Entries |
Document | Title | Date |
20080245960 | Method and Apparatus to Determine Characteristics of an Oil-Based Mud Downhole - A laser spectroscopy system can determine the identity and/or quantity of a component of a fluid at a remote location such as downhole in a wellbore or inside a pipeline, particularly at high temperature, e.g. from about 75 to 175° C. The system includes a fiber laser doped with a rare earth element (e.g. Nd | 10-09-2008 |
20080283738 | Device for Examining Rotor Drilled Holes - The invention relates lo a device for examining rotor drilled holes, which comprises a probe which comprises an optical detection device and which can be displaced in the drilled hole by means of a push rod. The rotor drilled hole probe ( | 11-20-2008 |
20090078860 | SYSTEM AND METHOD FOR DOWNHOLE OPTICAL ANAYSIS - A method is disclosed for measuring optical properties of a fluid downhole, the method comprising measuring intensity of light interacting with the fluid downhole for each of one or more wavelengths; integrating each intensity of light for each wavelength for an integration time; and estimating the optical property from a difference between a starting value and an ending value for the integral of the intensity of light over time divided by the integration time for the wavelength. An apparatus is disclosed for measuring an optical property of a fluid downhole, the apparatus comprising one or more photodiodes that measure an intensity of light interacting with the fluid downhole for each of one or more wavelengths; and one or more integration circuits that each integrates an intensity of light for one wavelength for an integration time. | 03-26-2009 |
20090114805 | METHOD OF IDENTIFICATION OF PETROLEUM COMPOUNDS USING FREQUENCY MIXING ON SURFACES - A method for determining a chemical composition of a material in a borehole, the method including placing an analysis apparatus into the borehole; placing a sample of the material onto a metal surface of the apparatus; illuminating the sample at an interface between the sample and the metal surface with a first light beam and a second light beam; measuring sum frequency light generated from the illuminating; and analyzing the sum frequency light to determine the chemical composition of the material. | 05-07-2009 |
20100059669 | METHOD AND APPARATUS FOR DETECTING NAPHTHENIC ACIDS - A method and apparatus for determining the concentration of organic acids in formation fluids is provided including pumps for pumping fluids from a subterranean formation into the body of a downhole tool and sources for illuminating the flow with infrared radiation to obtain the infrared absorption or a related parameter at one or more wavelengths, and processors for converting the measured absorption into the concentration of the organic acids, using for example a multi-value calibration matrix which relates IR absorption spectral values to concentration measurement under downhole conditions. | 03-11-2010 |
20100163718 | METHOD AND APPARATUS FOR INCREASING THE EFFICIENCY OF A FLUORESCENCE MEASUREMENT CELL - An apparatus for estimating a property of a fluid in an earth formation, the apparatus including: a logging instrument configured to be conveyed in a borehole penetrating the formation; and a plurality of light sources disposed at the logging instrument; wherein each of the light sources is configured to illuminate a sample of the fluid with a light beam causing the sample to fluoresce light with a characteristic related to the property, each of the light sources being configured to provide a light beam with a solid angle and a distance traveled to the sample, the solid angle and the distance being configured to concentrate the beam at an area of the sample that is overlapped substantially a same amount by a beam from another light source in the plurality. | 07-01-2010 |
20100181472 | Method and Apparatus to Determine Characteristics of an Oil-Based Mud Downhole - A laser spectroscopy system can determine the identity and/or quantity of a component of a fluid at a remote location such as downhole in a wellbore or inside a pipeline, particularly at high temperature, e.g. from about 75 to 175° C., without additional or external cooling. The system includes a fiber laser doped with a rare earth element (e.g. Nd | 07-22-2010 |
20100187413 | High Temperature Photodetectors Utilizing Photon Enhanced Emission - An apparatus for estimating a property of a subterranean material, the apparatus including: a photon induced emission device configured to be disposed in a borehole penetrating the subterranean material and to provide an output related to an induced emission interaction with a received photon that generates an electron that is used for providing the output; wherein the output is used for estimating the property. | 07-29-2010 |
20100207019 | OPTICAL MONITORING OF FLUID FLOW - A distributed vibration sensor is positioned in a wellbore to measure fluid flow. The output of the sensor is monitored to acquire a distribution of vibration along a region of interest in the wellbore. An indication of the effectiveness of a well treatment to stimulate fluid flow in the wellbore may be provided based on the acquired vibration distribution. In some embodiments, the well treatment may be adjusted based on the indication of effectiveness. | 08-19-2010 |
