Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With particular detector signal circuit

Subclass of:

250 - Radiant energy

250253000 - GEOLOGICAL TESTING OR IRRADIATION

250256000 - Well testing apparatus and methods

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
250262000 With particular detector signal circuit 17
20100116978GAIN STABILIZATION OF GAMMA-RAY SCINTILLATION DETECTOR - Systems and methods for stabilizing the gain of a gamma-ray spectroscopy system are provided. In accordance with one embodiment, a method of stabilizing the gain of a gamma-ray spectroscopy system may include generating light corresponding to gamma-rays detected from a geological formation using a scintillator having a natural radioactivity, generating an electrical signal corresponding to the light, and stabilizing the gain of the electrical signal based on the natural radioactivity of the scintillator. The scintillator may contain, for example, naturally radioactive elements such as Lutetium or Lanthanum.05-13-2010
20100176286DETECTOR FOR USE IN WELL-LOGGING APPLICATIONS - A detector includes a sonde having a housing and comprising a scintillator disposed within the housing and a calibration source coupled to the scintillator to fluoresce the scintillator at a known wavelength of electromagnetic radiation. The detector further includes an electromagnetic radiation sensing device coupled to the scintillator and disposed within the housing and a first programmable/re-programmable processing module (PRPM) coupled to the electromagnetic radiation sensing device and disposed within the housing. The PRPM is programmed to process signals from the electromagnetic sensing device based on a user-defined analysis mode selected from the group of modes consisting of filtering, windowing, discriminating, and counting.07-15-2010
20110095173RADIATION DETECTOR AND METHOD OF USING A RADIATION DETECTOR - A radiation detector can include a photosensor to receive light via an input and to send an electrical pulse via an output in response to receiving the light. The radiation detector can also include a pulse analyzer to send an indicator to a pulse counter when the electrical pulse corresponds to a scintillation pulse and to not send the indicator to the pulse counter when the electrical pulse corresponds to a noise pulse. The pulse analyzer can be coupled to the output of the photosensor. A method can include receiving an electrical pulse at a pulse analyzer from an output of a photosensor and determining whether the electrical pulse corresponds to a scintillation pulse or a noise pulse, based on a pulse shape of the electrical pulse. The method can also include sending the electrical pulse to a pulse counter when the electrical pulse corresponds to a scintillation pulse.04-28-2011
20110108719Multi-Channel Source Assembly for Downhole Spectroscopy - A multi-channel source assembly for downhole spectroscopy has individual sources that generate optical signals across a spectral range of wavelengths. A combining assembly optically combines the generated signals into a combined signal and a routing assembly that splits the combined signal into a reference channel and a measurement channel. Control circuitry electrically coupled to the sources modulates each of the sources at unique or independent frequencies during operation.05-12-2011
20110108720Multi-Channel Detector Assembly for Downhole Spectroscopy - A multi-channel detector assembly for downhole spectroscopy has a reference detector unit optically coupled to a reference channel of a source and has a measurement detector unit optically coupled to a measurement channel of the source. The reference and measurement detectors detect spectral signals across a spectral range of wavelengths from the reference and measurement channels. Conversion circuitry converts the detected spectral signals into reference signals and measurement signals, and control circuitry processes the reference and measurements signals based on a form of encoding used by the source. Then, the control circuitry can control the output of spectral signals from the source based on the processed signals or scale the measurement signal to correct for source fluctuations or changes in environmental conditions.05-12-2011
20130062514METHOD AND APPARATUS FOR ESTIMATING A DOWNHOLE FLUID PROPERTY USING A MINIATURE INTEGRATED CIRCUIT SPECTROMETER - An apparatus for estimating a property of a downhole fluid includes a carrier that is conveyable in a borehole, a test cell carried by the carrier for capturing the downhole fluid, an integrated circuit positioned inside of the test cell, and an electromagnetic energy source that emits an electromagnetic energy beam having a first bandwidth. A first filter is formed on the integrated circuit in electromagnetic energy communication with the first electromagnetic energy beam. A flow path is formed in the integrated circuit wherein the flow path contains the downhole fluid in the test cell and is in electromagnetic energy communication with a portion of the electromagnetic energy beam. An electromagnetic energy detector is in electromagnetic energy communication with a portion of the electromagnetic energy beam that has interacted with the downhole fluid for estimating the property of the downhole fluid.03-14-2013
20130119246DETECTOR, PREAMPLIFIER SELECTION APPARATUS, SYSTEMS, AND METHODS - Optical detection apparatus (05-16-2013
20130277544Radiation Detector and Method of Using a Radiation Detector - A radiation detector can include a photosensor to receive light via an input and to send an electrical pulse via an output in response to receiving the light. The radiation detector can also include a pulse analyzer to send an indicator to a pulse counter when the electrical pulse corresponds to a scintillation pulse and to not send the indicator to the pulse counter when the electrical pulse corresponds to a noise pulse. The pulse analyzer can be coupled to the output of the photosensor. A method can include receiving an electrical pulse at a pulse analyzer from an output of a photosensor and determining whether the electrical pulse corresponds to a scintillation pulse or a noise pulse, based on a pulse shape of the electrical pulse. The method can also include sending the electrical pulse to a pulse counter when the electrical pulse corresponds to a scintillation pulse.10-24-2013
20150041633SYSTEM AND METHOD OF DETERMINING A VALUE INDICATIVE OF HYDROGEN INDEX - Determining a value indicative of hydrogen index. At least some of the example embodiments are methods including obtaining an inelastic count rate and a capture count rate of a gamma detector for a particular borehole depth in a formation, calculating a ratio of an inelastic count rate to a capture count rate for the particular borehole depth, and determining a value indicative of hydrogen index based on the ratio of the inelastic count rate to the capture count rate for the particular borehole depth.02-12-2015
