electron beam impinges on the sample such that X-ray and Backscattered electron images will show similar parallax and shadowing effects. | 02-13-2014 |
20140048706 | PATTERN DIMENSION MEASUREMENT METHOD AND CHARGED PARTICLE BEAM APPARATUS - The present invention aims to provide a pattern dimension measurement method for accurately measuring an amount of shrinkage of a pattern that shrinks and an original dimension value before the shrinkage and a charged particle beam apparatus. | 02-20-2014 |
20140054458 | Scanning Transmission Electron Microscopy for Imaging Extended Areas - A scanning transmission electron microscope for imaging a specimen includes an electron beam source to generate an electron beam. Beam optics are provided to converge the electron beam. A stage is provided to hold a specimen in the path of the electron beam. A beam scanner scans the electron beam across the specimen. A controller may define one or more scanning areas corresponding to locations of the specimen, and control one or more of the beam scanner and stage to selectively scan the electron beam in the scanning areas. A detector is provided to detect electrons transmitted through the specimen to generate an image. The controller may generate a sub-image for each of the scanning areas, and stitch together the sub-images for the scanning areas to generate a stitched-together image. The controller may also analyze the stitched-together image to determine information regarding the specimen. | 02-27-2014 |
20140061461 | DEFECT INSPECTION APPARATUS, DEFECT INSPECTION METHOD AND NON-TRANSITORY COMPUTER READABLE RECORDING MEDIUM - In accordance with an embodiment, a defect inspection apparatus includes an electron beam applying unit, a detection unit, a signal processing unit, and a control unit. The electron beam applying unit applies an electron beam to a semiconductor substrate on which first to N-th (N is a natural number equal to or more than 2) patterns are periodically provided. The patterns are respectively made of first to N-th materials in descending order of the emission amount of secondary electrons or reflected electrons. The detection unit detects the secondary electrons or reflected electrons from the patterns to output a signal. The signal processing unit processes the signal to form a potential contrast image of the patterns. The control unit acquires a potential contrast signal waveform including N signal waveforms respectively corresponding to the N patterns, analyzes the potential contrast signal waveform to acquire positional information to scan the desired pattern. | 03-06-2014 |
20140061462 | METHODS AND APPARATUSES FOR INSPECTING SEMICONDUCTOR DEVICES USING ELECTRON BEAMS - Methods and apparatuses for inspecting a semiconductor device using electron beam are provided. The methods may include performing detection operations on a detection target pattern N times and determining a number of detection operations which have been performed until a maximum secondary electron amount of the detection target pattern is obtained. Each of the detection operations may include irradiating the detection target pattern with an electron beam, interrupting the irradiating and detecting a secondary electron amount of the detection target pattern after a detection waiting time has elapsed since the interrupting the irradiating. | 03-06-2014 |
20140061463 | IMAGING A SAMPLE IN A TEM EQUIPPED WITH A PHASE PLATE - The invention relates to a method of forming an image of a sample in a transmission electron microscope equipped with a phase plate. Prior art use of such a phase plate can introduce artifacts in the form of ringing and a halo. These artifacts are caused by the abrupt changes in the Fourier domain due to the sharp edges of the phase plate in the diffraction plane. By moving the phase plate with respect to the non-diffraction beam (the diffraction pattern) while recording an image the sudden transition in the Fourier domain is changed to a more gradual transition, resulting in less artifacts. | 03-06-2014 |
20140061464 | Method of Investigating and Correcting Aberrations in a Charged-Particle Lens System - A system of investigating aberrations in a charged-particle lens system, which lens system has an object space comprising an object plane and an image space comprising an image plane, includes:
| 03-06-2014 |
20140070097 | PARTICLE BEAM DEVICE AND METHOD FOR OPERATING A PARTICLE BEAM DEVICE - A particle beam device, in particular an electron beam device, is provided having a beam generator for generating a primary particle beam, an objective lens for focusing the primary particle beam onto an object, and a detector for detecting particles emitted by the object. The objective lens has at least one magnetic unit, with the magnetic unit generating at least one first crossover and at least one second crossover. The first crossover is arranged in the objective lens or in a region between the objective lens and the object. The second crossover is arranged at the object. The device permits the examination of the object using particles which have a low energy, with good imaging properties. A method for operating the particle beam device is also provided. | 03-13-2014 |
20140070098 | Method of Using a Compound Particle-Optical Lens - The invention relates to a compound objective lens for a Scanning Electron Microscope having a conventional magnetic lens excited by a first lens coil, an immersion magnetic lens excited by a second lens coil, and an immersion electrostatic lens excited by the voltage difference between the sample and the electrostatic lens electrode. For a predetermined excitation of the lens, the electron beam can be focused on the sample using combinations of excitations of the two lens coils. More BSE information can be obtained when the detector distinguishes between BSE's ( | 03-13-2014 |
20140070099 | PARTICLE BEAM MICROSCOPE FOR GENERATING MATERIAL DATA - A method of operating a particle beam microscopy. A particle beam is scanned across a scanning region of a surface of the object. Particles are detected by a detector system for a plurality of impingement locations of the primary beam within the scanning region. A detector system generates detector signals which represent for each of the impingement locations an intensity of the detected particles. Material data of the interaction regions are calculated depending on the detector signals and depending on topography data, which represent a topography of the object surface in the scanning region. | 03-13-2014 |
20140084157 | System and Method for Ex Situ Analysis of a Substrate - A method and system for creating an asymmetrical lamella for use in an ex situ TEM, SEM, or STEM procedure is disclosed. The shape of the lamella provides for easy orientation such that a region of interest in the lamella can be placed over a hole in a carbon film providing minimal optical and spectral interference from the carbon film during TEM, SEM, or STEM procedure of chemical analysis. | 03-27-2014 |
20140091215 | ELECTRO-OPTICAL INSPECTION APPARATUS AND METHOD WITH DUST OR PARTICLE COLLECTION FUNCTION - An electro-optical inspection apparatus is provided that is capable of preventing adhesion of dust or particles to the sample surface as much as possible. A stage ( | 04-03-2014 |
20140097341 | IN-COLUMN DETECTOR FOR PARTICLE-OPTICAL COLUMN - The invention relates to an in-column back-scattered electron detector, the detector placed in a combined electrostatic/magnetic objective lens for a SEM. The detector is formed as a charged particle sensitive surface, preferably a scintillator disk that acts as one of the electrode faces forming the electrostatic focusing field. The photons generated in the scintillator are detected by a photon detector, such as a photo-diode or a multi-pixel photon detector. The objective lens may be equipped with another electron detector for detecting secondary electrons that are kept closer to the axis. A light guide may be used to offer electrical insulation between the photon detector and the scintillator. | 04-10-2014 |
20140097342 | ELECTRON MICROSCOPE AND IMAGE CAPTURING METHOD USING ELECTRON BEAM - The present invention is characterized by an electron microscope which intermittently applies an electron beam to a sample and detects a secondary electron signal, wherein an arbitrarily defined detection time (T | 04-10-2014 |
20140110577 | PARTICLE BEAM SYSTEM AND METHOD OF PROCESSING A TEM-SAMPLE - A method of processing a TEM-sample, wherein the method comprises: mounting an object in a particle beam system such that the object is disposed, in an object region of the particle beam system; directing of a first particle beam onto the object region from a first direction, wherein the first particle beam is an ion beam; and then rotating the object about an axis by 180°, wherein the following relation is fulfilled: | 04-24-2014 |
20140117230 | Mineral Identification Using Mineral Definitions Including Variability - An improved mineral analysis system includes mineral definitions that include not only characteristics of the minerals, but also variability in those characteristics. The variabilities allow the calculation of ranges of expected values for different quality of measurements, for example, for different numbers of x-ray counts. Match probabilities can therefore be calculated to more accurately determine the composition of a mineral sample. | 05-01-2014 |
20140117231 | Automated Mineral Classification - The present invention discloses a combination of two existing approaches for mineral analysis and makes use of the Similarity Metric Invention, that allows mineral definitions to be described in theoretical compositional terms, meaning that users are not required to find examples of each mineral, or adjust rules. This system allows untrained operators to use it, as opposed to previous systems, which required extensive training and expertise. | 05-01-2014 |
20140117232 | SCANNING ELECTRON MICROSCOPE, AN INTERFACE AND A METHOD FOR OBSERVING AN OBJECT WITHIN A NON-VACUUM ENVIRONMENT - An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: generating an electron beam in the vacuum environment; scanning a region of the object with the electron beam while the object is located below an object holder; wherein the scanning comprises allowing the electron beam to pass through an aperture of an aperture array, pass through an ultra thin membrane that seals the aperture, and pass through the object holder; wherein the ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the electron beam and the object. | 05-01-2014 |
20140117233 | Retarding Field Analyzer Integral with Particle Beam Column - A retarding field analyzer uses the existing components of a charged particle beam system eliminating the need for inserting a separate retarding field analyzer device. Using components of the existing column reduces the time required to analyze the beam. Using the imaging capabilities of the existing column facilitates alignment of the beam with the analyzer. | 05-01-2014 |
20140131572 | Automated Sample Oreintation - A method for aligning a sample that is placed in the vacuum chamber so that the sample is oriented normal to the focused ion beam is disclosed. The locations of different spots on the sample surface are determined using a focusing routine. The locations of the different spots are used to create an image line or an image plane that determines the proper calibrations that are needed. The image line or image plane is then used to calibrate the sample stage so that the sample is aligned substantially normal to the focused ion beam. | 05-15-2014 |
20140131573 | SYSTEM AND METHOD FOR SIMULTANEOUS DETECTION OF SECONDARY ELECTRONS AND LIGHT IN A CHARGED PARTICLE BEAM SYSTEM - A method and system for the imaging and localization of fluorescent markers such as fluorescent proteins or quantum dots within biological samples is disclosed. The use of recombinant genetics technology to insert “reporter” genes into many species is well established. In particular, green fluorescent proteins (GFPs) and their genetically-modified variants ranging from blue to yellow, are easily spliced into many genomes at the sites of genes of interest (GoIs), where the GFPs are expressed with no apparent effect on the functioning of the proteins of interest (PoIs) coded for by the GoIs. One goal of biologists is more precise localization of PoIs within cells. The invention is a method and system for enabling more rapid and precise PoI localization using charged particle beam-induced damage to GFPs. Multiple embodiments of systems for implementing the method are presented, along with an image processing method relatively immune to high statistical noise levels. | 05-15-2014 |
20140131574 | CONTROL IMAGING METHODS IN ADVANCED ULTRAFAST ELECTRON MICROSCOPY - An optical system includes a beam splitter disposed along an optical axis and a set of mirrors optically coupled to the beam splitter. The set of mirrors are oriented perpendicular to each other. The optical system also includes a turning mirror optically coupled to a second mirror of the set of mirrors and a detector optically coupled to the turning mirror. | 05-15-2014 |
20140131575 | CROSS-SECTION PROCESSING AND OBSERVATION METHOD AND CROSS-SECTION PROCESSING AND OBSERVATION APPARATUS - A cross-section processing and observation method performed by a cross-section processing and observation apparatus, the method comprising: a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections, wherein, in a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed. | 05-15-2014 |
20140145077 | METHOD OF PERFORMING TOMOGRAPHIC IMAGING OF A SAMPLE IN A CHARGED-PARTICLE MICROSCOPE - The invention relates to a method of performing tomographic imaging of a sample comprising providing a beam of charged particles; providing the sample on a sample holder that can be tilted; in an imaging step, directing the beam through the sample to image the sample; repeating this procedure at each of a series of sample tilts to acquire a set of images; in a reconstruction step, mathematically processing images from said set to construct a composite image, whereby in said imaging step, for a given sample tilt, a sequence of component images is captured at a corresponding sequence of focus settings; and in said reconstruction step, for at least one member of said series of sample tilts, multiple members of said sequence of component images are used in said mathematical image processing. This renders a 3D imaging cube rather than a 2D imaging sheet at a given sample tilt. | 05-29-2014 |
20140145078 | SCANNING ELECTRON MICROSCOPE AND A METHOD FOR IMAGING A SPECIMEN USING THE SAME - (1) part or all of the number, coordinates and size/shape and imaging sequence of imaging points each for observation, the imaging position change method and imaging conditions can be calculated automatically from CAD data, (2) a combination of input information and output information for imaging recipe creation can be set arbitrarily, and (3) decision is made of imaging or processing at an arbitrary imaging point as to whether to be successful/unsuccessful and in case a failure is determined, a relief process can be conducted in which the imaging point or imaging sequence is changed. | 05-29-2014 |
20140151551 | METHODS AND APPARATUS FOR MEASUREMENT OF RELATIVE CRITICAL DIMENSIONS - One embodiment relates to a method of measuring a relative critical dimension (RCD) during electron beam inspection of a target substrate. A reference image is obtained. A region of interest is defined in the reference image. A target image is obtained using an electron beam imaging apparatus. The target and reference images are aligned, and the region of interest is located in the target image. Measurement is then made of the RCD within the region of interest in the target image. Another embodiment relates to a method of measuring a RCD which involves scanning along a scan length that is perpendicular to the RCD. Point RCDs along the scan length are measured. A filter is applied to the point RCDs, and an average of the point RCDs is computed. Other embodiments, aspects and features are also disclosed. | 06-05-2014 |
20140151552 | TILT-IMAGING SCANNING ELECTRON MICROSCOPE - One embodiment relates to a tilt-imaging scanning electron microscope apparatus. The apparatus includes an electron gun, first and second deflectors, an objective electron lens, and a secondary electron detector. The first deflector deflects the electron beam away from the optical axis, and the second deflector deflects the electron beam back towards the optical axis. The objective lens focuses the electron beam onto a spot on a surface of a target substrate, wherein the electron beam lands on the surface at a tilt angle. Another embodiment relates to a method of imaging a surface of a target substrate using an electron beam with a trajectory tilted relative to a substrate surface. Other embodiments and features are also disclosed. | 06-05-2014 |
20140151553 | CHARGED PARTICLE BEAM DEVICE, METHOD FOR ADJUSTING CHARGED PARTICLE BEAM DEVICE, AND METHOD FOR INSPECTING OR OBSERVING SAMPLE - A charged particle beam device capable of observing a sample in an air atmosphere or gas atmosphere has a thin film for separating the atmospheric pressure space from the decompressed space. A vacuum evacuation pump evacuates a first housing; and a detector detects a charged particle beam (obtained by irradiation of the sample) in the first housing. A thin film is provided to separate the inside of the first housing and the inside of a second housing at least along part of the interface between the first and second housings. An opening part is formed in the thin film so that its opening area on a charged particle irradiation unit's side is larger than its opening area on the sample side; and the thin film which covers the sample side of the opening part transmits or allows through the primary charged particle beam and the charged particle beam. | 06-05-2014 |
20140158884 | METHOD FOR OPERATING A PARTICLE BEAM DEVICE AND/OR FOR ANALYZING AN OBJECT IN A PARTICLE BEAM DEVICE - A method for operating a particle beam device and/or for analyzing an object in a particle beam device are provided. For example, the particle beam device is an electron beam device, an ion beam device, or a combination device having an electron beam device and an ion beam device. In various embodiments, the method steps of a so-called stereoscopy method and a multi-detector method may be combined with one another in such a manner that simple and rapid analysis of the object is made possible. | 06-12-2014 |
20140158885 | TESTING APPARATUS USING CHARGED PARTICLES AND DEVICE MANUFACTURING METHOD USING THE TESTING APPARATUS - A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source | 06-12-2014 |
20140166879 | Backscatter Reduction in Thin Electron Detectors - In a direct electron detector, backscattering of electrons into the detector volume from below the sensor is prevented. In some embodiments, an empty space is maintained below the sensor. In other embodiments, a structure below the sensor includes geometry, such as multiple high aspects ratio channels, either extending to or from the sensor to trap electrons, or a structure of angled surfaces to deflect the electrons that pass through the sensor. | 06-19-2014 |
20140166880 | ON-CHIP THIN FILM ZERNIKE PHASE PLATE AND APPLICATIONS THEREOF - The present invention provides an on-chip thin film phase plate for a releasing charging, comprising a chip substrate having one or more apertures; and a thin film layer attached to the top surface of the chip substrate. The present invention also provides a method for observing organic material by TEM, which uses the above-mentioned on-chip thin film phase plate in a TEM system. | 06-19-2014 |
20140175277 | SECONDARY ELECTRON OPTICS AND DETECTION DEVICE - A secondary charged particle detection system for a charged particle beam device is described. The detection system includes a beam splitter for separating a primary beam and a secondary beam formed upon impact on a specimen; a beam bender for deflecting the secondary beam; a focusing lens for focusing the secondary beam; a detection element for detecting the secondary beam particles, and three deflection elements, wherein at least a first deflector is provided between the beam bender and the focusing lens, at least a second deflector is provided between the focusing lens and the detection element, at least a third deflector is provided between the beam splitter and the detection element. | 06-26-2014 |
20140183356 | Integrated method to analyze crystals in deposits - A method to analyze crystals in a deposit on a surface of a nuclear generating station heating surface, wherein the method extracts a sample of material from the surface of the nuclear generating station heating surface and also includes conducting at least one of a high resolution scanning electron microscope/energy dispersive X-ray spectrometry of the sample and a scanning transmission electron microscope/selected area electron diffraction/spot and elemental mapping analysis of the sample. | 07-03-2014 |