20100270464 | METHODS AND APPARATUS TO OPTICALLY DETERMINE VELOCITIES OF DOWNHOLE FLUIDS - Methods and apparatus to optically determine velocities of downhole fluids are disclosed. Some example methods to determine a velocity of a downhole fluid include exciting a fluorescent substance in a downhole fluid with an optical signal via an optical interface. The example methods further include detecting fluorescence of the downhole fluid via an optical fiber at a predetermined distance from the optical interface, and determining the velocity of the downhole fluid based on the detected fluorescence. | 10-28-2010 |
20100282959 | DOWNHOLE FLUID SPECTROSCOPY - An example method for determining a partial density of a compound in a downhole fluid may comprise exposing the downhole fluid to an electromagnetic radiation, and measuring a spectrum of radiation absorption by the downhole fluid. An absorption peak of the compound may be identified in the measured spectrum. A first parameter indicative of radiation absorption by the downhole fluid may be determined in the identified absorption peak. Second and third parameters indicative of radiation absorptions by the downhole fluid may be determined essentially out of the identified absorption peak. A weighted combination of the second and third parameters may be computed, and the partial density of the compound may be determined from a difference between the weighted combination and the first parameter. | 11-11-2010 |
20110108721 | Filter Wheel Assembly for Downhole Spectroscopy - A downhole fluid analysis tool has a tool housing and a fluid analysis device. The tool housing is deployable downhole and has at least one flow passage for a fluid sample. The fluid analysis device is disposed in the tool housing relative to the flow passage. Inside the device, one or more sources generate a combined input electromagnetic signal across a spectrum of wavelengths, and a routing assembly routes generated signals into the reference and measurement signals. At least one wheel having a plurality of filters is rotated to selectively interpose one or more of the filters in the paths of the reference and measurement signals. | 05-12-2011 |
20110114832 | WATER DETECTION AND 3-PHASE FRACTION MEASUREMENT SYSTEMS - Methods and apparatus enable monitoring a hydrocarbon well for water within a flow stream of the well. A water detector includes a light source for emitting into a flow stream infrared light that includes a water absorbent wavelength band. A detector detects attenuation of the water absorbent wavelength band upon the infrared radiation passing through at least a portion of the flow stream. The water detector outputs a presence of water and/or a phase fraction or quantification of water as determined based on the attenuation. Detecting attenuation of a substantially transmissive wavelength band with respect to water simultaneously with detection of the attenuation of the water absorbent wavelength band can enable correction for non-wavelength dependent attenuation. | 05-19-2011 |
20110180698 | NEUTRON GENERATOR - A neutron generator includes a sealed envelope providing a low pressure environment for a gas. One end of the envelope defines an ion source chamber. A target electrode is disposed at the other end of the envelope. An extracting electrode is spaced apart from the target electrode by an accelerating gap. The extracting electrode bounds the ion source chamber. A dispenser cathode electrode and grid electrode are disposed in the ion source chamber for inducing ionization in the ion source chamber. The dispenser cathode electrode, the grid electrode and the extracting electrode operate at a positive high voltage potential and the target electrode operates at or near ground potential. This configuration provides an electric field gradient that accelerates ions towards the target electrode to induce collisions of ions with target material, thereby causing fusion reactions that generate neutrons. High voltage power supply circuit means supplies a positive high voltage signal to the electrodes of the ion source. The positive high voltage signal has a low voltage signal component floating on a positive high voltage signal component. For the dispensing cathode electrode, the low voltage signal component can be a DC or AC signal suitable for emitting electrons from the dispensing cathode electrode. For the grid electrode, the low voltage signal component can be a positive pulsed-mode signal (preferably with magnitude in the range between 100 to 300 volts). High voltage insulation surrounds and electrically insulates the high voltage power supply circuit means. Other ion source electrode configurations, such as cold cathode (Penning) ion source and RF-driven ion source, can also be used. | 07-28-2011 |
20110278445 | Device for emitting a first beam of high-energy photons and a second beam of lower-energy photons, and associated method and measuring unit - This device comprises a single radioactive source ( | 11-17-2011 |
20120056083 | Elemental Concentration Determination Using Neutron-Induced Activation Gamma Radiation - The present disclosure relates to borehole logging methods and apparatuses for estimating formation properties using nuclear radiation, particularly an apparatus and method for estimating amounts of silicon and/or oxygen in the formation using exposure time information. The method may include using nuclear radiation information from at least one nuclear radiation detector to estimate at least one parameter of interest. The method may also include reducing an error in the estimated formation properties due to speed variations of a nuclear radiation source that activates the silicon and oxygen in the formation. The apparatus may include at least one nuclear radiation detector. The apparatuses may include an information processing device to perform the methods. | 03-08-2012 |
