Class / Patent application number | Description | Number of patent applications / Date published |
244215000 | At trailing edge | 61 |
20080223992 | High-Performance Low-Noise Aircraft Exhaust Systems and Methods - Aircraft exhaust systems and methods are disclosed. In one embodiment, an integrated propulsion assembly includes a wing assembly having an upper surface and a lower surface, and a propulsion unit at least partially disposed within the wing assembly. An exhaust system is configured to conduct an exhaust flow emanating from the propulsion unit to an exhaust aperture. The exhaust aperture is positioned proximate a trailing edge of the wing assembly, and has an aspect ratio of at least five. In further embodiments, the wing assembly includes a flap member moveably coupled along a trailing edge portion of the wing assembly, and the exhaust aperture is configured to direct the exhaust flow over at least a portion of the flap member. | 09-18-2008 |
20090108142 | Aircraft wing with slotted high lift system - An aircraft wing comprising: a leading element; a trailing element positioned behind the leading element relative to a direction of movement of the aircraft; an actuation system for moving one of the elements between a retracted position and an extended position in which there is an air gap between a lower surface of the leading element and a surface of the trailing element. Two or more elongate stiffening ridges extend downwards from the lower surface of the leading element, and each adjacent pair of ridges is separated by a channel. | 04-30-2009 |
20090127404 | METHODS AND APPARATUS FOR A MULTI-SEGMENT FLAP FENCE - A multi-segment flap fence is incorporated into the wing such that a lower fence structure is attached to the underside of the fixed wing, an upper fence structure is attached to the main flap (e.g., at the outboard end). The two flap segments are configured to slideably articulate with respect to each other when the flap is extended to form a composite flap fence having an area that is substantially equal to the sum of the surface areas of the upper and lower flap fence structures. In one embodiment, the area of the upper fence is less than that of the lower fence. | 05-21-2009 |
20090134281 | Aircraft wing and flap deployment system - An aircraft wing comprising: a main wing element; and a flap connected to the main wing element by a deployment system which can deploy the flap from a retracted position to an extended position, wherein the wing has a trailing edge which is swept, at least in the region of the flap, when the flap is in its retracted position, and wherein the deployment system is arranged such that the flap reduces the degree of sweep of the trailing edge of the wing in the region of the flap as it is deployed. The deployment system comprises a first actuator configured to rotate the flap horizontally so as to change the sweep angle of the flap and a second actuator configured to rotate the flap vertically so as to increase the camber of the wing, and the first and second actuators are operable independently of each other. | 05-28-2009 |
20090146016 | Trailing edge device catchers and associated systems and methods - Trailing edge device catchers and associated systems and methods are disclosed. A system in accordance with one embodiment includes a wing having a wing support, a trailing edge device carried by and movable relative to the wing and having a device support, and a coupling connected between the wing and the trailing edge device. The coupling can include a pivot joint that includes a pivot element aligned along a pivot axis and connected between the wing support and the device support. The coupling can further include an actuator coupled between the wing and the trailing edge device, with the actuator having a first position in which the trailing edge device is stowed, and a second position in which the trailing edge device is deployed, with an air flow gap located between the wing and the trailing edge device when the trailing edge device is in the second position. A cam track is carried by one of the wing and the trailing edge device and has opposing cam track surfaces fixed relative to each other. A cam is carried by the other of the wing and trailing edge device and is positioned within the cam track between the opposing cam track surfaces. The cam is offset from the pivot axis and during normal operation the cam can carry no load or a first load along a load path that includes the cam track, and when a decrease in support provided by at least one of the pivot element, the wing support and the device support occurs, the cam can carry a second non-zero load greater than the first load along the load path. | 06-11-2009 |
20090146017 | Aircraft Trailing Edge Devices, Including Devices With Non-Parallel Motion Paths, and Associated Methods - Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods are disclosed. A device in accordance with one embodiment includes a wing and an inboard trailing edge device coupled to the wing and movable relative to the wing between a first stowed position and a first deployed position along a first motion path. An outboard trailing edge device can be coupled to the wing outboard of the inboard trailing edge device, and can be movable relative to the wing along a second motion path that is non-parallel to the first motion path. An intermediate trailing edge device can be coupled between the inboard and outboard trailing edge devices and can be movable along a third motion path that is non-parallel to both the first and second motion paths. Each of the trailing edge devices can open a gap relative to the wing when moved to their respective deployed positions. | 06-11-2009 |