20140183357 | Process for Performing Automated Mineralogy - A method and system for determining the mineral content of a sample using an electron microscope. The method includes directing an electron beam toward an area of interest of a sample, the area of interest comprising an unknown composition of minerals. The working distance between the backscattered electron detector of the microscope and the area of interest of the sample is determined. Compensation is made for the difference between the working distance and a predetermined working distance in which the predetermined working distance being the working distance that provides desired grayscale values for detected backscattered electrons. One way of compensating for working distance variation is to used an autofocus feature of the microscope to adjust the working distance. Backscattered electrons from the area of interest of the sample are then detected. | 07-03-2014 |
20140191125 | Sample Block Holder - A sample holder assembly includes a sample tray, a base plate, a stage mount, and a calibration standard mounted onto the stage mount. Three mating structures on the bottom of the base plate mate with corresponding structures on a stage mount that is attached to the sample stage of the SEM. An optional contacting conductor provides electrical contact between the stage mount and the base plate so that charge generated on the sample by the electron beam can leave the sample through the sample conductive layer to the sample tray, to the base plate, to the stage mount, and through the grounded stage. | 07-10-2014 |
20140191126 | Method of Depositing Protective Structures - A process of preparing a lamella from a substrate includes manufacturing a protection strip on an edge portion of the lamella to be prepared from the substrate, and preparing the lamella, wherein the manufacturing the protection strip includes a first phase of activating a surface area portion of the substrate, and a second phase of electron beam assisted deposition of the protective strip on the activated surface area portion from the gas phase. | 07-10-2014 |
20140191127 | CONTAMINATION REDUCTION ELECTRODE FOR PARTICLE DETECTOR - A charged particle detector arrangement is described. The detector arrangement includes a detection element and a collector electrode configured to collect charged particles released from the detection element upon impact of signal charged particles. | 07-10-2014 |
20140197310 | METHOD OF ANALYZING A SAMPLE AND CHARGED PARTICLE BEAM DEVICE FOR ANALYZING A SAMPLE - The invention refers to a method and a charged particle beam device for analyzing an object using a charged particle beam interacting with the object. The object comprises a sample embedded in a resin. Interaction radiation in the form of cathodoluminescence light is detected for identifying areas in which the resin is arranged and in which the sample is arranged. Interaction particles are detected to identify particles within the resin and the sample for further analysis by using EDX analysis. | 07-17-2014 |
20140197311 | Sample Carrier for an Electron Microscope - The invention relates to a sample carrier for a transmission electron microscope. When using state of the art sample carriers, such as half-moon grids in combination with detectors detecting, for example, X rays emitted at a large emittance angle, shadowing is a problem. Similar problems occur when performing tomography, in which the sample is rotated over a large angle. | 07-17-2014 |
20140197312 | ELECTRON MICROSCOPE AND SAMPLE OBSERVATION METHOD - The Foucault mode which is one method in Lorentz electron microscopy is required making a plurality of observations such as when reselecting the deflection components of the electron beam to form an image. This method not only required making plurality of adjustments to the optical system but was also incapable of making dynamic observations and real-time observations at different timings even if information on the entire irradiation region was obtained. The present invention irradiates a single electron beam onto the sample, and by utilizing an electron biprism placed such as on an angular space on the electron optics, applies a deflection in the travel direction of each electron beam, and forms the sample image by individually and simultaneously forming images from each of electron beams at different positions on the image surface of the electron optical system. | 07-17-2014 |
20140217283 | TEM Sample Preparation - An improved method of preparing ultra-thin TEM samples that combines backside thinning with an additional cleaning step to remove surface defects on the FIB-facing substrate surface. This additional step results in the creation of a cleaned, uniform “hardmask” that controls the ultimate results of the sample thinning, and allows for reliable and robust preparation of samples having thicknesses down to the 10 nm range. | 08-07-2014 |
20140231644 | In Situ Reactivation of Fluorescence Marker - Vapor is provided locally at a sample surface to allow fluorescence of the fluorescent markers in a vacuum chamber. For example, a nanocapillary can dispense a liquid near a region of interest, the liquid evaporating to increase the vapor pressure near the fluorescent markers. The increase in vapor pressure at the fluorescent marker is preferably sufficiently great to prevent deactivation or to reactivate the fluorescent marker, while the overall pressure in the vacuum chamber is preferably sufficiently low to permit charged particle beam operation with little or no additional evacuation pumping. | 08-21-2014 |
20140239175 | Focused Ion Beam Low kV Enhancement - The invention provides a charged particle beam system wherein the middle section of the focused ion beam column is biased to a high negative voltage allowing the beam to move at higher potential than the final beam energy inside that section of the column. At low kV potential, the aberrations and coulomb interactions are reduced, which results in significant improvements in spot size. | 08-28-2014 |
20140239176 | METHOD OF ELECTRON BEAM IMAGING OF A SPECIMEN BY COMBINING IMAGES OF AN IMAGE SEQUENCE - A method of imaging of a specimen exposed to an electron beam signal includes acquiring an image sequence of sequential images of the specimen. Each subsequent image in the image sequence represents increased cumulative electron beam signal exposure on the specimen. The method includes collecting cumulative exposure data for each image of the image sequence. The method includes applying a low-pass image processing filter to the images of the image sequence using the cumulative exposure data corresponding to each image to which the filter is being applied to produce processed images. The method includes combining the processed images to produce a final image. A method of imaging is also provided that includes selectively discarding images in the image sequence. | 08-28-2014 |
20140246583 | INSPECTION OR OBSERVATION APPARATUS AND SAMPLE INSPECTION OR OBSERVATION METHOD - Provided is an inspection apparatus or observation apparatus enabling appropriate inspection or observation of a sample in an easy-to-use manner, using a charged-particle technique and an optical technique. Specifically, provided is an inspection or observation apparatus including: a first casing forming at least part of a first space constituting at least part of a region through which a primary charged-particle beam emitted from a charged-particle irradiation section reaches a sample, the first space capable of being maintained in a vacuum state; a second casing provided on the first casing to form at least part of a second space capable of storing the sample therein; a partition wall section for partitioning the first space and the second space from each other, the partition wall section disposed so as to be coaxial with the charged-particle irradiation section when the sample is irradiated with the primary charged-particle beam from the charged-particle irradiation section; and an optical observation section for casting light onto the sample and detecting light from the sample from the same direction as the charged-particle irradiation section. | 09-04-2014 |
20140252226 | APPARATUS AND METHOD FOR PERFORMING MICRODIFFRACTION ANALYSIS - An apparatus for detecting one or each of Kikuchi and Kossel diffraction patterns is provided. The apparatus comprises an electron column adapted in use to provide an electron beam ( | 09-11-2014 |
20140252227 | CHARGED PARTICLE BEAM IRRADIATION SYSTEM AND CHARGED PARTICLE BEAM IRRADIATION PLANNING METHOD - A charged particle beam irradiation system includes: an irradiation unit configured to irradiate an irradiation target with a charged particle beam; a radiation resistance state measuring section configured to measure a radiation resistance state of the irradiation target; a region dividing section configured to divide the irradiation target into a plurality of radiation resistance regions based on a measurement result of the radiation resistance state measuring section; a radiation dose computing section configured to compute a planned value of a radiation dose of the charged particle beam for each of the plurality of radiation resistance regions divided by the region dividing section; and an irradiation planning section-configured to create an irradiation plan of the charged particle beam with respect to the irradiation target based on a computation result of the radiation dose computing section. | 09-11-2014 |
20140264016 | MEASUREMENT OF LINE-EDGE-ROUGHNESS AND LINE-WIDTH-ROUGHNESS ON PRE-LAYERED STRUCTURES - Measurements of line roughness are separated into groups depending upon pre-layers. Image data collected from similar pre-layer types are considered together in order to separate effects of line roughness from distortion of measurements caused by the pre-layers. The resulting line roughness measurements are used to estimate an aspect of line quality. | 09-18-2014 |
20140264017 | Transmission Electron Microscope, and Method of Observing Specimen - Provided is means which enables observation of the shape of a specimen as it is without deforming the specimen. Observation is made by allowing a specimen-holding member having an opening (for example, microgrid and mesh) to hold an ionic liquid and charging a specimen thereto, to allow the specimen to suspend in the ionic liquid. Furthermore, in the proximity of the specimen-holding member, a mechanism of injecting an ionic liquid (ionic liquid introduction mechanism) and/or an electrode are provided. When a voltage is applied to the electrode, the specimen moves or deforms in the ionic liquid. How the specimen moves or deforms can be observed. Furthermore, in the proximity of specimen-holding member, an evaporation apparatus is provided to enable charge of the specimen into the ionic liquid while evaporating. Furthermore, in the proximity of the specimen-holding member, a microcapillary is provided to charge a liquid-state specimen into the ionic liquid. Note that the specimen-holding member is designed to be rotatable. | 09-18-2014 |
20140264018 | OBSERVATION SPECIMEN FOR USE IN ELECTRON MICROSCOPY, ELECTRON MICROSCOPY, ELECTRON MICROSCOPE, AND DEVICE FOR PRODUCING OBSERVATION SPECIMEN - The electrical charging by a primary electronic is inhibited to produce a clear edge contrast from an observation specimen (i.e., a specimen to be observed), whereby the shape of the surface of a sample can be measured with high accuracy. An observation specimen in which a liquid medium comprising an ionic liquid is formed in a thin-film-like or a webbing-film-like form on a sample is used. An electron microscopy using the observation specimen comprises: a step of measuring the thickness of a liquid medium comprising an ionic liquid on a sample; a step of controlling the conditions for irradiation with a primary electron on the basis of the thickness of the liquid medium comprising the ionic liquid; and a step of irradiating the sample with the primary electron under the above-mentioned primary electron irradiation conditions to form an image of the shape of the sample. | 09-18-2014 |
20140284475 | INCOHERENT TRANSMISSION ELECTRON MICROSCOPY - A transmission electron microscope includes an electron beam source to generate an electron beam. Beam optics are provided to converge the electron beam. A specimen holder is provided to hold a specimen in the path of the electron beam. A detector is used to detect the electron beam transmitted through the specimen. The transmission electron microscope may be adapted to generate two or more images that are substantially incoherently related to one another, store the images, and combine amplitude signals at corresponding pixels of the respective images to improve a signal-to-noise ratio. Alternatively or in addition, the transmission electron microscope may be adapted to operate the specimen holder to move the specimen in relation to the beam optics during exposure or between exposures to operate the transmission electron microscope in an incoherent mode. | 09-25-2014 |
20140291509 | CHARGED PARTICLE BEAM APPARATUS AND METHOD FOR FORMING OBSERVATION IMAGE - A focused ion beam apparatus includes a lens interferometer configured to detect a relative position of an ion beam column and a sample. An image forming section includes an irradiation position specifying section configured to specify an irradiation position of an ion beam based on the detected relative position of the ion beam column and the sample, and a luminance setting section configured to set luminance of a pixel of an observation image based on the specified irradiation position of the ion beam and a detected amount of secondary particles. | 10-02-2014 |
20140291510 | Charged Particle Beam Apparatus - The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput. | 10-02-2014 |
20140291511 | CHARGED PARTICLE BEAM APPARATUS AND SAMPLE PROCESSING METHOD USING CHARGED PARTICLE BEAM APPARATUS - A charged particle beam apparatus includes a sample stage, a focused ion beam column, a scattered electron detector that detects backscattered electrons generated from a cross-section of a sample, a crystal orientation information generation unit that generates crystal orientation information on a predetermined region of the cross-section, and an angle calculation unit that calculates attachment angles of the sample stage, corresponding to a direction of the cross-section. In response to receiving input of information indicating that the crystal orientation information on the region displayed on a display unit is changed to aimed second crystal orientation information, the angle calculation unit calculates the attachment angles corresponding to the direction of the cross-section for generating the second crystal orientation information, and the focused ion beam column performs etching processing on the cross-section at the calculated attachment angles. | 10-02-2014 |
20140291512 | FOCUSED ION BEAM APPARATUS AND METHOD OF WORKING SAMPLE USING THE SAME - A focused ion beam apparatus includes: an image generation unit which generates a sample image including location detection marks formed on a sample based on secondary charged particles generated with emission of a focused ion beam to a sample; a display unit which displays a sample image; and a control unit which, in a case of performing working by emitting the focused ion beam to a working region beyond a display range, moves a sample stage, detects locations of the location detection marks included in the sample image after the movement of the sample stage as reference marks from the location detection marks included in the sample image before moving the sample stage, and controls an emission location of the focused ion beam based on the reference marks detected in the sample image after being moved. | 10-02-2014 |
20140299767 | CHARGED PARTICLE BEAM DEVICE AND MEASURING METHOD USING THE SAME - In an SEM provided with an ExB deflector for deflecting secondary electrons outside an optical axis of a primary electron beam between an electronic source and an object lens for condensing the primary electron beam and irradiating a sample with the beam, a unit to decelerate the secondary electrons deflected in the ExB deflector, and a magnetic generator for deflecting the decelerated secondary electron are provided, and a plurality of energy filters and detectors are arranged around the magnetic generator. That is, by separating loci of the secondary electrons incident on the energy filters and of the secondary electrons reflected at the energy filters by the magnetic generator, both of the secondary electrons are concurrently detected. | 10-09-2014 |
20140306108 | METHOD OF COLLECTING AND PROCESSING ELECTRON DIFFRACTION DATA - A method of using electron diffraction to obtain PDFs from crystalline, nanocrystalline, and amorphous inorganic, organic, and organometallic compound. | 10-16-2014 |
20140306109 | METHOD FOR DETECTING DEFECT OF SUBSTRATE - A method for detecting defects includes irradiating at least one electron beam into a first region of a substrate, irradiating at least one electron beam into a second region electrically connected to the first region, and detecting secondary electrons emitted from the second region. The electron beam irradiated into the first region may be the same or different from the electron beam irradiated into the second region. Alternatively, different beams may be simultaneously irradiated into the first and second regions. An image generated based on the secondary electrons shows a defect in the substrate as a region having a grayscale difference with other regions in the image. | 10-16-2014 |
20140312224 | PATTERN INSPECTION METHOD AND PATTERN INSPECTION APPARATUS - A first differential image of a defect observation region including an observation target pattern is generated by a differential value between signals from electron detectors arranged in a direction of edges of the observation target pattern. A three-dimensional shape of a defect is obtained by subjecting the first differential image to integral process. Subsequently, a second differential image of a reference observation region, including a reference pattern having the same shape as the observation target pattern is generated by a differential value between signals from electron detectors arranged in a direction orthogonal to edges of the reference pattern. A three-dimensional shape of the reference pattern is obtained by subjecting the second differential image to the integral process. Then, a three-dimensional shape of the observation target pattern including the defect is obtained by combining the three-dimensional shapes of the defect and the reference pattern together. | 10-23-2014 |
20140312225 | DEFECT INSPECTION APPARATUS AND DEFECT INSPECTION METHOD - There is provided a defect inspection apparatus including: an electron scanning unit configured to scan a surface of a sample with an electron beam; a plurality of detectors arranged around an optical axis of the electron beam and configured to detect electrons emitted from the surface of the sample by scanning the electron beam; a signal processing unit configured to generate image data of the surface of the sample based on detection signals from the detectors; an analysis unit configured to detect a defect due to irregularities of the surface of the sample based on the image data; and a control unit configured to control a scanning speed of the electron beam depending on the type of the sample. | 10-23-2014 |
20140312226 | CHARGED-PARTICLE MICROSCOPE PROVIDING DEPTH-RESOLVED IMAGERY - A method of examining a sample using a charged-particle microscope, comprising mounting the sample on a sample holder; using a particle-optical column to direct at least one beam of particulate radiation onto a surface S of the sample, thereby producing an interaction that causes emitted radiation to emanate from the sample; using a detector arrangement to detect at least a portion of said emitted radiation, the method of which comprises embodying the detector arrangement to detect electrons in the emitted radiation; recording an output O | 10-23-2014 |
20140319339 | Nanopore Fabrication And Applications Thereof - In one aspect, methods of nanopore formation in solid state membranes are described herein, In some embodiments, a method of forming an aperture comprises providing at least one solid state membrane in a chamber, selecting a first dose of ions sufficient to provide a first aperture of predetermined diameter through the membrane and exposing a surface of the membrane at a first location to the first dose of ions in a focused ion beam having a focal point of diameter less than or equal to about 1 nm to remove material from the membrane at the first location thereby providing the first aperture having the predetermined diameter or substantially the predetermined diameter. | 10-30-2014 |
20140319340 | METHOD AND APPARATUS FOR DETECTING BURIED DEFECTS - One embodiment relates to a method of detecting a buried defect in a target microscopic metal feature. An imaging apparatus is configured to impinge charged particles with a landing energy such that the charged particles, on average, reach a depth within the target microscopic metal feature. In addition, the imaging apparatus is configured to filter out secondary electrons and detect backscattered electrons. The imaging apparatus is then operated to collect the backscattered electrons emitted from the target microscopic metal feature due to impingement of the charged particles. A backscattered electron (BSE) image of the target microscopic metal feature is compared with the BSE image of a reference microscopic metal feature to detect and classify the buried defect. Other embodiments, aspects and features are also disclosed. | 10-30-2014 |