20120080587 | WATER DETECTION AND 3-PHASE FRACTION MEASUREMENT SYSTEMS - Methods and apparatus enable monitoring a hydrocarbon well for water within a flow stream of the well. A water detector includes a light source for emitting into a flow stream infrared light that includes a water absorbent wavelength band. A detector detects attenuation of the water absorbent wavelength band upon the infrared radiation passing through at least a portion of the flow stream. The water detector outputs a presence of water and/or a phase fraction or quantification of water as determined based on the attenuation. Detecting attenuation of a substantially transmissive wavelength band with respect to water simultaneously with detection of the attenuation of the water absorbent wavelength band can enable correction for non-wavelength dependent attenuation. | 04-05-2012 |
20120091328 | DOWNHOLE CARBON LOGGING APPARATUS, SYSTEMS, AND METHODS - In some embodiments, apparatus, systems, and methods may operate to emit radiation into an earth formation from a source positioned below a surface of the earth, collect resulting radiation that is a result of the radiation emitted and interacting with the formation, and to determine the total carbon yield from the resulting radiation. Further activities may include determining the amount of inorganic carbon content from carbonate minerals in the formation based on a carbon-calcium ratio derived from the resulting radiation, as well as from iron-carbon based minerals in the formation based on a carbon-iron ratio derived from the resulting radiation. Additional apparatus, systems, and methods are disclosed. | 04-19-2012 |
20120119076 | Method and Apparatus for Detecting while Drilling Underbalanced The Presence and Depth of Water Produced from The Formation and for Measuring Parameters Related Thereto - The invention relates to methods and apparatus for determining a downhole parameter in an underbalanced drilling environment which include: selectively activating a first fluid flowing from the formation through a wellbore while under balanced drilled; detecting the activated first fluid, and determining a depth at which said fluid enters the wellbore. | 05-17-2012 |
20120175512 | RAYLEIGH SCATTER-BASED LARGE DIAMETER WAVEGUIDE SENSOR SYSTEM - Disclosed is an apparatus for estimating a parameter in a borehole penetrating the earth. The apparatus includes a large diameter waveguide (LDW) sensor configured to be disposed in the borehole and to sense the parameter at one or more locations along the LDW sensor, the LDW sensor having an outer dimension greater than or equal to 0.25 mm and random variations of an optical property. An optical interrogator is coupled to the LDW sensor and configured to illuminate the LDW sensor with incident light at a swept frequency and to receive light from the large diameter waveguide due to Rayleigh scattering of the incident light by the random variations of the optical property along a length of the LDW sensor. The received light provides information for estimating the parameter and a location along the LDW sensor where the parameter was sensed. | 07-12-2012 |
20120175513 | Sensor Array Configuration for Swept-Wavelength Interferometric-Based Sensing Systems - A method, system and apparatus for obtaining a parameter of interest relating to a wellbore is disclosed. A fiber optic cable having a plurality of sensors is disposed in the wellbore, wherein the plurality of sensors have reflectivity values configured to provide improved signal-to-noise ratio compared to signal-to-noise ratio of a plurality of sensors having substantially same reflectivity values. Light is propagated into the fiber optic cable from a light source and signals are received at a detector from the plurality of sensors in response to interaction of the propagated light with the plurality of sensors. A processor may be used to obtain the parameter of interest from the received signals. The fiber optic cable may be coupled to a member in the wellbore, wherein the parameter of interest is related to the member. | 07-12-2012 |
20120181420 | Programmable Filters for Improving Data Fidelity in Swept-Wavelength Interferometry-Based Systems - A method, system and apparatus for obtaining a parameter of interest from a plurality of sensors in a fiber optic cable deployed in a wellbore are disclosed. Light having variable frequency within a range of frequencies is propagated along the fiber optic cable. Signals are received that are responsive to interaction of the propagated light with the plurality of sensors. The received signals are filtered using a programmable filter. The parameter of interest is obtained from the filtered signals. In one aspect, the fiber optic cable is coupled to a member deployed in the wellbore and the parameter of interest is related to the member. | 07-19-2012 |