20090152405 | Wing and method for reducing effects of propeller airflow on lift distribution - A wing for an aircraft includes a non-balanced lift gradient because as a result of at least one propeller slipstream flowing onto the wing the induced drag of the wing is increased. To reduce the increased induced drag, the wing comprises a first region with a reduced local wing camber and/or reduced local twist, and a second region with an increased local wing camber and/or increased local twist. The first region is defined as a wing surface situated downstream of the propeller slipstream, upstream of which wing surface the blades of the propeller move upwards. The second region is defined as a wing surface situated downstream of the propeller slipstream, upstream of which wing surface the blades of the propeller move downwards. | 06-18-2009 |
20090159755 | Aircraft control device - The invention relates to a control surface ( | 06-25-2009 |
20090266938 | METHOD AND DEVICE FOR AN AIRCRAFT BUFFET REDUCTION - The device ( | 10-29-2009 |
20090308982 | HIGH-LIFT SYSTEM FOR AN AIRCRAFT - An exemplary high-lift system for an aircraft includes a wing, a high-lift flap coupled to the wing, a kinematic element which is driven by a drive device, and a flap lever structured and arranged to rotate via an actuating drive between a retracted position in which the high-lift flap complements a wing profile and a plurality of extended positions in which a slot of a given width is formed between the wing and the high-lift flap. A first end of the flap lever is coupled to the high-lift flap. A second end of the flap lever is coupled to the kinematic element and is capable of rotating relative thereto via a first rotation point. The kinematic element is structured and arranged to rotate relative to a second rotation point that is fixed in position relative to the wing. The first rotation point is separated by a predetermined distance from the second rotation point. | 12-17-2009 |
20090321582 | Translating active Gurney flap to alleviate aircraft wake vortex hazard - A wake vortex alleviator is provided. The wake vortex alleviator produces rapid variations in the position of vortices emanating from aerodynamic surfaces by using an active flap that moves span-wise back and forth along the outboard section of the surface. Rapidly moving the flap back and forth in a slot at an appropriate frequency will cause the vortex to oscillate, resulting in interaction between other vortices and subsequent destruction much earlier than it would occur naturally. The slot is positioned near the aerodynamic surface trailing edge and generally transverse to a chord line of the aerodynamic surface. The flap can be moved using a variety of actuators to position, translate and stow the flap. The oscillation frequency and position are guided by information feedback according variations in lift in the aerodynamic surface, such as wind gusts. The flaps can control yaw, roll and pitch of the aerodynamic surface. | 12-31-2009 |
20100059633 | Airfoil for an Aircraft and Aircraft - The invention relates to the monitoring of the landing flaps on an airfoil ( | 03-11-2010 |
20100170998 | AIRCRAFT TRAILING EDGE DEVICES, INCLUDING DEVICES HAVING FORWARDLY POSITIONED HINGE LINES, AND ASSOCIATED METHODS - Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position. | 07-08-2010 |
20100327121 | CROSS-BLEED DAM - A panel assembly for an aircraft including a panel having an upper aerodynamic surface and a leading edge, and a hinge fitting connected to an underside of the panel, defining a hinge line for the direction of rotation of the panel. The upper surface of the leading edge has an arcuate portion centered about the hinge line, and has an upturned portion forward of the arcuate portion. The panel assembly is pivotally connected to its hinge fitting to the trailing edge of the fixed wing portion and rotatable between a first position wherein the upper surfaces of the fixed wing portion and the panel are substantially flush, and a second position wherein the panel is rotated downwardly from the first position. A seal member attached to the trailing edge of the fixed wing portion, has a lower surface which seals against the upper surface of the panel during its movement. | 12-30-2010 |
20110095136 | AIRCRAFT WITH VERTICAL STABILIZERS ARRANGED ON A CENTRAL FUSELAGE BODY AND METHOD, AS WELL AS CONTROL UNIT, FOR COMPENSATING A NEGATIVE PITCHING MOMENT - An aircraft includes, but is not limited to a central fuselage body without horizontal stabilizer, at least one high-lift control surface, at least one vertical stabilizer that is arranged on the central fuselage body and at least one extendable compensation control surface. The compensation control surface may be moved independently of the high-lift control surface of the aircraft and generates a positive tail-heavy pitching moment when it is moved into the flow against the aircraft. Due to this measure, a negative pitching moment during the actuation of high-lift control surfaces may be at least partially eliminated without influencing the high lift. Rudder segments that may be moved opposite to one another on two vertical stabilizers that are arranged mirror-symmetrical referred to the longitudinal axis of the aircraft preferably are used for this purpose. | 04-28-2011 |