20140319341 | CHARGED PARTICLE MICROSCOPE APPARATUS AND IMAGE ACQUISITION METHOD OF CHARGED PARTICLE MICROSCOPE APPARATUS - A charged particle microscope apparatus includes a radiation optical system that radiates a focused charged particle beam to an upper side of a sample provided with a pattern and scans the sample; a detection optical system that detects charged particles generated from the sample to which the charged particle beam has been radiated by the radiation optical system; and a processing unit that processes the charged particles detected by the detection optical system to obtain a charged particle image of the sample, estimates diffusion of the charged particles at any depth of the pattern of the sample, on the basis of information on a depth or a material of the pattern of the sample or radiation energy of the charged particle beam in the radiation optical system; corrects the obtained charged particle image using the estimated diffusion of the charged particles; and processes the corrected charged particle image. | 10-30-2014 |
20140319342 | Method and System for Adaptively Scanning a Sample During Electron Beam Inspection - A system for adaptive electron beam scanning may include an inspection sub-system configured to scan an electron beam across the surface of a sample. The inspection sub-system may include an electron beam source, a sample stage, a set of electron-optic elements, a detector assembly and a controller communicatively coupled to one or more portions of the inspection sub-system. The controller may assess one or more characteristics of one or more portions of an area of the sample for inspection and, responsive to the assessed one or more characteristics, adjust one or more scan parameters of the inspection sub-system. | 10-30-2014 |
20140319343 | CIRCUIT TRACING USING A FOCUSED ION BEAM - Methods and systems for tracing circuitry on integrated circuits using focused ion beam based imaging techniques. A first component or node on an integrated circuit is coupled to a second component or node on the same integrated circuit. After an external bias is applied to the first component or node, a focused ion beam is applied to the integrated circuit and an image is taken using an electron detector. The features or components on the integrated circuit which are coupled to the second component or node will show up in high contrast on the resulting image. The method may also involve applying a bias to a node or component and then using focused ion beam imaging techniques (through an electron detector) to arrive at an image of the integrated circuit. Components coupled to the node will appear in high contrast in the resulting image. | 10-30-2014 |
20140319344 | MULTIPLE IMAGE METROLOGY - Metrology is performed using multiple registered images derived from one or more charged particle beams. Measurements combine features from one image that may not be visible in a second image to determine relationships that cannot be determined from a single image. In one embodiment, measurements use features from different element maps to determine a relationship between features, such as a distance or angle between two features in the first image at a location determined by a distance from a feature on the second image. | 10-30-2014 |
20140326876 | METHOD OF USING A PHASE PLATE IN A TRANSMISSION ELECTRON MICROSCOPE - The invention relates to a method of using a phase plate, having a thin film, in a transmission electron microscope (TEM), comprising: introducing the phase plate in the TEM; preparing the phase plate by irradiating the film with a focused electron beam; introducing a sample in the TEM; and forming an image of the sample using the prepared phase plate, wherein preparing the phase plate involves locally building up a vacuum potential resulting from a change in the electronic structure of the thin film by irradiating the phase plate with a focused beam of electrons, the vacuum potential leading to an absolute phase shift | 11-06-2014 |
20140326877 | Source for Selectively Providing Positively or Negatively Charged Particles for a Focusing Column - A single column charged particle source with user selectable configurations operates in ion-mode for FIB operations or electron mode for SEM operations. Equipped with an x-ray detector, energy dispersive x-ray spectroscopy analysis is possible. A user can selectively configure the source to prepare a sample in the ion-mode or FIB mode then essentially flip a switch selecting electron-mode or SEM mode and analyze the sample using EDS or other types of analysis. | 11-06-2014 |
20140326878 | PHASE SHIFT METHOD FOR A TEM - A method of electron microcopy passes an electron beam through a phase plate, specifically a Zernike type phase plate, comprising a central hole, and a thin film causing a phase shift of the electrons passing through said film. This phase shift causes the Contrast Transfer Function (CTF) to change from a sine-like function to a cosine-like function. The phase plate is equipped with a film in the form of an annulus, carried by a much thinner film. As a result only in a small spatial frequency range (for low frequencies) the phase is changed (and thus the CTF), and for other spatial frequencies the phase shift is negligible, and thus the CTF remains unchanged. Due to the much smaller thickness of the carrier film the scattering of electrons is negligible as well. | 11-06-2014 |
20140332684 | Electron Beam Interference Device and Electron Beam Interferometry - There is a limit in range and distance in which an electron beam can interfere and electron interference is implemented within a range of a coherence length. Therefore, interference images are consecutively recorded for each interference region width from an interference image of a reference wave and an observation region adjacent to the reference wave by considering that a phase distribution regenerated and observed by an interference microscopy is a differential between phase distributions of two waves used for interference and a differential image between phase distributions of a predetermined observation region and a predetermined reference wave is acquired by acquiring integrating phase distributions acquired by individually regenerating the interference images. This work enables a wide range of interference image which is more than a coherence length by arranging phase distribution images performed and acquired in the respective phase distributions in a predetermined order. | 11-13-2014 |
20140332685 | DETECTING HIGH ATOMIC NUMBER MATERIALS WITH COSMIC RAY MUON TOMOGRAPHY - A method is proposed herein to detect high atomic number materials, such as Special Nuclear Materials, within a container based on muon tomography. The container is modeled as a plurality of volume elements. Information related to an initial trajectory and a final trajectory of each muon passing through the container is received. Additionally, a set of initial outer prong vectors and a set of final outer prong vectors are created. Then, a plurality of vector combinations are created from a selected initial vector and a selected final vector. A metric is determined and associated with each vector combination. A subset of the plurality of vector combinations is associated with each volume element and an estimated scattering density is determined and assigned to the volume element. Based on the estimated scattering density assigned to the volume elements, a three dimensional image of the container may be generated. | 11-13-2014 |
20140339425 | SCANNING ELECTRON BEAM DEVICE AND DIMENSION MEASUREMENT METHOD USING SAME - A scanning electron beam device having: a deflector ( | 11-20-2014 |
20140346349 | DRAWING APPARATUS, AND METHOD OF MANUFACTURING ARTICLE - The present invention provides a drawing apparatus for performing drawing on a substrate with a charged particle beam, the apparatus comprising an optical system configured to irradiate the substrate with the charged particle beam, a substrate stage configured to hold the substrate, an aperture member provided with the substrate stage, a detector configured to detect a charged particle beam having passed through an aperture of the aperture member, and a support configured to support the detector, wherein the support and the substrate stage are separated from each other. | 11-27-2014 |
20140346350 | Multi-column Electron Beam Inspection that uses custom printing methods - A method of testing for photomask print errors includes dividing a photomask print into sub-regions and inspecting each sub-region with a different (e.g., electron) beam column, each sub-region aligned with a beam column axis during a calibration process. The different sub-regions may be inspected on different photomask prints on a wafer plane. | 11-27-2014 |
20140346351 | ORIENTATION IMAGING USING WIDE ANGLE CONVERGENT BEAM DIFFRACTION IN TRANSMISSION ELECTRON MICROSCOPY - Methods of orientation imaging microscopy (OIM) techniques generally performed using transition electron microscopy (TEM) for nanomaterials using dynamical theory is presented. Methods disclosed may use a wide angle convergent beam electron diffraction for performing OIM by generating a diffraction pattern having at least three diffraction discs that may provide additional information that is not available otherwise. | 11-27-2014 |
20140346352 | SAMPLE SUPPORTING MEMBER FOR OBSERVING SCANNING ELECTRON MICROSCOPIC IMAGE AND METHOD FOR OBSERVING SCANNING ELECTRON MICROSCOPIC IMAGE - When injection of electrons into a sample supporting member causes a potential gradient between an insulative thin film and a conductive thin film at a site of electron beam injection, the potential barrier of the surface of the insulative thin film becomes thin, and an electron emission phenomenon is caused by tunnel effects. Secondary electrons caused in the insulative thin film tunnel to the conductive thin film along the potential gradient. The secondary electrons, having tunneled, reach a sample while diffusing in the conductive thin film. In the case where the sample is a sample with a high electron transmittance, such as a biological sample, the secondary electrons also tunnel through the interior of the sample. The secondary electrons are detected to acquire an SEM image in which the inner structure of the sample is reflected. | 11-27-2014 |
20140346353 | CHARGED PARTICLE VORTEX WAVE GENERATION - A device for imparting an orbital angular momentum to a charged particle wave propagating along a beam axis in a charged particle beam generating apparatus is described. The device comprises a support element having a target region adapted for transmitting a charged particle wave propagating along a beam axis and an induction means for inducing a magnetic flux along an elongated profile having a free end portion located in the target region and the induction means is adapted for providing a magnetic flux in the elongated profile in order to induce an angular gradient, relative to the beam axis, of the phase of the charged particle wave when transmitted through the target region. A corresponding method is also disclosed, as well as the use thereof in electron microscopy. | 11-27-2014 |
20140346354 | GENERATION OF CHARGED PARTICLE VORTEX WAVES - A device is arranged for imparting an orbital angular momentum to a charged particle wave propagating along an axis in a charged particle beam generating apparatus. The device includes a first conductive element comprising a plurality of angularly spaced electrical conductors arranged around the axis, and a second conductive element. The first and second conductive elements are spaced apart along the direction of the axis, and are adapted for transmitting a charged particle wave propagating along the axis. A connecting means is adapted for supplying an electrical potential to the plurality of angularly spaced electrical conductors for inducing an angular gradient of the phase of the charged particle wave when transmitted along the axis, in which the projection along the axis of the electrical potential varies as a function of an angular position with respect to the axis. | 11-27-2014 |
20140346355 | ELECTRON MICROSCOPE - An electron microscope is provided. In another aspect, an electron microscope employs a radio frequency which acts upon electrons used to assist in imaging a specimen. Furthermore, another aspect provides an electron beam microscope with a time resolution of less than 1 picosecond with more than 10 | 11-27-2014 |
20140353497 | TRANSMISSION ELECTRON MICROSCOPE SAMPLE FABRICATION - A method of preparing a transmission electron microscopy (TEM) sample from a semiconductor structure may include milling a region of the semiconductor structure with a focused ion beam and generating the transmission electron microscopy (TEM) sample. The focused ion beam providing the milling may include a rotation angle relative to the crystallographic axis of the semiconductor structure. A transmission electron microscopy image of a cross-sectional plane of the generated transmission electron microscopy (TEM) sample may be generated using a transmission electron microscope, whereby the transmission electron microscopy image of the cross-sectional plane includes an image projection-free region based on the rotation angle. | 12-04-2014 |
20140353498 | System and Method of SEM Overlay Metrology - The present disclosure is directed to a method of performing SEM overlay metrology with scan direction substantially aligned with or parallel to feature placement or patterning of overlay target structures. By scanning target structures in the same or similar direction to the feature placement, blurring at the edges of interest is avoided and a line-to-line or edge-to-edge offset between pattern elements is less susceptible to error from blurring at scanned edges of interest. For example, at least two linear pattern elements corresponding to at least two sample layers may be scanned along or parallel to the direction of feature placement (i.e., along or parallel to long edges of the pattern elements). | 12-04-2014 |
20140353499 | SAMPLE HOLDER FOR ELECTRON MICROSCOPE - A sample holder for an electron microscope has multiple sample stands, can allow at least one sample stand to move, and enables multiple samples for a transmission electron microscope to be prepared by a focused ion beam apparatus. A holder tip opening is provided in a tip of the sample holder. A back end of the sample holder has a knob, a rolling mechanism, a coarse adjustment mechanism, and a connector. By pressing the knob, fixation of the rolling mechanism is canceled, and the back end from the rolling mechanism and the tip of the sample holder will rotate. This rolling mechanism enables arrangement of the samples to be rotated in both the observing of a sample and the preparing of a sample for a transmission electron microscope with the focused ion beam apparatus. Moreover, the sample stand is movable by the coarse adjustment mechanism and the fine adjustment mechanism. | 12-04-2014 |
20140361165 | METHOD FOR IMAGING A SAMPLE IN A CHARGED PARTICLE APPARATUS - The invention relates to a dual beam apparatus equipped with an ion beam column and an electron beam column having an electrostatic immersion lens. When tilting the sample, the electrostatic immersion field is distorted and the symmetry round the electron optical axis is lost. As a consequence tilting introduces detrimental effects such as traverse chromatic aberration and beam displacement. Also in-column detectors, detecting either secondary electrons or backscattered electrons in the non-tilted position of the sample, will, due to the loss of the symmetry of the immersion field, show a mix of these electrons when tilting the sample. | 12-11-2014 |
20140361166 | INTERFACE, A METHOD FOR OBSERVING AN OBJECT WITHIN A NON-VACUUM ENVIRONMENT AND A SCANNING ELECTRON MICROSCOPE - An interface, a scanning electron microscope and a method for observing an object that is positioned in a non-vacuum environment. The method includes: passing at least one electron beam that is generated in a vacuum environment through at least one aperture out of an aperture array and through at least one ultra thin membrane that seals the at least one aperture; wherein the at least one electron beam is directed towards the object; wherein the at least one ultra thin membrane withstands a pressure difference between the vacuum environment and the non-vacuum environment; and detecting particles generated in response to an interaction between the at least one electron beam and the object. | 12-11-2014 |
20140367569 | HIGH PERFORMANCE COMPUTING FOR THREE DIMENSIONAL PROTON COMPUTED TOMOGRAPHY (HPC-PCT) - A proton computed tomography (pCT) detector system, including two tracking detectors in sequence on a first side of an object to be imaged, two tracking detectors in sequence on an opposite side of the object to be imaged, a calorimeter, and a computer cluster, wherein the tracking detectors include plastic scintillation fibers. All fibers in the detector system are read out by Silicon Photomultipliers (SiPM). A method of imaging an object by emitting protons from a source through two tracking detectors, through and around the object, and through two opposite tracking detectors, detecting energy of the protons with a calorimeter, and imaging the object. | 12-18-2014 |
20140367570 | SUBSTRATE INSPECTION METHOD AND A SUBSTRATE PROCESSING METHOD - There is provided a substrate inspection method. The method includes: maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; positioning the substrate on a stage in the inspection chamber; selecting an evaluation parameter according to a kind of said processing apparatus; and determining inspection regions of the substrate so that an inspection time required per a lot of the substrate is equal to a processing time spent for said processing step required per a lot of the substrate. The method also includes radiating a primary electron beam from an electron gun; deflecting the primary electron beam with an E*B unit; irradiating said inspection regions of the substrate with the deflected primary electron beam; and projecting secondary electrons emitted from said substrate through the E*B unit onto a detector with a secondary optical system. | 12-18-2014 |
20140374593 | DETECTION METHOD FOR USE IN CHARGED-PARTICLE MICROSCOPY - A method of investigating a sample using a charged-particle microscope is disclosed. By directing an imaging beam of charged particles at a sample, a resulting flux of output radiation is detected from the sample. At least a portion of the output radiation is examined using a detector, the detector comprising a Solid State Photo-Multiplier. The Solid State Photo-Multiplier is biased so that its gain is matched to the magnitude of output radiation flux. | 12-25-2014 |
20150008321 | TRANSMISSION ELECTRON DIFFRACTION MEASUREMENT APPARATUS AND METHOD FOR MEASURING TRANSMISSION ELECTRON DIFFRACTION PATTERN - Provided is a transmission electron diffraction measurement apparatus including an electron gun; a first optical system under the electron gun; a sample chamber under the first optical system; a second optical system under the sample chamber; an observation chamber under the second optical system; a region that emits light by receiving energy from an electron in the observation chamber; and a camera facing the region. | 01-08-2015 |
20150008322 | SCANNING ELECTRON MICROSCOPE - An object of the invention is to provide a scanning electron microscope which forms an electric field to lift up, highly efficiently, electrons discharged from a hole bottom or the like even if a sample surface is an electrically conductive material. To achieve the above object, according to the invention, a scanning electron microscope including a deflector which deflects a scanning position of an electron beam, and a sample stage for loading a sample thereon, is proposed. The scanning electron microscope includes a control device which controls the deflector or the sample stage in such a way that before scanning a beam on a measurement target pattern, a lower layer pattern situated in a lower layer of the measurement target pattern undergoes beam irradiation on another pattern situated in the lower layer. | 01-08-2015 |
20150014526 | Method of Electron Beam Transport in an X-Ray Scanner - The present invention provides a multi-view X-ray inspection system. In one embodiment, a beam steering mechanism directs the electron beam from an X-ray source to multiple production targets which generate X-rays for scanning which are subsequently detected by a plurality of detectors to produce multiple image slices (views). The system is adapted for use in CT systems. In one embodiment of a CT system, an electron beam generated by a single radiation source is steered by an electron beam transport mechanism comprising at least two dipoles and a quadrupole on to a target arranged in an approximated arc. The inspection system, in any configuration, can be deployed inside a vehicle for use as a mobile detection system. | 01-15-2015 |
20150014527 | Scanning Charged Particle Microscope, Image Acquisition Method, and Electron Detection Method - A scanning charged particle microscope is offered which can selectively detect and image electrons. The scanning charged particle microscope ( | 01-15-2015 |