20120211650 | Downhole Optical Radiometry Tool - Various methods and tools optically analyze downhole fluid properties in situ. Some disclosed downhole optical radiometry tools include a tool body having a sample cell for fluid flow. A light beam passes through the sample cell and a spectral operation unit (SOU) such as a prism, filter, interferometer, or multivariate optical element (MOE). The resulting light provides a signal indicative of one or more properties of the fluid. A sensor configuration using electrically balanced thermopiles offers a high sensitivity over a wide temperature range. Further sensitivity is achieved by modulating the light beam and/or by providing a reference light beam that does not interact with the fluid flow. To provide a wide spectral range, some embodiments include multiple filaments in the light source, each filament having a different emission spectrum. Moreover, some embodiments include a second light source, sample cell, SOU, and detector to provide increased range, flexibility, and reliability. | 08-23-2012 |
20120223221 | NANOFIBER SPECTRAL ANALYSIS - Apparatus, systems, and methods may operate to transmit energy to a nanofiber sampling coil and/or a nanofiber reference coil. Further activity may include receiving the energy as modified by evanescent interaction with a sampled material located proximate to the sampling coil and/or as modified by propagation through the reference coil, and comparing the energy modified by evanescent interaction with the energy modified by propagation through the reference coil to determine a spectroscopic property of the sampled material. Additional apparatus, systems, and methods, including the use of nanofibers and fluorescence induced by evanescent radiation to conduct spectroscopic analysis, are disclosed. | 09-06-2012 |
20120267520 | RADIATION GENERATOR AND POWER SUPPLY CONFIGURATION FOR WELL LOGGING INSTRUMENTS - A well logging instrument includes a radiation generator and a high voltage power supply functionally coupled to the generator. The generator and the supply are longitudinally separated by a distance sufficient for emplacement of a radiation detector. At least a first radiation detector is disposed in a space between the generator and the supply. The instrument includes an electrical connection between the supply and the generator. | 10-25-2012 |
20120298851 | COMPENSATED OPTICAL DETECTION APPARATUS, SYSTEMS, AND METHODS - In some embodiments, apparatus and systems, as well as methods, may operate to receive radiation at an active detector of a pair of radiation detectors to provide a first signal proportional to an intensity of the radiation, to receive none of the radiation at a blind detector of the pair of radiation detectors to provide a second signal proportional to the reception of no radiation, and to combine the first signal and the second signal to provide an output signal representing the difference between the first signal and the second signal. The pair of radiation detectors may comprise thermopile detectors. Combination may occur via differential amplification. Additional apparatus, systems, and methods are disclosed. | 11-29-2012 |
20120318968 | Sourceless Density Measurement Using Activation - The present disclosure relates to borehole logging methods and apparatuses for estimating at least one parameter of interest of an earth formation using nuclear radiation, particularly by detecting interactions between the earth formation and an activated radiation source. The method may include using nuclear radiation information from at least one nuclear radiation sensor to estimate a parameter of interest. The method may include separating a gross nuclear radiation count into separate nuclear radiation components. The method may also include activating a part of a downhole tool with neutron radiation. The apparatus may include at least one nuclear radiation sensor. The apparatuses may include an information processing device to perform the methods. | 12-20-2012 |
20130043381 | METHOD FOR DETECTING FRACTURES AND PERFORATIONS IN A SUBTERRANEAN FORMATION - Fractures at a wellbore wall and in a region surrounding a wellbore wall can be detected by monitoring gamma rays scattered from the fractures. Gamma rays are strategically directed from a tool disposed within the wellbore and to the wall and/or the region. Some of the gamma rays scatter from the fractures and are detected with detectors set a designated axial distance from the gamma ray source. In addition to identifying the presence of the fractures, the location and size of the fractures is also estimated. Based on the location and disposition of the fractures, perforations are formed in the formation to provide communication between the fractures and the wellbore. | 02-21-2013 |
20130056626 | Downhole Spectroscopic Detection of Carbon Dioxide and Hydrogen Sulfide - The present invention relates to a method for measuring the characteristics of a downhole fluid. The method for measuring the characteristics of a downhole fluid includes passing a downhole fluid sample through an analyzer, analyzing the downhole fluid sample by illuminating the downhole fluid sample with light from a light source and detecting light that interacts with the fluid sample. The method is applicable to detecting carbon dioxide and/or hydrogen sulfide directly in a downhole environment. | 03-07-2013 |