20110139937 | Method and apparatus for deploying an auxiliary lift foil - Apparatus connecting an auxiliary lift foil, such as a flap or slat, to a main lift element. The apparatus comprises: a drop link pivotally coupled to the main lift element by a first hinge and to the auxiliary lift foil by a second hinge, wherein the drop link is substantially rigid between the first and second hinges; and a linkage mechanism pivotally coupled to the auxiliary lift foil by a third hinge which is spaced from the second hinge, and to the main lift element by as fourth hinge. | 06-16-2011 |
20110186690 | BRIDGING SEAL - A bridging seal comprising a stack of two or more layers of elastomer, the bridging seal having a first edge and a second edge opposite the first edge, adjacent layers being attached to each other at the first and second edges, wherein adjacent layers of the bridging seal have opposing surfaces and a substantial portion of the opposing surfaces is unbonded. The bridging seal may be used to seal a gap between two aerodynamic surfaces on an aircraft. | 08-04-2011 |
20110272532 | AIRCRAFT WING LOAD ALLEVIATION SYSTEM - An aircraft wing load alleviation system incorporating a wing, a spoiler panel ( | 11-10-2011 |
20120032030 | HIGH LIFT SYSTEM FOR AN AIRPLANE, AIRPLANE SYSTEM AND PROPELLER AIRPLANE HAVING A HIGH LIFT SYSTEM - A high-lift system of an aeroplane is described, including one or more high-lift flaps, an activation device with an activation function for generating adjustment commands for adjusting the adjustment state of the high-lift flaps, and a drive device coupled with the high-lift flaps, which is configured such that on the basis of activation commands the high-lift flaps are adjusted between a refracted adjustment state and an extended adjustment state. The activation function, on the basis of input values, generates adjustment commands and transmits these to the drive device for adjusting the high-lift flaps. The activation function has a function for the automatic retraction of the high-lift flap in flight, which in a flight condition in which the high-lift flap has assumed an extended adjustment state, whilst taking into account an engine thrust and a minimum flight altitude, generates an activation command, in accordance with which the high-lift flap retracts. | 02-09-2012 |
20120061525 | Blended Cutout Flap for Reduction of Jet-Flap Interaction Noise - An aircraft system includes a wing and a trailing edge device coupled to the wing. The trailing edge device is movable relative to the wing, and includes a leading edge and a trailing edge having a center flap portion and a plurality of outer edge portions integrally combined with the center flap portion such that the center flap portion is shorter in width than that of outer edge portions. | 03-15-2012 |
20120153085 | ADJUSTMENT OF WINGS FOR VARIABLE CAMBER FOR OPTIMUM TAKE-OFF AND LANDING - Disclosed is an aircraft wing system for differentially adjusting a first deployable lift device and a second deployable lift device on a wing during take-off and landing. The system has a controller, which is programmed to determine desired positions for said first and second deployable lift devices, based on a desired position signal, and to activate high and low horsepower motors to move said first deployable lift devices to desired positions. The system has a controller which determines adjustment amount for each motor, based on the system architecture. | 06-21-2012 |
20120234983 | CONTROL SURFACE ASSEMBLY - An aerodynamic control surface assembly comprising: an aerodynamic control surface ( | 09-20-2012 |
20120261518 | ACTIVE GURNEY FLAP - A gurney flap assembly has an actuator and a body. The body has a leading edge and a trailing edge and includes a first panel attaching to the actuator proximate the leading edge, and a second panel attaching to a first hinge at the trailing edge. A second hinge attaches the first and second panel. Linear motion of an actuator output is transposed to the gurney flap, thereby causing the gurney flap to expand and deploy into the airstream on the pressure side of the wing. | 10-18-2012 |
20120261519 | ACTIVE GURNEY FLAP - A gurney flap assembly has an actuator, a flexible or hinged body, the body flexing from a retracted to a deployed position in reaction to motion of the actuator, and a first seal extending along a first edge of the flexible body that flexes from the stowed position. Linear motion of the actuator output is transposed to the gurney flap thereby moving it from a retracted position into the airstream. This trailing edge device will improve airfoil lift. | 10-18-2012 |
20120280089 | Double Slotted Flap for Small Airplane - A short take-off and landing airplane includes double slotted flaps attached to a wing, and a manual control for mechanically deploying the double slotted flaps without hydraulic or electric assistance. | 11-08-2012 |