20150014528 | METHOD OF OPERATING A PARTICLE BEAM MICROSCOPE AND A PARTICLE BEAM MICROSCOPE - A method of operating a particle beam microscope includes: directing a particle beam onto a sample and detecting particles emanating from the sample during a first period for generating an image of the sample; generating electrons having a first distribution of kinetic energies and directing these electrons onto the sample during a second period for reducing a charge of the sample being generated while the directing the particle beam onto the sample; and generating electrons having a second distribution of their kinetic energies and directing these electrons onto the sample during a third period for further reducing the charge of the sample being generated while the directing of the particle beam onto the sample. An average value of the kinetic energy of the first distribution of the kinetic energy is greater than an average value of the kinetic energy of the second distribution of kinetic energies. | 01-15-2015 |
20150021475 | AUTOMATED SLICE MILLING FOR VIEWING A FEATURE - A method and apparatus for performing a slice and view technique with a dual beam system. The feature of interest in an image of a sample is located by machine vision, and the area to be milled and imaged in a subsequent slice and view iteration is determined through analysis of data gathered by the machine vision at least in part. A determined milling area may be represented as a bounding box around a feature, which dimensions can be changed in accordance with the analysis step. The FIB is then adjusted accordingly to slice and mill a new face in the subsequent slice and view iteration, and the SEM images the new face. Because the present invention accurately locates the feature and determines an appropriate size of area to mill and image, efficiency is increased by preventing the unnecessary milling of substrate that does not contain the feature of interest. | 01-22-2015 |
20150028203 | INSPECTION OF A LITHOGRAPHIC MASK THAT IS PROTECTED BY A PELLICLE - A system and a method for evaluating a lithography mask, the system may include: (a) electron optics for directing primary electrons towards a pellicle that is positioned between the electron optics and the lithography mask; wherein the primary electrons exhibit an energy level that allows the primary electrons to pass through the pellicle and to impinge on the lithographic mask; (b) at least one detector for detecting detected emitted electrons and for generating detection signals; wherein detected emitted electrons are generated as a result of an impingement of the primary electrons on the lithographic mask; and (c) a processor for processing the detection signals to provide information about the lithography mask | 01-29-2015 |
20150028204 | INSPECTION APPARATUS AND INSPECTION METHOD - In accordance with an embodiment, an inspection apparatus includes first and second charged particle beam application units to apply charged particle beams to a sample, a detector, an image acquiring unit, and a judgment unit. The sample includes a stack structure in which electrically conductive films and insulating films are alternately stacked, electrically conductive layers, first and second contact plugs. The first charged particle beam application unit controls the potential of each electrically conductive film by applying a first charged particle beam to the second contact plugs. The second charged particle beam application unit applies a second charged particle beam to the first contact plugs. The detector detects secondary charged particles from the stack structure and outputs a signal. The image acquiring unit processes the signal to acquire a first image of the sample surface. The judgment unit judges an abnormality of the sample from the acquired first image. | 01-29-2015 |
20150034822 | POSITION SENSITIVE STEM DETECTOR - A STEM system is disclosed wherein an imaging system is used to image the electron scatter pattern plane of the HAADF detector onto a two-dimensional array detector. A data acquisition system stores and processes the data from the two-dimensional array detector. For each illumination pixel of the STEM, one frame of data is generated and stored Each frame includes data of all scattered angles and can be analyzed in real time or in off-line at any time after the scan. A method is disclosed for detecting electrons emitted from a sample by detecting electrons scattered from the sample and generating plurality of corresponding signals, each signal indicative of scattering angle of a scattered electron; generating a plurality of signal groups, each signal group being a collection of signals of a user selected scattering angle. | 02-05-2015 |
20150034823 | Cargo Inspection System - The present invention is a cargo inspection system, employing a radiation source, capable of scanning vehicles and/or cargo in a wide range of sizes, including conventional imaging areas as well as taller and bulkier enclosures at sufficiently optimal efficacy and overall throughput. In one embodiment, the present invention is a multiple pass inspection method for inspecting vehicles and their cargo, comprising a first pass scan, wherein said first pass scan includes moving a radiation source at a suitable scanning distance, rotating a radiation source at a suitable scanning angle, and moving said radiation source along an object under inspection. | 02-05-2015 |
20150041643 | PROCESSING APPARATUS AND METHOD USING A SCANNING ELECTRON MICROSCOPE - The present invention provides a processing apparatus using a scanning electron microscope, which includes the scanning electron microscope having an electron optical system radiating and scanning a focused electron beam on a sample placed on a stage to image the sample, and an image processing/control section which controls the scanning electron microscope and processes the image obtained by imaging with the scanning electron microscope. The electron optical system of the scanning electron microscope has image shift electrodes comprised of electrostatic electrodes, the image shift electrodes moving a position at which to apply the focused electron beam onto the sample with the stage stopped to thereby shift a region in which the sample is to be imaged. | 02-12-2015 |
20150041644 | ELECTRONIC MICROSCOPE, SETTING METHOD OF OBSERVATION CONDITION OF ELECTRONIC MICROSCOPE, AND OBSERVATION METHOD USING ELECTRONIC MICROSCOPE - An automatic setting method of an observation condition to facilitate analysis of an image and a sample observation method by automatic setting in an observation method of a structure of a sample by the electronic microscope and an electronic microscope having an automatic setting function are provided. The method includes a step of irradiating a fixed position in an observation region with an intermittent pulsed electron beam; a step of detecting a time change of an emission electron from the sample by the intermittent electron beam; and a step of setting the observation condition of the electronic microscope from the time change of the emission electron. | 02-12-2015 |
20150041645 | IMAGE ACQUISITION APPARATUS, IMAGE ACQUISITION METHOD AND DEFECT INSPECTION APPARATUS - According to one embodiment, an image acquisition apparatus includes an electron beam source configured to generate an electron beam to be radiated onto an object to be measured, an image detecting unit configured to detect an electronic image of the object based on the electron beam radiated from the electron beam source onto the object, and a voltage modulating unit configured to modulate at least one of a voltage to be applied to the electron beam source and a voltage to be applied to the object. | 02-12-2015 |
20150041646 | INSPECTION SYSTEM AND INSPECTION IMAGE DATA GENERATION METHOD - An inspection system includes a TDI sensor that integrates amounts of secondary charged particles or electromagnetic waves along a predetermined direction at every timing at which a transfer clock is inputted and sequentially transfers the amounts of secondary charged particles or electromagnetic waves so integrated, and a deflector which deflects, based on a difference between an actual position and a target position of the inspection target, the secondary charged particles or electromagnetic waves directed towards the TDI sensor in a direction in which the difference is offset. The target position is set into something like a step-and-riser shape in which the target position is kept staying in the same position by a predetermined period of time that is equal to or shorter than a period of time from an input of the transfer clock to an input of the following transfer clock and thereafter rises by a predetermined distance. | 02-12-2015 |
20150041647 | METHOD OF USING AN ENVIRONMENTAL TRANSMISSION ELECTRON MICROSCOPE - An environmental transmission electron microscope (ETEM) suffers from gas-induced resolution deterioration. Inventors conclude that the deterioration is due to ionization of gas in the sample chamber of the ETEM, and propose to use an electric field in the sample chamber to remove the ionized gas, thereby diminishing the gas-induced resolution deterioration. The electric field need not be a strong field, and can be caused by, for example, biasing the sample with respect to the sample chamber. A bias voltage of 100 V applied via voltage source is sufficient for a marked improvement the gas-induced resolution deterioration. Alternatively an electric field perpendicular to the optical axis can be used, for example by placing an electrically biased wire or gauze off-axis in the sample chamber. | 02-12-2015 |
20150041648 | PATTERN CRITICAL DIMENSION MEASUREMENT EQUIPMENT AND METHOD FOR MEASURING PATTERN CRITICAL DIMENSION - Pattern critical dimension measurement equipment includes an electron source configured to generate a primary electron beam, a deflector configured to deflect the primary electron beam emitted from the electron source, a focusing lens configured to focus the primary electron beam deflected by the deflector, a decelerator configured to decelerate the primary electron beam that irradiates the sample, a first detector located between the electron source and the focusing lens, the first detector being configured to detect electrons at part of azimuths of electrons generated from the sample upon irradiation of the sample with the primary electron beam, and a second detector located between the electron source and the first detector, the second detector being configured to detect electrons at substantially all azimuths of the electrons generated from the sample. | 02-12-2015 |
20150048247 | SCANNING ION MICROSCOPE AND SECONDARY PARTICLE CONTROL METHOD - The present invention is provided to enable a detailed inspection of a specimen and preventing a distortion of an observation image even when a specimen containing an insulating material is partially charged. For a scanning ion microscope utilizing a gas field ionization ion source, a thin film is disposed between an ion optical system and a specimen, and an ion beam is applied to and transmitted through this thin film in order to focus a neutralized beam on the specimen. Furthermore, an electrode for regulating secondary electrons discharged from this thin film is provided in order to eliminate mixing of noises into an observation image. | 02-19-2015 |
20150048248 | METHOD FOR PROCESSING AND/OR FOR OBSERVING AN OBJECT, AND PARTICLE BEAM DEVICE FOR CARRYING OUT THE METHOD - A method is provided for processing and/or observing an object using at least one particle beam that is scanned over the object. A scan region on the object is determined, the scan region having scan lines, and the particle beam is moved in a first scanning direction along one of the scan lines. The first scanning direction is changed to a second scanning direction at a change-of-direction time. Changing from the first scanning direction to the second scanning direction comprises setting of a point of rotation in that scan line of the scan region in which the particle beam is situated at the change-of-direction time, with an axis of rotation extending through the point of rotation. The first scanning direction is changed into the second scanning direction by rotating the scan region about the axis of rotation, with the point of rotation being selected dependent on the direction of rotation. | 02-19-2015 |
20150053855 | CHARGED PARTICLE BEAM APPARATUS AND METHOD OF CORRECTING LANDING ANGLE OF CHARGED PARTICLE BEAM - A scanning electron microscope (SEM) is configured so that SEM images are acquired while scanning a pyramid pattern on a sample plane from four directions. Landing angle of the electron beam is calculated from these SEM images, which are then averaged, whereby inclination angle of the electron beam that is less influenced from scan distortion can be found. | 02-26-2015 |
20150053856 | Protein Layers And Their Use In Electron Microscopy - Protein layers ( | 02-26-2015 |
20150060661 | SEMICONDUCTOR CIRCUIT - An inspection device includes first and second electro-optical systems, a first detector, and a shape calculation unit. The first electro-optical system irradiates an object to be inspected with a first electron beam to cause an irradiation mark to be placed on the object to be inspected. The second electro-optical system irradiates the object to be inspected with a second electron beam. The first detector detects a secondary electron generated from the object to be inspected in response to the irradiation by the second electron beam, and outputs a first signal based on the irradiation mark. The shape calculation unit calculates a three-dimensional shape of the object to be inspected based on the first signal, an irradiation direction of the first electron beam, and an irradiation direction of the second electron beam. | 03-05-2015 |
20150060662 | APPARATUS OF PLURAL CHARGED PARTICLE BEAMS WITH MULTI-AXIS MAGNETIC LENS - An apparatus of plural charged particle beams with multi-axis magnetic lens is provided to perform multi-functions of observing a specimen surface, such as high-throughput inspection and high-resolution review of interested features thereof and charge-up control for enhancing image contrast and image resolution. In the apparatus, two or more sub-columns are formed and each of the sub-columns performs one of the multi-functions. Basically the sub-columns take normal illumination to get high image resolutions, but one or more may take oblique illuminations to get high image contrasts. | 03-05-2015 |
20150060663 | Electron source and X-ray fluorescence analyser using an electron source - An electron source of an X-ray fluorescence analyser includes a photon source ( | 03-05-2015 |
20150060664 | CROSS-SECTION PROCESSING-AND-OBSERVATION METHOD AND CROSS-SECTION PROCESSING-AND-OBSERVATION APPARATUS - A cross-section processing-and-observation method includes: a cross-section exposure step of irradiating a sample with a focused ion beam to expose a cross-section of the sample; a cross-sectional image acquisition step of irradiating the cross-section with an electron beam to acquire a cross-sectional image of the cross-section; and a step of repeatedly performing the cross-section exposure step and the cross-sectional image acquisition step along a predetermined direction of the sample at a setting interval to acquire a plurality of cross-sectional images of the sample. In the cross-sectional image acquisition step, a cross-sectional image is acquired under different condition settings for a plurality of regions of the cross-section. | 03-05-2015 |
20150060665 | System and Method for Controlling Charge-up in an Electron Beam Apparatus - The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface. | 03-05-2015 |
20150060666 | SPECIMEN OBSERVATION METHOD AND DEVICE USING SECONDARY EMISSION ELECTRON AND MIRROR ELECTRON DETECTION - A technique capable of improving the ability to observe a specimen using an electron beam in an energy region which has not been conventionally given attention is provided. This specimen observation method comprises: irradiating the specimen with an electron beam; detecting electrons to be observed which have been generated and have obtained information on the specimen by the electron beam irradiation; and generating an image of the specimen from the detected electrons to be observed. The electron beam irradiation comprises irradiating the specimen with the electron beam with a landing energy set in a transition region between a secondary emission electron region in which secondary emission electrons are detected and a mirror electron region in which mirror electrons are detected, thereby causing the secondary emission electrons and the mirror electrons to be mixed as the electrons to be observed. The detection of the electrons to be observed comprises performing the detection in a state where the secondary emission electrons and the mirror electrons are mixed. Observation and inspection can be quickly carried out for a fine foreign material and pattern of 100 nm or less. | 03-05-2015 |
20150069231 | Method for Electron Tomography - The invention relates to an improved method of electron tomography. Electron tomography is a time consuming process, as a large number of images, typically between 50-100 images, must be acquired to form one tomogram. The invention teaches a method to shorten the time needed to acquire this amount images much more quickly by tilting the sample continuously, instead of step-by-step. Hereby the time needed to reduce vibrations between steps is eliminated. | 03-12-2015 |
20150069232 | Hot Spot Identification, Inspection, and Review - A method for identifying, inspecting, and reviewing all hot spots on a specimen is disclosed by using at least one SORIL e-beam tool. A full die on a semiconductor wafer is scanned by using a first identification recipe to obtain a full die image of that die and then design layout data is aligned and compared with the full die image to identify hot spots on the full die. Threshold levels used to identify hot spots can be varied and depend on the background environments close thereto, materials of the specimens, defect types, and design layout data. A second recipe is used to selectively inspect locations of all hot spots to identify killers, and then killers can be reviewed with a third recipe. | 03-12-2015 |
20150069233 | SPARSE SAMPLING AND RECONSTRUCTION FOR ELECTRON AND SCANNING PROBE MICROSCOPE IMAGING - Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample. | 03-12-2015 |
20150076344 | Specimen Holder for Observing Cross Section of Specimen and Method for Controlling the Same - A specimen holder and method for controlling the same, which can mount a specimen to allow observation of the specimen. The specimen holder includes: a body; a specimen mounting part formed at an end of the body; elasticity means located inside the body; and a stand detachably joined with the body. The stand includes: a base part; and a joining part protrudingly formed on an upper face of the base part and having a through hole to receive at least a part of the specimen mounting part. The specimen mounting part includes: a movable push rod connected with the elasticity means; a lever connected with the push rod and rotatable on a central shaft; a specimen pressing plate connected to an end portion of the lever for fixing one surface of the specimen; a lever spring connected to the lever; and a fixing jaw. | 03-19-2015 |
20150076345 | SPECIMEN HOLDER FOR OBSERVING TOP SECTION OF SPECIMEN AND METHOD FOR CONTROLLING THE SAME - A specimen holder and method for controlling the same, which can mount and fasten a specimen to allow observation thereof by joining a body and a stand of the specimen holder together. The specimen holder includes: a body; a specimen mounting part formed at an end of the body for fixing a specimen; elasticity means located inside the body; and a stand detachably joined with the body. The stand includes: a base part; and a joining part protrudingly formed on the upper face of the base part and having a through hole to which at least a part of the specimen mounting part is inserted. The specimen mounting part includes: a first grip part located at an end portion of the specimen mounting part for fixing one side of the specimen; and a second grip part movably connected with the elasticity means for fixing the other side of the specimen. | 03-19-2015 |
20150076346 | SYSTEM AND PROCESS FOR MEASURING STRAIN IN MATERIALS AT HIGH SPATIAL RESOLUTION - A process for measuring strain is provided that includes placing a sample of a material into a TEM as a sample. The TEM is energized to create a small electron beam with an incident angle to the sample. Electrical signals are generated that control multiple beam deflection coils and image deflection coils of the TEM. The beam deflection control signals cause the angle of the incident beam to change in a cyclic time-dependent manner. A first diffraction pattern from the sample material that shows dynamical diffraction effects is observed and then one or more of the beam deflection coil control signals are adjusted to reduce the dynamical diffraction effects. One or more of the image deflection coil control signals are then adjusted to remove any motion of the diffraction pattern. A diffraction pattern is then collected from a strained area of the material after the adjusting step, and the strain is then determined from a numerical analysis of the strained diffraction pattern compared to a reference diffraction pattern from an unstained area of the material. | 03-19-2015 |