20130146757 | MULTI-CHANNEL INFRARED OPTICAL PHASE FRACTION METER - Methods and apparatus for measuring a phase fraction of a flow stream are disclosed. An infrared phase fraction meter includes a light source for emitting into a flow stream infrared radiation that includes first and second wavelength bands. The first wavelength band substantially transmits through first and second phases of the flow stream and is substantially absorbed by a third phase. In contrast, the second wavelength band is substantially absorbed by the second phase relative to the first and third phases. One or more detectors simultaneously detect attenuation of the first and second wavelength bands upon the infrared radiation passing through at least a portion of the flow stream, and a phase fraction of the second phase is determined based on the attenuation. As an example, the first, second and third phases are gas, water and oil, respectively, produced from a well. | 06-13-2013 |
20130277545 | METHOD, APPARATUS, AND SYSTEM FOR EXAMINING OPTICALLY A SAMPLE CARRIED IN A PLURALITY OF WELLS - An apparatus and method are disclosed for examining optically a sample carried in a plurality of wells. A holder is adapted to receive and hold in place a sample carrier. A plurality of excitation means selectively introduce excitation towards a spatially limited portion of a sample carrier held in place by said holder. Detecting means receive and detect emission radiation coupled out from a light output window of a sample carrier held in place by said holder. Said detecting means is common to said excitation means and is configured to receive emission radiation from a plurality of different spatially limited portions of a sample carrier held in place by said holder. | 10-24-2013 |
20130277546 | LOGGING TOOL - The present invention relates to a logging tool for logging formational changes in a borehole, the logging tool having a longitudinal axis. The logging tool comprises a radiating source ( | 10-24-2013 |
20140084150 | SCINTILLATOR WITH TAPERED GEOMETRY FOR RADIATION DETECTORS - A radiation detector may include a housing, and a scintillator body carried within the housing and including a proximal portion defining a proximal end, a distal portion defining a distal end, and a medial portion between the proximal portion and the distal portion. The scintillator body may have a constant diameter along the proximal portion, and a decreasing diameter along the distal portion from the medial portion to the distal end. The radiation detector may further include a photodetector coupled to the distal end of the scintillator bod | 03-27-2014 |
20140091214 | SCINTILLATOR BODY WITH SPIRAL SURFACE SCRATCHES - A radiation detector may include a housing and a scintillator body carried by the housing. The scintillator body may have an exterior surface with a plurality of surface scratches spiraling around the exterior surface. A photodetector may be coupled to the scintillator body. | 04-03-2014 |
20140103203 | Imaging Systems and Image Fiber Bundles for Downhole Measurement - An example system for downhole measurement disclosed herein comprises a tool to be positioned downhole in a formation, the tool comprising an imaging system to determine measurement information from imaging information obtained by sensing light, and an illumination system to control source light to be emitted by the tool. The system also comprises an optical cable to sense an optical field of view that is remote from the tool, the optical cable including an optical fiber bundle comprising a bundle of imaging fibers to convey the imaging information from a sensing end of the optical cable to the imaging system, and a plurality of illumination fibers positioned outside the bundle of imaging fibers, the illumination fibers to convey the source light from the tool to the sensing end of the cable, the illumination fibers to emit the source light to illuminate the optical field of view. | 04-17-2014 |
20140138528 | In-situ Detection and Analysis of Methane in Coal Bed Methane Formations with Spectrometers - A measuring system for in-situ measurements down a well ( | 05-22-2014 |
20140158877 | HYDROGEN RESISTANT DOWNHOLE OPTICAL FIBER SENSING - An apparatus for estimating at least one parameter in a downhole environment includes: an optical fiber configured to be disposed in a borehole, the optical fiber including a core having a first index of refraction and a cladding surrounding the core and having a second index of refraction that is lower than the first index of refraction, at least a portion of the core being made from a hydrogen resistant material; at least one fiber Bragg grating (FBG) formed within the hydrogen resistant material; a light source configured to send an optical signal into the optical fiber; and a detector configured to receive a return signal generated by the at least one FBG and generate data representative of the at least one parameter. | 06-12-2014 |
20140175272 | Remote Work Methods and Systems Using Nonlinear Light Conversion - A disclosed remote work system includes a light source and a nonlinear converter optically coupled to and remote from the light source. The nonlinear light converter converts a narrowband light pulse received from the light source to a converted spectrum light pulse. The system also includes a work element coupled to the nonlinear light converter. The work element performs a work operation using the converted spectrum light pulse. A related remote work method includes generating a narrowband light pulse and conveying the narrowband light pulse to a remote location. The method also includes converting the narrowband light pulse to a converted spectrum light pulse at the remote location. The method also includes performing a sense operation or work operation at the remote location using the converted spectrum light pulse. | 06-26-2014 |