20150346382MEASUREMENT TECHNIQUE UTILIZING NOVEL RADIATION DETECTORS IN AND NEAR PULSED NEUTRON GENERATOR TUBES FOR WELL LOGGING APPLICATIONS USING SOLID STATE MATERIALS - An apparatus for estimating a property of an earth formation includes a pulsed neutron generator configured to emit a pulse of neutrons, a formation radiation detector configured to detect radiation emitted from the formation due to interactions with the pulse of neutrons, and a neutron generator radiation detector having a crystal structure and configured to detect a radiation particle emitted from the pulsed neutron generator and to provide a location within the neutron radiation detector at which the particle was detected. The crystal structure includes a plurality of detection cells, each detection cell having at least two electrically conducting columns with an applied potential difference such that electrons generated in the crystal structure by interaction with the radiation particle are collected by at least one of the electrically conducting columns to provide detection locations. A processor estimates the property using the detected formation radiation and the detection locations.12-03-2015
20160018554Downhole Fluid Composition Sensing - The present disclosure introduces a downhole tool conveyable within a tubular within a wellbore extending into a subterranean formation. The downhole tool includes a body and a member having a first end and a second end, wherein the first end is rotatably coupled to the body. A spectrometry sensor is disposed proximate the second end of the member. Embodiments also include a fluid separating component shaped such that a heavier fluid from the fluid flowing along the downhole tool is drawn away from the spectrometry window to reduce window contamination from fluid droplets, particles, and/or liquids.01-21-2016
20160139294Method and Apparatus to Determine Pressure in a Neutron Radiation Generator - Systems, methods, and apparatuses to determine an operation gas pressure in a neutron radiation generator are described. In certain aspects, a method to determine the operation gas pressure includes receiving an operation radiation signal from a radiation generated by electrons backstreaming in a radiation generator, and determining from the operation radiation signal an operation gas pressure in a chamber of the radiation generator. An operation radiation signal may be received from a radiation detector associated with a neutron radiation generator. A radiation detector may detect radiation produced by particles (e.g., electrons) striking a portion (e.g., a cathode) of the neutron radiation generator.05-19-2016
250264000 Having plural detectors 5
20110001040METHODS OF IDENTIFYING HIGH NEUTRON CAPTURE CROSS SECTION DOPED PROPPANT IN INDUCED SUBTERRANEAN FORMATION FRACTURES - Methods for determining the locations/heights of fractures in a subterranean formation use a post-fracture log obtained with a compensated neutron or pulsed neutron logging tool. Utilizing predetermined relationships between tool count rates and associated near/far count rate ratios, the methods detect the presence of proppant containing high thermal neutron capture cross-section material, substantially eliminating proppant determination uncertainty resulting from changes in formation hydrogen index. In an interval of a well with given borehole and formation conditions, and not containing proppant, a relationship is developed between detector count rate and near/far ratio. This relationship is used to compute count rate from the ratio in intervals of the well possibly containing proppant and which have similar formation and borehole conditions. The count rate computed from the ratio is compared with the observed detector count rate, with proppant indicated from suppression in observed count rate relative to count rate computed from the ratio.01-06-2011
20110272569Directional Radiation Detection Tool - Various systems and methods for implementing a directional radiation detection tool are disclosed. One such method involves receiving outputs from several radiation sensors (e.g., gamma ray sensors), which are each facing a different direction. The received outputs are then combined, such that a directional error in one of the outputs is reduced, based upon another one of the outputs.11-10-2011
20130146756Super-Resolution Formation Fluid Imaging - Cross-well electromagnetic (EM) imaging is performed using high-power pulsed magnetic field sources, time-domain signal acquisition, low-noise magnetic field sensors, spatial oversampling and super-resolution image enhancement and injected magnetic nanofluids. Inter-well images are generated mapping electromagnetic (EM) signal speed (group velocity) rather than conductivity maps. EM velocity maps with improved resolution for both native and injected fluids are provided.06-13-2013
20140166873SUPER-RESOLUTION FORMATION FLUID IMAGING DATA ACQUISITION AND PROCESSING - Cross-well electromagnetic (EM) imaging is performed using high-power pulsed magnetic field sources, time-domain signal acquisition, low-noise magnetic field sensors, spatial oversampling and super-resolution image enhancement and injected magnetic nanofluids. The acquired signals are processed and inter-well images are generated mapping electromagnetic (EM) signal speed (group velocity) rather than conductivity maps. EM velocity maps with improved resolution for both native and injected fluids are provided.06-19-2014
20140175271Remote Sensing Methods and Systems Using Nonlinear Light Conversion and Sense Signal Transformation - A disclosed system includes a light source and a nonlinear converter optically coupled to and remote from the light source. The nonlinear light converter converts a light pulse received from the light source to a broadened or spectrum-shifted light pulse. The system also includes a sensor in situ with the nonlinear light converter. The sensor performs a sense operation based on the broadened or spectrum-shifted light pulse and generates an electrical signal corresponding to the sense operation. The system also includes an electro-optical interface in situ with the sensor that transforms the electrical signal to an optical signal for conveyance to a signal collection interface A related method includes generating a light pulse and conveying the light pulse to a remote nonlinear light converter. The method also includes converting the light pulse to a broadened or spectrum-shifted light pulse. The method also includes performing a sense operation in the remote location using the broadened or spectrum-shifted light pulse and generating a corresponding electrical signal. The method also includes transforming the electrical signal to an optical signal for conveyance to a sense signal collection interface.06-26-2014

Patent applications in all subclasses With particular detector signal circuit

Website © 2025 Advameg, Inc.