20150076347 | CHARGED PARTICLE BEAM APPARATUS - Provided is a charged particle beam apparatus or charged particle microscope capable of observing an observation target sample in an air atmosphere or a gas environment without making significant changes to the configuration of a conventional high vacuum charged particle microscope. In a charged particle beam apparatus configured such that a thin film ( | 03-19-2015 |
20150083907 | METHOD AND DEVICE FOR MEASURING UNOCCUPIED STATES OF SOLID - Intensity of near-ultraviolet light or visible light of 180 to 700 nm emitted from a solid sample, such as an organic semiconductor, irradiated with an electron beam is measured, while kinetic energy (accelerating energy) of the electron beam is changed in a range of 0 to 5 eV so as to obtain a spectrum. Peaks are detected from the spectrum, and the energy thereof is defined as unoccupied-states energy of the sample. The onset energy of the first peak represents electronic affinity energy (electron affinity) of the sample. Since the energy of the electron beam irradiated onto the sample is 5 eV or less, almost no damage is exerted on the sample even when the sample is an organic semiconductor. | 03-26-2015 |
20150083908 | INSPECTION OR OBSERVATION APPARATUS AND SAMPLE INSPECTION OR OBSERVATION METHOD - A sample observation method uses a charged particle beam apparatus comprising a charged particle optical column irradiating a charged particle beam, a vacuum chamber, and a sample chamber being capable of storing a sample. The method includes maintaining a pressure of the sample chamber higher than that of the vacuum chamber by a thin film which permits the charged particle beam to be transmitted, determining a relation between a height of a lower surface of the thin film and a height of a lower end of a lens barrel of an optical microscope, measuring a distance between the sample and the lens barrel, and setting a distance between the sample and thin film based on the relation and the distance. | 03-26-2015 |
20150090877 | ENHANCED DEFECT DETECTION IN ELECTRON BEAM INSPECTION AND REVIEW - One embodiment relates to an electron beam apparatus for inspection and/or review. An electron source generates a primary electron beam, and an electron-optics system shapes and focuses said primary electron beam onto a sample held by a stage. A detection system detects signal-carrying electrons including secondary electrons and back-scattered electrons from said sample, and an image processing system processes data from said detection system. A host computer system that controls and coordinates operations of the electron-optics system, the detection system, and the image processing system. A graphical user interface shows a parameter space and provides for user selection and activation of operating parameters of the apparatus. Another embodiment relates to a method for detecting and/or reviewing defects using an electron beam apparatus. Other embodiments, aspects and features are also disclosed. | 04-02-2015 |
20150090878 | Preparation of Cryogenic Sample for Charged-Particle Microscopy - A method of preparing a sample for a charged-particle microscope includes:
| 04-02-2015 |
20150090879 | CHARGED PARTICLE MULTI-BEAM INSPECTION SYSTEM AND METHOD OF OPERATING THE SAME - A charged particle multi-beam inspection system comprises a beam generator directing a plurality of primary charged particle beams onto an object to produce an array of beam spots; an array of a first number of detection elements generating detection signals upon incidence of electrons; imaging optics imaging the array of beam spots onto the array of detection elements; wherein the beam generator includes a multi-aperture plate having an array of a second number of apertures greater than the first number; wherein the beam generator includes a selector having plural different states, wherein, in each of the plural different states, the apertures of a different group of apertures are each traversed by one primary charged particle beam, wherein a number of the apertures of the different group of apertures is equal to the first number. | 04-02-2015 |
20150102220 | METHOD AND SYSTEM FOR INSPECTING AN EUV MASK - A structure for grounding an extreme ultraviolet mask (EUV mask) is provided to discharge the EUV mask during the inspection by an electron beam inspection tool. The structure for grounding an EUV mask includes at least one grounding pin to contact conductive areas on the EUV mask, wherein the EUV mask may have further conductive layer on sidewalls or/and back side. The inspection quality of the EUV mask is enhanced by using the electron beam inspection system because the accumulated charging on the EUV mask is grounded. The reflective surface of the EUV mask on a continuously moving stage is scanned by using the electron beam simultaneously. The moving direction of the stage is perpendicular to the scanning direction of the electron beam. | 04-16-2015 |
20150108350 | INTEGRATED OPTICAL AND CHARGED PARTICLE INSPECTION APPARATUS - An apparatus for inspecting a sample, is equipped with a charged particle column for producing a focused beam of charged particles to observe or modify the sample, and an optical microscope to observe a region of interest on the sample as is observed by the charged particle beam or vice versa. The apparatus is accommodated with a processing unit adapted and equipped to represent an image as generated with the column and an image as generated with the microscope. The unit is further adapted to perform an alignment procedure mutually correlating a region of interest in one of the images, wherein the alignment procedure involves detecting a change in the optical image as caused by the charged particle beam. | 04-23-2015 |
20150115153 | DETECTION OF PARTICLE CONTAMINATION ON WAFERS - A method of the detection of particle contamination on a semiconductor wafer is provides which includes examining an area of the semiconductor wafer by a metrology system comprising a scatterometry or ellipsometry/reflectometry tool to obtain measured metrology data, comparing the measured metrology data with reference metrology data and determining the presence of particle contamination in the examined area of the semiconductor wafer based on the comparison of the measured metrology data with the reference metrology data. | 04-30-2015 |
20150115154 | SCANNING ELECTRON MICROSCOPE SYSTEM CAPABLE OF MEASURING IN-CELL OVERLAY OFFSET USING HIGH-ENERGY ELECTRON BEAM AND METHOD THEREOF - A method of measuring an overlay offset using a scanning electron microscope system includes: scanning an in-cell region, which includes a lower structure and an upper structure stacked in a sample, using a primary electron beam with a landing energy of at least 10 kV; detecting electrons emitted from the scanned in-cell region; and measuring an overlay offset with respect to overlapping patterns included in the in-cell region using an image of the in-cell region that is generated based on the detected electrons emitted from the scanned in-cell region. | 04-30-2015 |
20150115155 | SCANNING TRANSMISSION ELECTRON MICROSCOPE SYSTEM, IMAGE PROCESSING METHOD, AND IMAGE PROCESSING APPARATUS - A scanning transmission electron microscope system includes: an annular dark-field detector; an electron energy loss spectroscopic apparatus configured to acquire an electron energy loss spectroscopy spectrum of a first electron beam from the annular dark-field detector; and an image processing apparatus configured to generate a first STEM image based on an output signal from the annular dark-field detector and generate a second STEM image based on an integrated value of the electron energy loss spectroscopy spectrum. | 04-30-2015 |
20150115156 | CROSS SECTION PROCESSING METHOD AND CROSS SECTION PROCESSING APPARATUS - A cross section processing method and a cross section processing apparatus are provided in which it is possible to form a flat cross section in a sample composed of a plurality of substances having different hardness by a focused ion beam. The etching of a processing area is performed while variably controlling the irradiation interval, the irradiation time, or the like of a focused ion beam based on cross section information of an SEM image obtained by the observation of a cross section. In this way, even if a sample is composed of a plurality of substances having different hardness, it is possible to form a flat observation surface with a uniform etching rate. | 04-30-2015 |
20150122992 | Sub-pixel Analysis and Display of Fine Grained Mineral Samples - Method and apparatus for analysis and display of fine grained mineral samples. A portion of the sample is illuminated with a charged particle beam. Emitted radiation is detected, and a sample emission spectrum is generated and fit with a plurality of standard emission spectra of minerals in a candidate mineral composition. A mineral composition whose emission spectrum best fits the sample emission spectrum is selected from a plurality of candidate mineral compositions. An assigned color is received for each mineral in the selected mineral composition, and the assigned colors are blended according to the proportion of each mineral in the selected mineral composition. An image pixel corresponding to the portion of the sample is rendered for display. | 05-07-2015 |
20150122993 | TESTING APPARATUS USING CHARGED PARTICLES AND DEVICE MANUFACTURING METHOD USING THE TESTING APPARATUS - A substrate is irradiated by primary electrons and secondary electrons generated from the substrate are detected by a detector. A reference die is placed on the stage to obtain a pattern matching template image including feature coordinates of the reference die. A pattern matching is performed with an arbitrary die in a row or column including the reference die using the template image to obtain feature coordinates of the arbitrary die. An angle of misalignment is calculated between the direction of the row or column including the reference die and one of the directions of movement of the substrate on the basis of the feature coordinates of the arbitrary die and those of the reference die. The stage is rotated to correct the angle of misalignment to conform the direction of the row or column including the reference die with the one of the directions of movement of the substrate. | 05-07-2015 |
20150136977 | Differential Imaging with Pattern Recognition for Process Automation of Cross Sectioning Applications - A method for using differential imaging for applications involving TEM samples by allowing operators to take multiple images during a procedure involving a focused ion beam procedure and overlaying the multiple images to create a differential image that clearly shows the differences between milling steps. The methods also involve generating real-time images of the area being milled and using the overlays of the differential images to show small changes in each image, and thus highlight the ion beam milling location. The methods also involve automating the process of creating differential images and using them to automatically mill subsequent slices. | 05-21-2015 |
20150136978 | Focused Ion Beam System and Method of Making Focal Adjustment of Ion Beam - A focused ion beam system is offered which can make a focal adjustment without relying on the structure of a sample while suppressing damage to the sample to a minimum. Also, a method of making this focal adjustment is offered. The focused ion beam system has an ion source for producing an ion beam, a lens system for focusing the beam onto the sample, a detector for detecting secondary electrons emanating from the sample, and a controller for controlling the lens system. The controller is operative to provide control such that the sample is irradiated with the ion beam without scanning the beam and that a focus of the ion beam is varied by varying the intensity of the objective lens during the ion beam irradiation. Also, the controller measures the intensity of a signal indicating secondary electrons emanating from the sample while the intensity of the objective lens is being varied. Furthermore, the controller makes a focal adjustment of the ion beam on the basis of the intensity of the objective lens obtained when the measured intensity of the signal indicating secondary electrons is minimal. | 05-21-2015 |
20150144785 | Asymmetric Electrostatic Quadrupole Deflector for Improved Field Uniformity - An electron beam device for inspecting a target substrate or specimen thereon includes a beam separator with an asymmetric quadrupole electrostatic deflector for improving field uniformity for a single direction of deflection. The asymmetric quadrupole electrostatic deflector includes two orthogonal electrode plates spanning roughly 60 degrees and two electrode plates spanning roughly 120 degrees, the two latter plates defining a unidirectional deflection field. The device generates a primary electron beam and focuses the primary electron beam along an optical axis into the target substrate. Secondary electrons detected at the target substrate are focused into a secondary electron beam. The beam separator with asymmetric quadrupole electrostatic deflector deflects the secondary electron beam away from the axis of the primary electron beam in the direction of deflection and into a detector array. | 05-28-2015 |
20150144786 | MOLECULAR BEAM ENHANCED GCIB TREATMENT - A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes using one or more molecular beams to optimize pressure at localized regions of the ion beam. | 05-28-2015 |
20150144787 | ELECTRON MICROSCOPE - An electron microscope includes an electron beam source, a first electromagnet, a second electromagnet and a detector. The field generated by the first electromagnet has an effect of three lenses subsequently arranged along the beam path. A first lens of these lenses is arranged upstream of the object plane and focuses the beam at the object plane. The second lens of these three lenses is arranged downstream of the object plane. The third lens of these three lenses generates an image of a diffraction plane of the second lens at the detector. The magnetic field generated by the second electromagnet has an effect of a fourth lens and can be changed in order to change a size of the image of the diffraction plane of the second lens on the detector. | 05-28-2015 |
20150144788 | Charged Particle Beam Apparatus - The present invention provides a dual-beam apparatus which employs the dark-field e-beam inspection method to inspect small particles on a surface of a sample such as wafer and mask with high throughput. The dual beam apparatus comprises two single-beam dark-field units placed in a same vacuum chamber and in two different orientations. The two single-beam dark-field units can perform the particle inspection separately or almost simultaneously by means of the alternately-scanning way. The invention also proposes a triple-beam apparatus for both inspecting and reviewing particles on a sample surface within the same vacuum chamber. The triple-beam apparatus comprises one foregoing dual-beam apparatus performing the particle inspection and one high-resolution SEM performing the particle review. | 05-28-2015 |
20150294834 | High Capacity TEM Grid - A TEM grid provides posts having steps, the steps increasing the number of samples that can be attached to the grid. In some embodiments, each post includes a one sided stair step configuration. A method of extracting multiple samples includes extracting samples and attaching the samples to the different stair steps on the posts. | 10-15-2015 |
20150303030 | SEMICONDUCTOR INSPECTION DEVICE, AND INSPECTION METHOD USING CHARGED PARTICLE BEAM - Provided are an inspection device that detects with high precision and classifies surface unevenness, step batching, penetrating blade-shaped dislocations, penetrating spiral dislocations, basal plane dislocations, and stacking defects formed in an SiC substrate and an epitaxial layer; and a system. In the inspection device using charged particle beams, a device is used that has an electrode provided between a sample and an objective lens, said device being capable of applying a positive or negative voltage to the electrode and obtaining images. A secondary electron emission rate is measured and energy EL and EH for the charged particles are found. First, an image (first image) is obtained using the EH and positive potential conditions. Next, an image (second image) is obtained using the EL and negative potential conditions. Next, an image (third image) is obtained at the same position as the second image, and by using the EL and positive potential conditions. | 10-22-2015 |
20150311033 | Charged Particle Beam Device, Sample Stage Unit, and Sample Observation Method - A charged particle beam device provided with: a charged particle optical lens column generating a primary charged particle beam; a housing which has its inside evacuated by a vacuum pump; a first diaphragm that forms a part of the housing and able to keep an airtight state of the interior space of the housing; and a second diaphragm disposed between the first diaphragm and the sample, wherein a primary charged particle beam generated by the charged particle optical lens column is transmitted by or passes through the first diaphragm and the second diaphragm, and then is irradiated, on the sample that is in contact with the second diaphragm. | 10-29-2015 |
20150318143 | Sample Base, Charged Particle Beam Device and Sample Observation Method - This charged particle beam device irradiates a primary charged particle beam generated from a charged particle microscope onto a sample arranged on a light-emitting member that makes up at least a part of a sample base, and, in addition to obtaining charged particle microscope images by the light-emitting member detecting charged particles transmitted through or scattered inside the sample, obtains optical microscope images by means of an optical microscope while the sample is still arranged on the sample platform. | 11-05-2015 |
20150325406 | SEMICONDUCTOR INSPECTION SYSTEM INCLUDING REFERENCE IMAGE GENERATOR - A semiconductor substrate inspection system includes an e-beam inspection system configured to deliver electrons to a specimen semiconductor substrate. A sensor is configured to detect reflected electrons that reflect off the surface of the specimen semiconductor substrate. An analysis unit is configured to determine a number of electrons received by the semiconductor substrate, and to determine at least one target region including at least one defect of the semiconductor substrate. A reference image module is in electrical communication with the analysis unit. The reference image module is configured to generate a first digital image having a plurality of pixels, and to adjust a gray-scale level of the pixels included in the target region based on the number electrons included in each pixel to generate a second digital image that excludes the at least one defect. | 11-12-2015 |
20150332888 | HIGH-SPEED MULTI-FRAME DYNAMIC TRANSMISSION ELECTRON MICROSCOPE IMAGE ACQUISITION SYSTEM WITH ARBITRARY TIMING - An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings. | 11-19-2015 |
20150332891 | USER INTERFACE FOR AN ELECTRON MICROSCOPE - A user interface for operation of a scanning electron microscope device that combines lower magnification reference images and higher magnification images on the same screen to make it easier for a user who is not used to the high magnification of electron microscopes to readily determine where on the sample an image is being obtained and to understand the relationship between that image and the rest of the sample. Additionally, other screens, such as, for example, an archive screen and a settings screen allow the user to compare saved images and adjust the settings of the system, respectively. | 11-19-2015 |
20150332892 | Method for Image Outlier Removal for Transmission Electron Microscope Cameras - Methods are disclosed for removal of outlier pixels from a transmission electron microscopy camera image. One exemplary method includes establishing a desired exposure of n electrons per pixel; exposing the camera to a series of sub-frame exposures to produce a series of sub-frame images; calculating an average image signal of all sub-frame exposures in said series; establishing a threshold selected to achieve a desired number of false positives; evaluating each of said sub-frame exposures for pixels further away from said average than said threshold; and replacing pixels in each of said sub-frame images that exceed said threshold with said average to form corrected sub-frame images. | 11-19-2015 |
20150340200 | ELECTRON BEAM IMAGING WITH DUAL WIEN-FILTER MONOCHROMATOR - One embodiment relates to a dual Wien-filter monochromator. A first Wien filter focuses an electron beam in a first plane while leaving the electron beam to be parallel in a second plane. A slit opening allows electrons of the electron beam having an energy within an energy range to pass through while blocking electrons of the electron beam having an energy outside the energy range. A second Wien filter focuses the electron beam to become parallel in the first plane while leaving the electron beam to be parallel in the second plane. Other embodiments, aspects and features are also disclosed. | 11-26-2015 |