20140239168 | Optical Window Assembly for An Optical Sensor of A Downhole Tool and Method of Using Same - An optical window assembly of an optical sensor of a downhole tool positionable in a wellbore penetrating a subterranean formation. The downhole tool has a housing with a flowline therethrough to receive downhole fluid therein. The optical sensor is positionable about the flowline to measure light passing therethrough. The optical window assembly includes a tubular sensor body positionable in the housing (the sensor body having a sensor end and a flanged signal end with a passage therethrough), an optical window positionable in the passage of the sensor body to pass the light from the flowline to the optical sensors, a seal disposable about the sensor body, and a backup ring disposable about the sensor body between the flanged signal end and the seal to support the seal about the sensor body whereby the downhole fluid is prevented from leaking between the seal and the sensor body. | 08-28-2014 |
20140246574 | In-situ Detection and Analysis of Methane in Coal Bed Methane Formations with Spectrometers - The invention subject of this disclosure teaches a method of determining a production factor for a carbonaceous material reservoir, the method comprising: providing a well in a carbonaceous material reservoir; providing unsampled fluid at a depth in the well; placing a sensor adjacent to the unsampled fluid and performing a measurement on the unsampled fluid; using data from the measurement to determine a partial pressure of a solution gas in the carbonaceous material reservoir; and determining a production factor for the carbonaceous material reservoir from the partial pressure of the solution gas. | 09-04-2014 |
20140299757 | METHODS FOR RADIATION DETECTION AND CHARACTERIZATION USING A MULTIPLE DETECTOR PROBE - Apparatuses, methods, and systems relating to radiological characterization of environments are disclosed. Multi-detector probes with a plurality of detectors in a common housing may be used to substantially concurrently detect a plurality of different radiation activities and types. Multiple multi-detector probes may be used in a down-hole environment to substantially concurrently detect radioactive activity and contents of a buried waste container. Software may process, analyze, and integrate the data from the different multi-detector probes and the different detector types therein to provide source location and integrated analysis as to the source types and activity in the measured environment. Further, the integrated data may be used to compensate for differential density effects and the effects of radiation shielding materials within the volume being measured. | 10-09-2014 |
20140339411 | OPTICAL COUPLERS USED IN A DOWNHOLE SPLITTER ASSEMBLY - Techniques and apparatus are provided for downhole sensing using optical couplers in a downhole splitter assembly to split interrogating light signals into multiple optical sensing branches. Each optical branch may then be coupled to an optical sensor (e.g., a pass-through or an optical single-ended transducer (OSET)) or to another optical coupler for additional branching. The sensors may be pressure/temperature (P/T) type transducers. Some systems may exclusively use OSETs as the optical sensors. In this manner, if one of the OSETs is damaged, it does not affect light traveling to any of the other sensors, and sensing information from remaining sensors is still returned. | 11-20-2014 |
20140339412 | Solid State Lasers - Solid state lasers are disclosed herein. An example laser disclosed herein includes a monolithic body having a first end and a second end. The monolithic body includes a first reflector disposed on the first end, a second reflector disposed on the second end, and a solid state gain medium and a Q-switch disposed between the first reflector and the second reflector. The example laser also includes a pump source to cause a population inversion in the solid state gain medium to cause the monolithic body to output a laser pulse. Various applications of the solid state laser are also disclosed herein. | 11-20-2014 |
20140346338 | Target Extender In Radiation Generator - A radiation generator may include a generator housing, a target electrode carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target electrode based upon an accelerating potential, and a suppressor electrode carried by the generator housing having an opening therein to permit passage of charged particles to the target electrode. A target extender electrode may be between the suppressor electrode and the target electrode and have an opening therein to permit passage of charged particles to the target. At least one voltage source may be coupled to the target electrode, the suppressor electrode, and the target extender electrode to cause the target electrode to have a voltage greater than a voltage of the suppressor electrode and to cause the target extender electrode to have a voltage greater than the voltage of the suppressor electrode | 11-27-2014 |