20150340201 | APPARATUS AND METHOD OF APPLYING SMALL-ANGLE ELECTRON SCATTERING TO CHARACTERIZE NANOSTRUCTURES ON OPAQUE SUBSTRATE - An apparatus and methods for small-angle electron beam scattering measurements in a reflection or a backscattering mode are provided. The apparatus includes an electron source, electron collimation optics before a sample, electron projection optics after the sample, a sample stage capable of holding the sample, and a electron detector module. The electrons emitted from the source are collimated and positioned to impinge nanostructures on the sample. The signals resulting from the interactions between the impinging electrons and the nanostructures are further magnified by the electron projection optics to reach a sufficient angular resolution before recorded by the electron detector module. | 11-26-2015 |
20150348745 | METHOD FOR OPTIMIZING FLUID FLOW ACROSS A SAMPLE WITHIN AN ELECTRON MICROSCOPE SAMPLE HOLDER - A flow directing gasket for improving the flow of a gas or liquid across electron beam transparent membranes in environmental cells within a sample holder of an electron microscope, and uses of the sample holders comprising said flow directing gaskets. | 12-03-2015 |
20150348749 | MULTI-BEAM PARTICLE MICROSCOPE AND METHOD FOR OPERATING SAME - A multi-beam particle microscope includes first particle optics in order to direct particle beams onto an object, a detector with detection regions, with a transducer being assigned to each detection region, and a data acquisition system, which has a control computer system, image recording computer systems and a screen. The image recording computer systems receive electrical signals from the transducers and generates a first file, which represents a high resolution image, and a second file, which represents a low resolution image. The control computer system maintains a data structure which represents an assignment of transducers to two-dimensional spatial vectors and depicts the images on the screen, wherein a reference point in each image is arranged on the screen in a coordinate system of the screen at a location which is defined by a sum of a leading vector, which is the same for all images, and the spatial vector. | 12-03-2015 |
20150348750 | CHARGED PARTICLE BEAM DEVICE AND METHOD FOR ANALYZING DEFECT THEREIN - The present invention provides a charged particle beam device capable of automatically setting proper analysis positions for defects having various shapes. This charged particle beam device includes: an electron source for emitting an electron beam; a condenser lens for converging the electron beam emitted from the electron source; deflection means for changing a position of the electron beam converged by the condenser lens; an objective lens for constricting the electron beam changed by the deflection means so as to irradiate an inspection object therewith; a sample stage on which the inspection object is to be mounted; and defect analysis means for analyzing a defect based on information as to elements released from a defective portion of the inspection object by the irradiation with the electron beam, wherein the defect analysis means determines an analysis point based on a shape of the defect from among defect areas decided as one defect by the defect analysis means. | 12-03-2015 |
20150348751 | METHOD AND APPARATUS FOR SLICE AND VIEW SAMPLE IMAGING - Methods, apparatuses, and systems for slice and view processing of samples with dual beam systems. The slice and view processing includes exposing a vertical wall of a trench formed in a sample surface; capturing a first image of the wall by interrogating the wall with an interrogating beam while the wall is at a first orientation relative to the beam; capturing a second image of the wall by interrogating the wall with the beam while the wall is at a second orientation relative to the beam, wherein first distances in the first image between a reference point and surface points on the wall are different than second distances in the second image between the reference point and the surface points; determining elevations of the surface points using the first distances and the second distances; and fitting a curve to topography of the wall using the elevations. | 12-03-2015 |
20150357155 | Charged Particle Beam Apparatus and Trajectory Correction Method in Charged Particle Beam Apparatus - There is provided a charged particle beam apparatus that includes a trajectory monitoring unit which is disposed above an objective lens ( | 12-10-2015 |
20150357158 | Method for Pattern Measurement, Method for Setting Device Parameters of Charged Particle Radiation Device, and Charged Particle Radiation Device - An object of the present invention is to provide a method for pattern measurement and a charged particle radiation device in which a pattern formed by using a DSA technique can be very precisely measured and inspected. According to an aspect for achieving the object, a method for pattern measurement or a charged particle radiation device for realizing the measurement is proposed as follows. A charged particle is radiated to a polymer compound used for a self-organization lithography technique, and a specific polymer is considerably contracted as compared to the other polymer among multiple polymers forming the polymer compound. Thereafter, dimensions between multiple edges of the other polymer are measured, based on a signal obtained by scanning a region including the other polymer with the charged particle beam. | 12-10-2015 |
20150362446 | Phase Analyzer, Phase Analysis Method, and Surface Analyzer - A phase analyzer includes a principal component analysis section that performs principal component analysis on elemental map data that represents an intensity or concentration distribution corresponding to each element to calculate a principal component score corresponding to each unit area of the elemental map data, a scatter diagram generation section that plots the calculated principal component score to generate a scatter diagram of the principal component score, a peak position detection section that detects a peak position from the scatter diagram, a clustering section that calculates a distance between each point and each peak position within the scatter diagram, and classifies each point within the scatter diagram into a plurality of groups based on the distance, and a phase map generation section that generates a phase map based on classification results of the clustering section. | 12-17-2015 |
20150364295 | Identification of Trace Constituent Phases in Nuclear Power Plant Deposits Using Electron Backscatter Diffraction (EBSD) - The instant invention provides a method of identifying lead-bearing crystalline phases or compounds in deposits formed on surfaces, such as the heated surfaces of nuclear power plant systems. A deposit sample or specimen is obtained and examined to obtain an image, an area elemental composition spectrum, and an x-ray elemental map to identify a location containing a lead-bearing species of interest. Electron backscatter diffraction is then used to obtain a characteristic diffraction pattern from the location, which is compared to a library of known diffraction patterns to identify any lead-bearing crystalline phases or compounds present in the location. Finally, any potential phase or compound of the lead in the deposit sample is identified by comparing the elemental composition spectrum with the electron backscatter diffraction crystalline compound identification. | 12-17-2015 |
20150369737 | System and Method for Simultaneous Detection of Secondary Electrons and Light in a Charged Particle Beam System - A method and system for the imaging and localization of fluorescent markers such as fluorescent proteins or quantum dots within biological samples is disclosed. The use of recombinant genetics technology to insert “reporter” genes into many species is well established. In particular, green fluorescent proteins (GFPs) and their genetically-modified variants ranging from blue to yellow, are easily spliced into many genomes at the sites of genes of interest (GoIs), where the GFPs are expressed with no apparent effect on the functioning of the proteins of interest (PoIs) coded for by the GoIs. One goal of biologists is more precise localization of PoIs within cells. The invention is a method and system for enabling more rapid and precise PoI localization using charged particle beam-induced damage to GFPs. Multiple embodiments of systems for implementing the method are presented, along with an image processing method relatively immune to high statistical noise levels. | 12-24-2015 |
20150369760 | METHOD OF ELECTRON BEAM DIFFRACTION ANALYSIS - A method is provided for analysing electron backscatter diffraction data generated from a sample material. An image data set representative of an image of electron backscatter diffraction bands is obtained from the sample material. A set of estimated first diffraction parameters is then generated, these defining individual electron backscatter diffraction bands in the image data set. A candidate phase is then selected together with a respective orientation for the material, based upon the generated set of estimated parameters thereby identifying diffraction bands in the image data set. Second diffraction parameters of the identified diffraction bands are simulated for the candidate phase according to the respective orientation. These second diffraction parameters are then adjusted for the identified simulated bands so as to fit the simulated bands to the bands in the image data. A fitted orientation for the candidate phase is then calculated together with a corresponding fitting parameter defining the quality of fit. | 12-24-2015 |
20150371815 | MATHEMATICAL IMAGE ASSEMBLY IN A SCANNING-TYPE MICROSCOPE - A method of accumulating an image of a specimen using a scanning-type microscope, comprising the following steps:
| 12-24-2015 |
20150371818 | Characterization method for a reservoir micro pore structure and a system thereof - The present application provides a method for characterizing reservoir micro pore structures, in particular structures smaller than 50 nm and a system therefore. The method can include fabricating a reservoir sheet; fabricating a reservoir sheet electrode using the reservoir sheet; depositing crystal substance in inner pores of the reservoir sheet of the reservoir sheet electrode using chemical deposition; obtaining the crystal substance by removing rock portions of the reservoir sheet in which the crystal substance is deposited; and scanning the shapes of the obtained crystal substance, the result of the scanning being the reservoir micro pore structure. | 12-24-2015 |
20150371820 | Charged Particle Beam Apparatus - The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput. | 12-24-2015 |
20150380210 | SCANNING PARTICLE MICROSCOPE AND METHOD FOR DETERMINING A POSITION CHANGE OF A PARTICLE BEAM OF THE SCANNING PARTICLE MICROSCOPE - The invention refers to a scanning particle microscope comprising: (a) at least one reference object which is fixedly arranged at an output of the scanning particle microscope for a particle beam so that the reference object can at least partially be imaged by use of the electron beam; (b) at least one scanning unit operable to scan a particle beam of the scanning particle microscope across at least one portion of the reference object; and (c) at least one setting unit operable to change at least one setting of the scanning particle microscope. | 12-31-2015 |
20150380211 | High - Resolution Amplitude Contrast Imaging - A method for performing high resolution electron microscopy of a soft matter object is described. The method comprises irradiating a soft matter object using an electron microscope having a spherical aberration correction with a substantially constant transfer function in a frequency band of thermal diffuse scattered electrons scattered at the soft matter object. The method comprises detecting the thermal diffuse scattered (TDS) electrons scattered at the soft matter, and using the detected thermal diffuse scattered electrons for deriving therefrom an image of the soft matter object. | 12-31-2015 |
20160003752 | EXTENDED FIELD ITERATIVE RECONSTRUCTION TECHNIQUE (EFIRT) FOR CORRELATED NOISE REMOVAL - Computerized method and system for improving 3D reconstruction images involves applying the Extended Field Iterative Reconstruction Technique (EFIRT) to remove correlated noise, in addition to using COMET (constrained maximum relative entropy tomography) to eliminate uncorrelated noise, wherein the EFIRT is applied by performing a set of successive reconstructions on an extended field larger than a region of interest (ROI); and extracting and averaging the ROI from said set of successive reconstructions. | 01-07-2016 |
20160005566 | METHOD AND SYSTEM FOR ELECTRON MICROSCOPE WITH MULTIPLE CATHODES - An electron microscope system includes a laser system operable to generate an optical pulse and a pump pulse and a microscope column. The microscope column includes a multiple cathode structure having a plurality of spatially separated cathode regions. Each of the cathode regions are operable to generate an electron pulse. The microscope column also includes an electron acceleration region adjacent the multiple cathode structure, a specimen region operable to support a specimen, and a detector. | 01-07-2016 |
20160005567 | HIGH-SPEED MULTIFRAME DYNAMIC TRANSMISSION ELECTRON MICROSCOPE IMAGE ACQUISITION SYSTEM WITH ARBITRARY TIMING - An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings. | 01-07-2016 |
20160013015 | COMPUTATIONAL SCANNING MICROSCOPY WITH IMPROVED RESOLUTION | 01-14-2016 |
20160020062 | Charged-Particle Lens that Transmits Emissions from Sample - A transmissive lens in a charged particle beam column for detecting X-rays and light is provided. The final lens may include elements that are transmissive for X-rays for EDS imaging and analysis or elements that are transmissive for light for cathodoluminescent (CL) imaging and analysis. The final lens may be constructed and arranged to include elements that are transmissive for both X-rays and light for combined EDS and CL imaging and analysis. | 01-21-2016 |
20160020065 | TEM SAMPLE MOUNTING GEOMETRY - A system and method for transmission electron microscopy is provided. The sample can be examined from multiple directions using an electron beam in a transmission electron microscope. The sample has at least three observation faces that are not parallel to each other with the thickness of the sample orthogonal to each of the observation faces being less than 200 nm. The sample is mounted on a needle that is needle rotatable about more than one axis so the needle can orient at least three of the observation faces to be normal to the electron beam of the electron microscope for observation. | 01-21-2016 |
20160025659 | Charged Particle Beam Device, Sample Observation Method, Sample Platform, Observation System, and Light Emitting Member - The purpose of the present invention is to eliminate the effort in placement and extraction of samples in observations using transmitted charged particles. A charged particle beam device ( | 01-28-2016 |
20160027609 | HYBRID ELECTRON MICROSCOPE - A hybrid electron microscope includes: an electron source to emit an electron beam; a parabolic mirror including: a reflective surface; and an aperture to communicate the electron beam through the parabolic mirror; and a sample holder interposed between the electron source and the parabolic mirror such that the reflective surface of the parabolic mirror faces the electron source and the sample holder. A process for acquiring hybrid electron microscopy data includes: disposing a parabolic mirror in a chamber, the parabolic mirror including: a reflective surface; and an aperture to communicate an electron beam through the parabolic mirror; disposing a sample on a sample holder; interposing a sample holder between an electron source and the parabolic mirror such that the reflective surface of the parabolic mirror faces the electron source and the sample holder; producing the electron beam from the electron source; subjecting the sample to the electron beam; communicating the electron beam through the sample and the aperture of the parabolic mirror; and collecting imaging data of the sample in response to the subjecting the sample to the electron beam to acquire the hybrid electron microscopy data. | 01-28-2016 |
20160027612 | Apparatus for Preparing a Sample for Microscopy - An apparatus for preparing a sample for microscopy is provided that has a milling device that removes material from a sample in order to thin the sample. An electron beam that is directed onto the sample is present along with a detector that detects when the electron beam has reached a preselected threshold transmitted through or immediately adjacent the sample. Once the detector detects the electron beam has reached this threshold, the milling device terminates the milling process. | 01-28-2016 |
20160033659 | HIGH PERFORMANCE COMPUTING FOR THREE DIMENSIONAL PROTON COMPUTED TOMOGRAPHY - A high performance computer system for three dimensional proton computed tomography and method of imaging an object are disclosed. The system includes a proton computed tomography (pCT) detector assembly with an arrangement of fibers attached to silicon photo multipliers (SiPMs). An electronic circuit amplifies and digitizes signals received from the SiPMs and communicates the digitized data over a network for image reconstruction. | 02-04-2016 |
20160035534 | METHOD FOR ANALYZING AND/OR PROCESSING AN OBJECT AS WELL AS A PARTICLE BEAM DEVICE FOR CARRYING OUT THE METHOD - The application relates to a method for analyzing, in particular for imaging, and/or processing of an object as well as a particle beam device for carrying out this method. In particular, the particle beam device of this application is an electron beam device and/or an ion beam device. The method in particular comprises the control unit providing a first control parameter, wherein a beam guiding unit is controlled using the first control parameter for guiding the particle beam and/or wherein a moving unit is controlled using the first control parameter for moving an object holder, correlating a position of the object holder in a second coordinate system to the object position on the surface of the object, identifying a first coordinate transformation between the first coordinate system and the second coordinate system, identifying an orientation position of a distinctive feature on the surface of the object and identifying first coordinates of the orientation position in the first coordinate system, the control unit providing a second control parameter, wherein the second control parameter is used for at least one of: controlling the beam guiding unit for guiding the particle beam, controlling the moving unit for moving the object holder or controlling a detector, identifying again the orientation position of the distinctive feature and identifying second coordinates of the orientation position in the first coordinate system, comparing the first coordinates with the second coordinates, identifying a local displacement of the first coordinates to the second coordinates, identifying a second coordinate transformation using the first coordinate transformation and the local displacement and identifying a position of an area to be analyzed and/or processed on the surface of the object. | 02-04-2016 |
20160035537 | CHARGED PARTICLE BEAM SPECIMEN INSPECTION SYSTEM AND METHOD FOR OPERATION THEREOF - A charged particle beam specimen inspection system is described. The system includes an emitter for emitting at least one charged particle beam, a specimen support table configured for supporting the specimen, an objective lens for focusing the at least one charged particle beam, a charge control electrode provided between the objective lens and the specimen support table, wherein the charge control electrode has at least one aperture opening for the at least one charged particle beam, and a flood gun configured to emit further charged particles for charging of the specimen, wherein the charge control electrode has a flood gun aperture opening. | 02-04-2016 |
20160035538 | Pattern Shape Evaluation Method, Semiconductor Device Manufacturing Method, and Pattern Shape Evaluation Device - A cross-sectional shape or a three-dimensional shape of a circuit pattern is estimated and evaluated only from a planar image of the circuit pattern observed from the above of a wafer. The present invention includes a process of obtaining an observation image of an upper surface of a solid structure, by causing the upper surface of a substrate to be irradiated and scanned with a converged energy beam from a direction substantially perpendicular to a main surface of the substrate having the structure formed on the upper surface thereof, and detecting and/or measuring intensities of a secondary energy beam generated in the substrate and the structure or an energy beam reflected or scattered from the substrate or the structure, a process of obtaining uncertainty information regarding an intensity of scattering caused by an irregular shape of a surface of the structure, from an irradiation position of the converged energy beam in the observation image of the upper surface and the measured intensity, a process of obtaining an inclination angle θ of the surface of the structure, based on the obtained uncertainty information; and a process of estimating a solid shape of the structure, based on the obtained inclination angle θ. | 02-04-2016 |
20160040986 | REDUCING THE IMPACT OF CHARGED PARTICLE BEAMS IN CRITICAL DIMENSION ANALYSIS - Measuring a feature on a wafer, the feature including at least two edges. Scanning the wafer with an electron beam over the length of a first scan interval that includes at least a portion of a first edge of the feature. Preventing the electron beam from illuminating the wafer while moving the scan position of the electron beam across a portion of the wafer to a second scan interval that includes at least a portion of a second edge of the feature. Scanning the wafer with an electron beam over the length of the second scan interval. Determining a distance between the first and second edges of the feature. | 02-11-2016 |
20160042914 | ACHROMATIC DUAL-FIB INSTRUMENT FOR MICROFABRICATION AND MICROANALYSIS - A mulch-beam focused ion beam instrument containing a micro fabrication beam ( | 02-11-2016 |
20160054240 | METHOD OF ACQUIRING EBSP PATTERNS - The invention relates to a method of acquiring an Energy Backscattering Pattern image of a sample in a charged particle apparatus, the sample showing a flat surface, the charged particle apparatus equipped with an electron column for producing a finely focused electron beam, a position sensitive detector for detecting EBSP patterns, and a sample holder for holding and positioning the sample, the method comprising the steps of:
| 02-25-2016 |
20160056012 | SAMPLE HOLDER FOR SCANNING ELECTRON MICROSCOPE, SCANNING ELECTRON MICROSCOPE IMAGE OBSERVATION SYSTEM, AND SCANNING ELECTRON MICROSCOPE IMAGE OBSERVATION METHOD - A water solution in which an observation sample is, for example, dissolved is sandwiched on a first insulative thin film side provided under a conductive thin film. When an electron beam incident part is charged minus, electric dipoles of water molecules are arrayed along a potential gradient. Electric charges are also generated on the surface of a second insulative thin film. The electric charges are detected by a terminal section and changes to a measurement signal. In a state in which an electron beam is blocked, the minus potential disappears. Consequently, the electric charges on the surface of the first insulative thin film also disappear, and the measurement signal output from the terminal section changes to 0. | 02-25-2016 |
20160056014 | Superposition Measuring Apparatus, Superposition Measuring Method, and Superposition Measuring System - When a scanning electron microscope is used to measure a superposition error between upper-layer and lower-layer patterns, an SN of the lower-layer pattern may often be lower, so that when simple frame adding processing is used, the adding processing needs to be performed many times. Further, in an image obtained through such simple adding processing, contrast may not be optimal for both the upper-layer and lower-layer patterns. In a superposition measuring apparatus and superposition measuring method that measure a difference between a position of an upper-layer pattern and a position of a lower-layer pattern by using an image obtained by irradiation of a charged particle ray, portions of images having contrasts optimized for the respective upper-layer and lower-layer patterns are added to generate a first added image optimized for the upper-layer pattern and a second added image optimized for the lower-layer pattern, and the difference between the position of the upper-layer pattern identified by using the first added image and position of the lower-layer pattern identified by using the second added image is calculated. | 02-25-2016 |
20160064180 | Apparatus of Plural Charged Particle Beams with Multi-axis Magnetic Lenses - A new apparatus of plural charged particle beams with multi-axis magnetic lenses is provided, which comprises a plurality of sub-columns The apparatus employs two modified multi-axis magnetic lenses, and magnetic sub-lenses thereof therefore function as the objective lenses and the condenser lenses of all the sub-columns respectively. The plurality of sub-columns can perform the same function or different functions required for observing a surface of a specimen, such as high-throughput inspection and high-resolution review of interested features thereon. Accordingly, the apparatus can be used as a yield management tool in semiconductor manufacturing industry. | 03-03-2016 |
20160064182 | CHARGED PARTICLE BEAM APPARATUS AND IMAGE GENERATION METHOD - There is provided a charged particle beam apparatus radiating a charged particle beam to a specimen so as to acquire an image of the specimen, the charged particle beam apparatus including: a charged particle gun that generates the charged particle beam; an electron optical system that radiates the charged particle beam emitted from the charged particle gun onto a surface of the specimen so as to scan the surface of the specimen; a detecting unit that detects secondary electrons or reflection electrons emitted from the specimen, and converts the electrons into pulse signals; a pulse signal detecting circuit that detects time detecting information regarding time of the pulse signals converted by the detecting unit, and peak value detecting information regarding each peak value of the pulse signals; and an image processing unit that generates luminance gradation of the acquired image based on a time detecting signal and a peak value detecting signal of the pulse signals detected by the pulse signal detecting circuit. | 03-03-2016 |
20160064183 | Electron Microscope and Sample Observation Method - An electron microscope includes a secondary electron detector ( | 03-03-2016 |
20160064184 | Scanning Electron Microscope And Methods Of Inspecting And Reviewing Samples - A scanning electron microscope incorporates a multi-pixel solid-state electron detector. The multi-pixel solid-state detector may detect back-scattered and/or secondary electrons. The multi-pixel solid-state detector may incorporate analog-to-digital converters and other circuits. The multi-pixel solid state detector may be capable of approximately determining the energy of incident electrons and/or may contain circuits for processing or analyzing the electron signals. The multi-pixel solid state detector is suitable for high-speed operation such as at a speed of about 100 MHz or higher. The scanning electron microscope may be used for reviewing, inspecting or measuring a sample such an unpatterned semiconductor wafer, a patterned semiconductor wafer, a reticle or a photomask. A method of reviewing or inspecting a sample is also described. | 03-03-2016 |
20160064185 | IMAGING APPARATUS HAVING A PLURALITY OF MOVABLE BEAM COLUMNS, AND METHOD OF INSPECTING A PLURALITY OF REGIONS OF A SUBSTRATE INTENDED TO BE SUBSTANTIALLY IDENTICAL - An apparatus for inspecting a substrate is described. The apparatus includes an X-Y stage that supports a substrate to be inspected and is operable to move a substrate supported thereby in X and Y directions; and an imaging system including a plurality of beam columns operable to irradiate regions of a substrate supported by the X-Y stage with beams of energy, respectively, discrete from one another. Respective ones of the beam columns are movable relative to others of the electron beam columns. | 03-03-2016 |
20160071687 | Charged Particle Radiation Device and Specimen Preparation Method Using Said Device - The present invention enables a sample to be observed in a clean state directly after preparation of a final observation surface when preparing a sample for observing a material that is sensitive to heat. The present invention is a method of preparing a sample using a charged particle beam device including a microprobe having a cooling mechanism, a first sample holder having a mechanism for retaining a sample in a cooled state, and a stage into which the microprobe and the first sample holder can be introduced, the method including cutting a bulk-shaped sample piece from the sample on the first sample holder retained in a cooled state; adhering the sample piece to a distal end of the microprobe that is cooled to a fixed temperature and transferring the sample piece to a second sample holder for thin film observation retained in a cooled state, which is different from the first sample holder, within a vacuum chamber of the charged particle beam device; separating the sample piece that has been transferred to the second sample holder from the microprobe and thin film processing the sample piece to a thickness that is less than the thickness during cutting; and observing the sample piece after the thin film processing. | 03-10-2016 |
20160071689 | Method of performing spectroscopy in a Transmission Charged-Particle Microscope - A method of performing spectroscopy in a Transmission Charged-Particle Microscope comprising:
| 03-10-2016 |
20160077223 | SYSTEMS AND METHODOLOGIES FOR PROTON COMPUTED TOMOGRAPHY - Disclosed are systems, devices and methodologies relating to proton computed tomography. In some implementations, detection of protons can yield track information before and after an object for each proton so as to allow determination of a likely path of each proton within the object. Further, measurement of energy loss experienced by each proton allows determination that a given likely path results in a given energy loss. A collection of such data allows characterization of the object. In the context of energy loss, such a characterization can include an image map of relative stopping power of the object. Various reconstruction methodologies for obtaining such an image, including but not limited to superiorization of a merit function such as total variation, are disclosed. In some implementations, various forms of total variation superiorization methodology can yield excellent results while being computationally efficient and with reduced computing time. In some implementations, such a methodology can result in high quality proton CT images using relatively low dose of protons. | 03-17-2016 |
20160086765 | ELECTRON DETECTION SYSTEM - An electron detection system for detecting secondary electrons emitted from a sample irradiated by a Focused Ion Beam (FIB). The FIB emanates from a FIB column and travels along a beam axis within a beam region, which extends from the FIB column to the sample. The system comprises an electron detector configured for detecting the secondary electrons, and a deflecting field configured to deflect a trajectory of the secondary electrons, which were propagating towards the FIB column, to propel away from the beam axis and towards the electron detector. The deflecting field may be configured to divert the trajectory of secondary electrons while the secondary electrons are generally within the beam region. | 03-24-2016 |
20160093465 | DEFECT INSPECTION APPARATUS AND DEFECT INSPECTION METHOD - In accordance with an embodiment, a defect inspection method includes: generating first and second images regarding a subject with first and second patterns, extracting first coordinates of the first pattern from the first image, setting a mask region in which a predetermined margin is provided in the first coordinates, taking a difference between the second image and a reference image, and checking the difference against the mask region to detect a defect in the second pattern. The first image is generated from a signal obtained by generating a charged particle beam under a first charged particle irradiation condition and irradiating the charged particle beam to a subject. The second image is generated from a signal obtained by generating a charged particle beam under a second charged particle irradiation condition, irradiating the charged particle beam to a subject region of the subject, and detecting second charged particles generated from the subject. | 03-31-2016 |
20160093470 | Chicane Blanker Assemblies for Charged Particle Beam Systems and Methods of Using the Same - A chicane blanker assembly for a charged particle beam system includes an entrance and an exit, at least one neutrals blocking structure, a plurality of chicane deflectors, a beam blanking deflector, and a beam blocking structure. The entrance is configured to accept a beam of charged particles propagating along an axis. The at least one neutrals blocking structure intersects the axis. The plurality of chicane deflectors includes a first chicane deflector, a second chicane deflector, a third chicane deflector, and a fourth chicane deflector sequentially arranged in series between the entrance and the exit and configured to deflect the beam along a path that bypasses the neutrals blocking structure and exits the chicane blanker assembly through the exit. In embodiments, the chicane blanker assembly includes a two neutrals blocking structures. In embodiments, the beam blocking structure is arranged between the third chicane deflector and the fourth chicane deflector. | 03-31-2016 |
20160097729 | CHARGED PARTICLE TOMOGRAPHY WITH IMPROVED MOMENTUM ESTIMATION - Methods, devices, systems and computer program products produce and utilize improved momentum estimates for charged particles such as electrons and muons. One method for measuring momentum includes obtaining charged particle tomographic data at one or more charged particle position detectors corresponding to scattering angles of charged particles that pass through an object volume. The distribution of scattering angles associated with the charged particles is determined using measured data collected from the position detectors, based on deviations of local trajectories of the charged particles in one or more planes relative to a reference trajectory. The method also includes determining a length of the scattering material based on the characteristics of the position detectors and the charged particles' angle of incidence on the position detectors, and obtaining charged particle momentum estimates based on the determined distribution of scattering angles and the length of the scattering material. | 04-07-2016 |
20160104596 | ALIGNING A FEATURELESS THIN FILM IN A TEM - When preparing a Hole-Free Phase Plates (HFPP) a preferably featureless thin film should be placed with high accuracy in the diffraction plane of the TEM, or a plane conjugate to it. Two methods for accurately placing the thin film in said plane are described. One method uses a Ronchigram of the thin film while the TEM is in imaging mode, and the magnification of the Ronchigram is tuned so that the magnification in the middle of the Ronchigram is infinite. The second method uses electrons scattered by the thin film while the TEM is in diffraction mode. When the thin film does not coincide with the diffraction plane, electrons scattered by the thin film seem to originate from another location than the cross-over of the zero beam. This is observed as a halo. The absence of the halo is proof that the thin film coincides with the diffraction plane. | 04-14-2016 |
20160111247 | CHARGED PARTICLE MICROSCOPE WITH SPECIAL APERTURE PLATE - A Charged Particle Microscope, comprising: includes
| 04-21-2016 |
20160116425 | AUTOMATED DECISION-BASED ENERGY-DISPERSIVE X-RAY METHODOLOGY AND APPARATUS - One embodiment relates to a method for automated review of defects detected in a defective die on the target substrate. The method includes: performing an automated review of the defects using an secondary electron microscope (SEM) so as to obtain electron-beam images of the defects; performing an automated classification of the defects into types based on morphology of the defects as determined from the electron-beam images; selecting defects of a specific type for automated energy-dispersive x-ray (EDX) review; and performing the automated EDX review on the defects of the specific type. In addition, automated techniques are disclosed for obtaining an accurate reference so as to improve the usefulness of the EDX results. Furthermore, an automated method of classifying the defects based on the EDX results is disclosed which provides a final pareto that combines both morphological and elemental information. Other embodiments, aspects and features are also disclosed. | 04-28-2016 |
20160118216 | METHOD FOR MEASURING A DISTANCE OF A COMPONENT FROM AN OBJECT AND FOR SETTING A POSITION OF A COMPONENT IN A PARTICLE BEAM DEVICE - The system described herein determines a distance of a component of a particle beam device from an object to the particle beam device and sets a position of the component in the particle beam device. The component is moved from a first starting position of the component relatively in the direction of an object, which is located in a second starting position, until the component makes contact with the object. When the component makes contact with the object, an adjusting path covered by the component and/or the object during the movement is determined. The adjusting path runs along a straight line that joins a first point on the component in the first starting position to a second point on the object in the second starting position that is arranged closest to the first point on the component along this line. The adjusting path corresponds to the distance. | 04-28-2016 |
20160118218 | Charged Particle Beam Device and Method for Adjusting Charged Particle Beam Device - The present invention relates to enabling a versatile charged particle beam device, which is used for a wide range of kinds of samples to be observed and has parameters of emission conditions of a primary charged particle beam that is difficult to be registered in advance, to be operated easily and accurately even by a less-experienced operator and to obtain high-resolution images. A charged particle beam device according to the present invention includes, for example: a charged particle source, a focusing lens for a primary charged particle beam emitted from the charged particle source, an objective lens for focusing the primary charged particle beam, a movable objective aperture having multiple objective apertures disposed on a side of the charged particle source with respect to the objective lens, a detector of a secondary signal from the sample resulting from emission of the primary charged particle beam, a display unit configured to process and display a detected secondary signal, and a storage unit configured to store multiple emission conditions of the primary particle beam. The operation controller makes one emission condition be selected, determines whether or not the objective aperture is suitable for the selected emission condition, displays that the objective aperture is unsuitable when the objective aperture is unsuitable, and preadjusts the primary charged particle beam according to the selected emission condition and stores the preadjustment result as parameters for the emission conditions when the objective aperture is suitable. | 04-28-2016 |
20160118219 | COMPOSITE SCAN PATH IN A CHARGED PARTICLE MICROSCOPE - The invention relates to a scanning-type charged particle microscope and a method for operation of such a microscope. Disclosed is a novel scanning strategy to the raster scan or serpentine scan. In some embodiment, the beam scanning motion is separated into short-stroke and long-stroke movements, to be assigned to associate short-stroke and long-stroke scanning devices, which may be beam deflectors or stage actuators. The scan strategy which is less susceptible to effects such as overshoot, settling/resynchronization, and “backlash” effects. | 04-28-2016 |
20160123726 | METHOD AND DEVICE FOR LINE PATTERN SHAPE EVALUATION - The present invention pertains to a method and device for quantitatively evaluating the degree and characteristics of wiggling, which is a phenomenon that occurs in electronic device fabrication processes and consists of the deformation in the same shape of the left and right edges of fine line patterns, and takes advantage of the fact that this wiggling is included in measured values for line edge variation but not line width variation by acquiring the differences between these values. Further, the present invention is configured so as to calculate line center positions and use the distribution of the deviation from the average line center position as an indicator. Additionally, the present invention is configured to quantify wiggling characteristics by outputting a coefficient of wiggling correlation between lines or a wiggling component synchronized between lines as an indicator. | 05-05-2016 |
20160123905 | Inspection of inconsistencies in and on semiconductor devices and structures - Disclosed embodiments are generally related to semiconductor device inspection. One such embodiment involves positioning a detector at a distance from a surface of the semiconductor device being inspected and applying an energy to the semiconductor device. In the disclosed embodiment, the detector receives back-scattered energy resulting from applying the energy to the semiconductor device and the resultant back-scattered energy is processed and analyzed to determine whether defects are beneath the surface of the semiconductor device. The magnitude of the applied energy and the distance between the detector and the surface of the semiconductor device are selected so as to allow back-scattered electrons returned from applying to be effectively received by the detector. | 05-05-2016 |