20140353481 | Fluid Analyzer with Mirror and Method of Using Same - A fluid analyzer of a downhole tool is provided. The downhole tool is positionable in a wellbore penetrating a subterranean formation. The wellbore has a downhole fluid thereabout. The downhole tool has a housing with a flowline therethrough for receiving the downhole fluid. The fluid analyzer includes at least one optical source to pass a light through an optical window and through the downhole fluid in the flowline, at least one photodetector to measure the light passed through the downhole fluid in the flowline, and at least one optical mirror. An optical path of the light extends from the optical source to the photodetector. An optical path length is defined as a length of a portion of the optical path within the flowline. The optical mirror is positionable about the flowline, and has an optical layer selectively passing the light from the optical mirror to the photodetector whereby the optical path length may be varied. | 12-04-2014 |
20140367562 | THERMAL AND EPITHERMAL NEUTRONS FROM AN EARTH FORMATION - An apparatus and method for detecting radiation in a borehole intersecting an earth formation. The apparatus may include a neutron sensitive scintillation media and at least one optically transparent neutron absorptive material optically coupled to the media, which may be positioned to prevent incident neutrons from reaching a neutron-shaded surface of the media, and to provide directional sensitivity. The neutron absorptive material may comprise a light guide optically coupled to the neutron sensitive scintillation media. The scintillation media may be disposed within the at least one optically transparent neutron absorptive material, which may be configured to prevent substantially all incident neutrons having an incident neutron energy below a selected energy threshold from reaching the media. The selected energy threshold may be approximately 0.2 eV. A neutron-reflecting material may be disposed within the scintillation media. The neutron-reflecting material may comprise a light guide optically coupled to the neutron sensitive scintillation media. | 12-18-2014 |
20150048243 | OPTICAL FIBER SENSING WITH ENHANCED BACKSCATTERING - An apparatus for estimating at least one parameter in a downhole environment includes: an optical fiber configured to be disposed in a borehole, the optical fiber having a property that causes intrinsic backscattering of signals transmitted therein. The property varies along a length of the optical fiber to generate a variable intensity of the backscattering, the intensity of backscattering varying along the optical fiber as a function of distance from an end of the optical fiber. The apparatus also includes a light source configured to send an optical signal into the optical fiber; and a detector configured to receive a return signal including backscattered signals. | 02-19-2015 |
20150115146 | NANOFIBER SPECTRAL ANALYSIS - Apparatus, systems, and methods may operate to transmit energy to a nanofiber sampling coil and/or a nanofiber reference coil. Further activity may include receiving the energy as modified by evanescent interaction with a sampled material located proximate to the sampling coil and/or as modified by propagation through the reference coil, and comparing the energy modified by evanescent interaction with the energy modified by propagation through the reference coil to determine a spectroscopic property of the sampled material. Additional apparatus, systems, and methods, including the use of nanofibers and fluorescence induced by evanescent radiation to conduct spectroscopic analysis, are disclosed. | 04-30-2015 |
20150122984 | FIBER OPTIC SENSING SYSTEMS AND METHODS - Fiber optic sensing systems and methods. In a described embodiment, a fiber optic sensing system includes an optical fiber transmitting energy to a chemical vapor deposited diamond material proximate a substance in a well. The diamond material is deposited as a coating on a substrate. The substrate and coating are heated when the energy is transmitted by the optical fiber. This heats the substance in the well, which is detected to determine a property of the substance. In another embodiment, light energy is transmitted through the diamond material. | 05-07-2015 |
20150144776 | MATERIAL CHARACTERISTIC ESTIMATION USING INTERNAL REFLECTANCE SPECTROSCOPY - An apparatus for measuring fluid characteristics includes: a solid transparent body including a plurality of internally reflective surfaces defining a n-sided base having a polygonal shape and having at least three sides, each reflective surface forming a side of the polygonal shape, the plurality of surfaces configured to direct the electromagnetic radiation beam along a path within the solid transparent body from an entry area to an exit area on the solid transparent body; an electromagnetic radiation source coupled to the entry area on the solid transparent body; and a detector coupled to the exit area on the solid transparent body and configured to receive at least a fraction of the reflected electromagnetic radiation beam, the detector configured to generate a signal based on the received electromagnetic radiation beam and transmit the signal to a processor for at least one of analysis of material characteristics and data storage. | 05-28-2015 |