20160123907 | Method for determining geometric relationships of crystal reciprocal vectors on two-dimensional planes obtained from single EBSD pattern - A method for determining geometric relationships of crystal reciprocal vectors on the two-dimensional planes obtained from an EBSD pattern includes steps of: geometrically correcting Kikuchi bands for obtaining the reciprocal vectors corresponding to the Kikuchi bands; selecting a set of reciprocal vectors which define a parallelogram with minimum area on the reciprocal plane as a two-dimensional basis for forming a grid, marking the basis; determining integer coordinates of other reciprocal vectors on the reciprocal plane relative to the basis, obtaining the deviations of the integer coordinates from the nearest grid nodes, marking the reciprocal vector with minimum deviation; fitting the length and the angel of the basis, redefining a new two-dimensional grid by the fitting result; repeating till all reciprocal vectors on the reciprocal plane are marked, wherein integer coordinates of the reciprocal vectors relative to the last two-dimensional basis now disclose the geometric relationships. | 05-05-2016 |
20160126056 | ELECTRON MICROSCOPE SAMPLE HOLDER FOR FORMING A GAS OR LIQUID CELL WITH TWO SEMICONDUCTOR DEVICES - A novel sample holder for specimen support devices for insertion in electron microscopes. The novel sample holder of the invention allows for the introduction of gases or liquids to specimens for in situ imaging, as well as electrical contacts for electrochemical or thermal experiments. | 05-05-2016 |
20160126058 | Charged-Particle-Beam Device and Specimen Observation Method - An electron microscope has a large depth of focus in comparison with an optical microscope. Thus, information is superimposed on one image in the direction of depth. Therefore, it is necessary to accurately specify the three-dimensional position and density of a structure in a specimen so as to observe the three-dimensional structure of the interior of the specimen by using the electron microscope. Furthermore, a specimen that is observed with the optical microscope on a slide glass is not put into a TEM device of the related art. Thus, performing three-dimensional internal structure observation with the electron microscope on a location that is observed with the optical microscope requires very cumbersome preparation of the specimen. By controlling a vector parameter that defines the interrelationship between a primary charged particle beam and the specimen and by irradiation with the primary charged particle beam with a plurality of different vector parameters, images of transmitted charged particles of the specimen that correspond to each of the vector parameters are obtained. Irradiation with the primary charged particle beam is performed on the specimen that is arranged either directly or through a predetermined member on a detector which detects charged particles transmitted through or scattered by the interior of the specimen. | 05-05-2016 |
20160133434 | Image Evaluation Method and Charged Particle Beam Device - An image evaluation method includes: a template image acquisition step that designates part of a reference image to acquire a template image; a first comparative image acquisition step that acquires a first comparative image in which the position of the template image is moved in a first direction by a first moving amount relative to the reference image; a first evaluation step that performs a pattern matching process on the template image and the first comparative image and evaluates the template image; a second comparative image acquisition step that acquires a second comparative image in which the position of the template image is moved in a second direction that is orthogonal to the first direction by a second moving amount relative to the reference image; and a second evaluation step that performs the pattern matching process on the template image and the second comparative image and evaluates the template image. | 05-12-2016 |
20160133437 | CHARGED PARTICLE MICROSCOPE WITH BAROMETRIC PRESSURE CORRECTION - A method of mitigating the effects of environmental pressure variation while using a charged particle microscope is described. The charged particle microscope equipped with a barometric pressure sensor and an automatic controller configured to use the signal from the barometric sensor as an input to a control procedure to compensate for a relative positional error between the charged particle beam and the specimen holder. | 05-12-2016 |
20160139063 | Strain Mapping in TEM Using Precession Electron Diffraction - A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states. | 05-19-2016 |
20160141146 | CERTIFIED WAFER INSPECTION - A method for certifying an inspection system using a calibrated surface, comprising: acquiring a calibrated list from said calibrated surface, with said calibrated list comprising information about features located on said calibrated surface; inspecting said calibrated surface with said inspection system to generate an estimated list, with said estimated list comprising information about features located on said calibrated surface; generating a matched list by searching for the presence of one or more calibrated features in said estimated list, wherein said calibrated features are listed in said calibrated list; computing an estimated characteristic parameter from said matched list, wherein said estimated characteristic parameter quantifies features in said matched list having a unifying characteristic; and comparing said estimated characteristic parameter with a calibrated characteristic parameter, wherein said calibrated characteristic parameter quantifies features in said calibrated list having said unifying characteristic, whereby the ability of said inspection system to detect features with one or more characteristics is certified. A system and method for imaging a surface to generate an adaptive resolution image, comprising: determining a weakly scattering feature, wherein said weakly scattering feature produces a weak image response to be resolved by said adaptive resolution image; determining a coarse spot size such that said weakly scattering feature is detected in an image captured with said coarse spot size; capturing a coarse image of region with said coarse spot size, wherein said coarse image of region comprises one or more pixels corresponding to a predetermined region of said surface; classifying said coarse image of region into a coarse image of feature and a coarse image of surface, wherein a feature is detected in said coarse image of feature and a feature is not detected in said coarse image of surface; estimating a feature position from said coarse image of feature, wherein said feature position is the location of feature on said surface; capturing a fine image of feature at said feature position, wherein said fine image of feature is captured with a fine spot size having a smaller spot size than said coarse spot size; and combining said fine image of feature and said coarse image of surface to generate said adaptive resolution image, whereby feature regions are captured with finer resolution than featureless surface regions in said adaptive resolution image. | 05-19-2016 |
20160148780 | QUANTITATIVE SECONDARY ELECTRON DETECTION - Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. | 05-26-2016 |
20160148781 | CHARGED PARTICLE BEAM APPARATUS AND INSPECTION METHOD USING THE SAME - A charged particle beam apparatus makes it possible to acquire information in the cross-sectional direction (depth direction) of a sample having an internal structure in a nondestructive manner with reduced damage. Further, the apparatus makes it possible to analyze the depth and/or dimensions in the depth direction of the internal structure. The charged particle beam apparatus includes: a means for providing a time base for control signals; a means for applying a charged particle beam to a sample in synchronization with the time base and controlling an irradiation position; a means for analyzing the emission characteristics of an emission electron from the sample from a detection signal of the emission electron; and a means for analyzing the electrical characteristics or cross-sectional morphological characteristics of the sample based on the emission characteristics. | 05-26-2016 |
20160148783 | METHOD OF SPECIMEN PROCESSING IN AN APPARATUS WITH TWO OR MORE PARTICLE BEAMS AND APPARATUS FOR THIS PROCESSING - A method and apparatus for processing a specimen with two or more particle beams, wherein the specimen has a milled side that is processed by a first particle beam and observed by a second particle beam. The specimen is milled during a first milling operation by the first particle beam with the specimen in a first position. Thereafter, the specimen tilts in a second position around an axis of tilt of the specimen. Thereafter, the specimen is milled during a second milling operation. Milling can be performed during continuous tilting of the specimen around the axis of tilt. The axis of tilt of the specimen intersects the milled side. In all the aforementioned positions of the specimen, the second particle beam impinges on the milled side, which enables monitoring of the milling in real time. | 05-26-2016 |
20160155605 | Method and System for Adaptively Scanning a Sample During Electron Beam Inspection | 06-02-2016 |
20160155606 | INTERFACE, A METHOD FOR OBSERVING AN OBJECT WITHIN A NON-VACUUM ENVIRONMENT AND A SCANNING ELECTRON MICROSCOPE | 06-02-2016 |
20160163502 | Method and Compound System for Inspecting and Reviewing Defects - The present invention provides an improved electron-optical apparatus for the inspection and review of the specimen, and for the defect inspection, an inspection mode of operation is performed to generate inspection data, wherein the large beam current is formed by a magnetic immersion lens to scan the specimen, and preferably the objective lens system, a swing objective retarding immersion lens, focuses the beam current and generates the large scanning field, and for the defect review, the review mode of operation is performed to analyze the defects, wherein the large beam current is abandoned and the small beam current is adopted to examine the specimen without a large scanning field, and in order to properly select and detect signal charged particles excited from the specimen, a first Wien filter is utilized to select the acquired signal particles and a second Wien filter is used to compensate the aberrations induced when the signal particles pass through the first Wien filter. | 06-09-2016 |
20160163503 | ELECTRON MICROSCOPE, READER AND ACQUIRING ELEMENTAL SPECTRUM METHOD - An electron microscope includes a stage, a charged particle beam generator, a plurality of elemental spectrum detectors and a reader. The stage is configured for carrying a sample. The charged particle beam generator is configured for generating a charged particle beam to bombard the sample. The elemental spectrum detectors is configured for detecting X ray emitted from the sample being bombarded by the charged particle beam and outputting a plurality of corresponding spectrum detecting signals. The reader is configured for calibrating a plurality of counting signals generated by the spectrum detecting signals and summing the calibrated counting signals to obtain an elemental spectrum of the sample. The collection time of elemental spectrum of the above-mentioned electron microscope can be shortened. A reader and an acquiring elemental spectrum method applied to the above-mentioned electron microscope are also disclosed. | 06-09-2016 |
20160163504 | Charged Particle Beam Device Enabling Facilitated EBSD Detector Analysis of Desired Position and Control Method Thereof - A charged particle beam device allowing an analysis position in a sample analyzable with an EBSD detector to be acquired beforehand, and allowing a sample to be adjusted to a desired analysis position in a short time. A charged particle beam device is provided with a charged particle source ( | 06-09-2016 |
20160163505 | HIGHLY CONDUCTIVE NANOCOMPOSITE, BIOLOGICAL AND SMALL MOLECULE MATERIALS FOR ENHANCED RESIN CONDUCTIVITY - A highly conductive nanocomposite material. The material is particularly useful for serial block-face scanning electron microscopy. A polymer resin of the invention is stabilized for conductivity with a conductivity stabilizer selected from one of multi-walled carbon nanotubes, Perylene dianhydride, Hemoglobin, Epoxy-Corannulene, and Bovine Serium Albumin (BSA). The conductivity stabilizer is monodisperse in preferred resins. A preferred nanocomposite material includes a base component of a curable resin, a curing agent or hardener and monomers of carbon containing networks of sp2 hybridized carbon atoms that are dispersed in the base resin. In preferred embodiment, tissue samples are within the resin. Highly effective serial block face scanning electroscopy techniques are provided. | 06-09-2016 |
20160163506 | METHOD FOR S/TEM SAMPLE ANALYSIS - An improved method and apparatus for S/TEM sample preparation and analysis. Preferred embodiments of the present invention provide improved methods for TEM sample creation, especially for small geometry (<100 nm thick) TEM lamellae. Preferred embodiments of the present invention also provide an in-line process for S/TEM based metrology on objects such as integrated circuits or other structures fabricated on semiconductor wafer by providing methods to partially or fully automate TEM sample creation, to make the process of creating and analyzing TEM samples less labor intensive, and to increase throughput and reproducibility of TEM analysis. | 06-09-2016 |
20160169819 | SEMICONDUCTOR INSPECTION APPARATUS, SEMICONDUCTOR INSPECTION METHOD, AND RECORDING MEDIUM | 06-16-2016 |
20160172153 | MICROSCOPY SUPPORT STRUCTURES | 06-16-2016 |
20160172155 | DEVICE AND METHOD OF DETECTING AND GENERATING COMBINED MODULATED PARTICLE WAVE-FRONTS | 06-16-2016 |
20160172156 | SOURCE FOR SELECTIVELY PROVIDING POSITIVELY OR NEGATIVELY CHARGED PARTICLES FOR A FOCUSING COLUMN | 06-16-2016 |
20160178543 | ANALYZING AN OBJECT USING A PARTICLE BEAM APPARATUS | 06-23-2016 |
20160181055 | Method of Adjusting a Stigmator in a Particle Beam Apparatus and a Particle Beam System | 06-23-2016 |
20160181057 | HIGH RESOLUTION CHARGED PARTICLE BEAM DEVICE AND METHOD OF OPERATING THE SAME | 06-23-2016 |
20160181059 | SPECIMEN HOLDER FOR A CHARGED PARTICLE MICROSCOPE | 06-23-2016 |
20160181060 | FIDUCIAL-BASED CORRELATIVE MICROSCOPY | 06-23-2016 |
20160181061 | IMAGE CREATING METHOD AND IMAGING SYSTEM FOR PERFORMING THE SAME | 06-23-2016 |
20160189919 | ELECTRON MICROSCOPY SAMPLE SUPPORT INCLUDING POROUS METAL FOIL - An electron microscopy sample support comprises: a support member; and a metal foil comprising a porous region. The support member is configured to give structural stability to the metal foil, and the porous region of the metal foil is configured to receive an electron microscopy sample. Also provided is a method of manufacturing such an electron microscopy sample support, a method of imaging using such an electron microscopy sample support and an apparatus operable to perform such imaging. An electron microscopy specimen support in accordance with aspects and embodiments may reduce particle motion and/or sample char ging in electron microscopy, and thus improve information content available from electron micrographs. Appropriately designed and constructed supports may lead to an increased resolution per particle and increased accuracy of angular assignments in 3D reconstructions of for example, biological specimens. This may enable the determination of structures of smaller and more difficult proteins than was previously possible using EM techniques. | 06-30-2016 |
20160189922 | CHARGED PARTICLE MICROSCOPE WITH IMPROVED SPECTROSCOPIC FUNCTIONALITY - A spectroscopic analysis method, comprising:
| 06-30-2016 |
20160189924 | Electron Microscope and Method of Operating Same - An electron microscope is offered that is capable of achieving noise cancellation which results in a low level of noise and which can be implemented at high speed. An electron microscope ( | 06-30-2016 |
20160203942 | GRAPHENE MODIFICATION | 07-14-2016 |
20160203947 | Charged Particle Beam Device and Charged Particle Beam Device Control Method | 07-14-2016 |
20160203948 | CHARGED PARTICLE BEAM SYSTEM AND METHODS | 07-14-2016 |
20160254118 | Measurement Method and Electron Microscope | 09-01-2016 |
20160377425 | DETERMINING MULTI-PATTERNING STEP OVERLAY ERROR - Methods and systems for determining overlay error between different patterned features of a design printed on a wafer in a multi-patterning step process are provided. For multi-patterning step designs, the design for a first patterning step is used as a reference and designs for each of the remaining patterning steps are synthetically shifted until the synthetically shifted designs have the best global alignment with the entire image based on global image-to-design alignment. The final synthetic shift of each design for each patterning step relative to the design for the first patterning step provides a measurement of relative overlay error between any two features printed on the wafer using multi-patterning technology. | 12-29-2016 |
20160377561 | System and Method for Dynamic Care Area Generation on an Inspection Tool - A defect inspection system includes an inspection sub-system and a controller communicatively coupled to the detector. The inspection sub-system includes an illumination source configured to generate a beam of illumination, a set of illumination optics to direct the beam of illumination to a sample, and a detector configured to collect illumination emanating from the sample. The controller includes a memory device and one or more processors configured to execute program instructions. The controller is configured to determine one or more target patterns corresponding to one or more features on the sample, define one or more care areas on the sample based on the one or more target patterns and design data of the sample stored within the memory device of the controller, and identify one or more defects within the one or more care areas of the sample based on the illumination collected by the detector. | 12-29-2016 |
20160379798 | Scanning Electron Microscope System, Pattern Measurement Method Using Same, and Scanning Electron Microscope - In order to allow detecting backscattered electrons (BSEs) generated from the bottom of a hole for determining whether a hole with a super high aspect ratio is opened or for inspecting and measuring the ratio of the top diameter to the bottom diameter of a hole, which are typified in 3D-NAND processes of opening a hole, a primary electron beam accelerated at a high accelerating voltage is applied to a sample. Backscattered electrons (BSEs) at a low angle (e.g. a zenith angle of five degrees or more) are detected. Thus, the bottom of a hole is observed using “penetrating BSEs” having been emitted from the bottom of the hole and penetrated the side wall. Using the characteristics in which a penetrating distance is relatively prolonged through a deep hole and the amount of penetrating BSEs is decreased to cause a dark image, a calibration curve expressing the relationship between a hole depth and the brightness is given to measure the hole depth. | 12-29-2016 |
20170236683 | PARTICLE BEAM APPARATUS AND METHOD FOR OPERATING A PARTICLE BEAM APPARATUS | 08-17-2017 |
20170236687 | CROSS SECTIONAL DEPTH COMPOSITION GENERATION UTILIZING SCANNING ELECTRON MICROSCOPY | 08-17-2017 |
20180020921 | SYSTEM, METHOD AND APPLICATIONS INVOLVING IDENTIFICATION OF BIOLOGICAL CIRCUITS SUCH AS NEUROLOGICAL CHARACTERISTICS | 01-25-2018 |
20180025888 | Mirror Ion Microscope and Ion Beam Control Method | 01-25-2018 |
20190148108 | SYSTEM AND METHOD FOR MEASURING PATTERNS | 05-16-2019 |
20220136986 | Nondestructive Sensing Device and Method for Inspection and Measuring the Cleanliness of Composite Surfaces Coupled with Methods for Removing Contaminants and Activating the Composite Surfaces - Non-destructive sensing methods and devices for inspection and measuring in manufacturing applications for removal of contaminants from composite surfaces coupled with sensing and activation of the composite surfaces. | 05-05-2022 |
20220139666 | AUTOMATED TOMOGRAPHY FIELD ION MICROSCOPE - A method for imaging a material to atomic scale by means of a field-ion microscope having a vacuum chamber configured to accommodate the material prepared in the form of a tip and an imaging gas, and an ion detector is provided. The method includes application of a DC electrical potential (VDC) and of a pulsed electrical potential, of which the maximum pulse value is denoted Vimp, so that the tip erodes for a potential value equal to VDC+Vimp; acquisition, by the detector between at least two pulses of the pulsed potential, of series of at least two ion images of the impacts of the ions repelled by the tip onto the detector; and calculation of a quantity characteristic of a trend of the erosion of the tip based on the series of ion images acquired and the adjustment, between each series of images, of the values of VDC and of Vimp such that the quantity characteristic of the trend and the ratio VDC/Vimp remain constant. | 05-05-2022 |