20150323683 | NEUTRON AND GAMMA SENSITIVE FIBER SCINTILLATORS - One general embodiment according to the present disclosure may be formation evaluation tool for detecting radiation in a borehole in a volume of an earth formation. The tool may include a detector including a monolithic scintillation element comprising a coherent assemblage of joined fibers, wherein the fibers are made of an optically transparent scintillation media. The fibers may be at least one of i) gamma ray responsive; and ii) neutron responsive. The coherent assemblage of fibers may be a continuous mass, may be heat-joined. The fibers may be solid. The scintillation media may comprise at least one of i) organic crystalline scintillation materials, ii) amorphous glass, and iii) nanostructured glass ceramics. The coherent assemblage of fibers may be asymmetric. The coherent assemblage of fibers may surround a further scintillation media having different scintillation characteristics than the scintillation media. The scintillation element may be azimuthally sensitive. | 11-12-2015 |
20160069177 | DOWNHOLE MEASUREMENT OF LASER-INDUCED VAPORIZATION AND PYROLYSIS - A downhole tool to make one or more downhole measurements of laser-induced vaporization and/or pyrolysis of hydrocarbons is provided and disposed at a desired location within a wellbore. A tool head of the downhole tool is brought into sealing engagement with the wellbore wall. The fluid within an interior region enclosed by the tool head and the wellbore wall is evacuated and a measurement spot is irradiated with a laser to generate volatile hydrocarbons and/or pyrolytic hydrocarbons. Measurements are made on the volatile hydrocarbons and/or pyrolytic hydrocarbons and one or more formation properties are inferred based on the measurements. A low level of laser radiation intensity, irradiating some or all of the wellbore wall enclosing the interior region, may be used to prevent measurement contamination, and both medium power and high power levels of laser radiation may be used to first vaporize and then pyrolyze the hydrocarbons. | 03-10-2016 |
20160133432 | Radiation Generator With Floating Field Shaping Electrode - A radiation generator may include an elongate generator housing having a proximal end and a distal end, a target electrode within the housing at the distal end thereof, a charged particle source within the housing at the proximal end thereof to direct charged particles at the target based upon a first biasing potential, and a field shaping electrode within the housing and adjacent the source to shape a field within the housing. At least one accelerator electrode may be within the housing on an opposite side of the field shaping electrode from the source to accelerate charged particles from the source to the target based upon a second biasing potential different than the first biasing potential. The field shaping electrode may be electrically floating so that the charged particles are directed from the source to the target without applying a biasing potential to the field shaping electrode. | 05-12-2016 |
20160139295 | Radiation Generator Having An Actively Evacuated Acceleration Column - A radiation generator includes an ion source region, and an acceleration column downstream of the extractor electrode and in fluid communication with the ion source region. The ion source region and the acceleration column contain an ionizable gas. A vacuum pump pumps the ionizable gas from the acceleration column to the ion source region such that a gas pressure in the acceleration column is less than a gas pressure in the ion source region. | 05-19-2016 |
20160146724 | INTEGRATED COMPUTATIONAL ELEMENTS WITH FREQUENCY SELECTIVE SURFACE - Technologies are described for providing optical analysis systems using an integrated computational element that has a surface patterned to selectively reflect or transmit different wavelengths by differing amounts across a spectrum of wavelengths. In one aspect, a measurement tool contains an optical element including a layer of material patterned so that the optical element selectively transmits or reflects, during operation of the measurement tool, light in at least a portion of a wavelength range by differing amounts, the differing amounts being related to a property of a sample. The wavelength range can include wavelengths in a range from about 0.2 μm to about 100 μm. Additionally, the sample can include wellbore fluids and the property of the sample is a property of the wellbore fluids. | 05-26-2016 |
20160187528 | Methods and Means for Creating Three-Dimensional Borehole Image Data - A method of creating three-dimensional borehole data is provided, including illuminating a borehole using collimated beams of electromagnetic radiation; rotating the collimated beams in a sweep of at least 360 degrees; detecting backscattered electromagnetic radiation returned from surfaces of associated illumination planes using electromagnetic radiation sensors; converting detected radiation into a corresponding set of volume image data; analyzing the volume image data using computational visualization processing techniques; and creating a three-dimensional image representative of the volume data. Imaging methodologies include a complete, radial conic-shaped surface while the imaging system remains stationary; a plurality of scans performed while longitudinally moving the imaging system a distance d through the borehole between image capture operations; and a plurality of scans performed while longitudinally moving the imaging system a distance d, where d is a distance less than or equal to the collimated beam thickness, so that adjacent scans partially overlap. | 06-30-2016 |