20130020444 | Trailing Edge Split Flap with Pneumatic Actuation - A system for pneumatically actuating a split flap hingedly mounted near or at a trailing edge of an airfoil. The system includes a bladder system disposed between the split flap and the upper surface of the airfoil. The split flap is a small-chord (usually 1-3% of total wing chord) long-span lower panel which separates from the airfoil trailing edge by means of a hinge or a flexible lower skin. Deployment of the split flap is actuated pneumatically by the inflatable bladder system. The split flap may exist at a fixed wing trailing edge, a moving flap trailing edge, or an empennage trailing edge. The pneumatic bladder provides distributed force to extend and retract the split flap. This pneumatic approach eliminates extra drag, reduces cost and weight, and lessens flutter concerns. | 01-24-2013 |
20130087662 | FLAP SUPPORT - A flap support structure for an aircraft wing having a trailing edge flap, the flap support structure comprising: a flap support beam including an aerodynamic fairing; and a drive unit including a universal support structure which rotatably receives a drive shaft connected to a drive arm for moving the trailing edge flap, wherein the universal support structure also forms part of the flap support beam and supports the aerodynamic fairing. | 04-11-2013 |
20130112814 | DROOP PANEL LINKAGE - A droop panel linkage for aircraft includes a lever arm, a main lever, a main tube and at least one drive strut. The lever arm is pivotally attached at a first end to a flap and is pivotally connected at a second end to a first end of the main lever. A second end of the main lever is provided with a first engagement element for engaging with a second engagement element incorporated into or associated with the main tube. The main tube is pivotally connected to a proximal end of the drive strut. A distal end of the drive strut is pivotally attached to the droop panel. | 05-09-2013 |
20130146716 | Mechanisms for Deploying and Actuating Airfoil-Shaped Bodies on Unmanned Aerial Vehicles - Deployment and control actuation mechanisms are incorporated in unmanned aerial vehicles having folding wings and/or folding canards and/or a folding vertical stabilizer. The folding canards and folding vertical stabilizer can be deployed using respective four-bar over-center mechanisms. Elevators pivotably mounted to the folding canards and a rudder pivotably mounted to the folding vertical stabilizer can be controlled by means of respective twist link mechanisms. The folding wings have respective wing roots that are driven by respective gas springs to pivot on bearings about a wing root hub having control servo wire paths. | 06-13-2013 |
20130206918 | AUXILIARY FLAP ARRANGEMENT AND AERODYNAMIC BODY COMPRISING SUCH AN AUXILIARY FLAP - The invention relates to an auxiliary flap arrangement for modifying the profile of an aerodynamic body, in particular the trailing edge of the aerodynamic body. The auxiliary flap arrangement here exhibits at least two auxiliary flaps that can be adjusted by an adjustment device while coupled to each other. | 08-15-2013 |
20130264427 | Compliant Structure Design for Varying Surface Contours - An edge morphing arrangement for an airfoil having upper and lower control surfaces is provided with an elongated edge portion that overlies the edge of the airfoil, the edge portion having a surface element having first and second edges that communicate with, and form extensions of, respective ones of the upper and lower control surfaces of the elongated airfoil. The surface elements are formed of deformable compliant material that extends cross-sectionally from the first surface element edge to an apex of the edge portion, and to the second surface element edge. There is additionally provided a driving link having first and second driving link ends, the first driving link end being coupled to the interior of one of the first and second rib portions. The second end is arranged to receive a morphing force, and the rib element is deformed in response to the morphing force. | 10-10-2013 |
20130320151 | ROTARY ACTUATED HIGH LIFT GAPPED AILERON - A rotary actuated high lift gapped aileron system and method are presented. A high lift gapped aileron couples to an airfoil at a hinge line and changes a camber of the airfoil. A rotary actuator coupled to the high lift gapped aileron produces a rotary motion of the high lift gapped aileron in response to an actuation command. A droop panel positioned over the hinge line enhances lift of the high lift gapped aileron. A cove lip door positioned under the hinge line provides an airflow over the high lift gapped aileron. A deployment linkage mechanism coupled to the high lift gapped aileron positions the droop panel and the cove lip door in response to the rotary motion. | 12-05-2013 |
20140145039 | Hinged Panel Operation Systems and Methods - A hinged panel operation system is provided having a mechanical linkage assembly coupled between a fixed structure and a trailing edge device. The mechanical linkage assembly has a first link operatively coupled to the trailing edge device, a second link pivotably connected at a first end to the first link and pivotably connected at a second end to a third link, and an eccentric attachment connecting the second link to the third link. The hinged panel operation system further has a hinged panel positioned forward of the trailing edge device and being operatively coupled to the mechanical linkage assembly. The hinged panel is movable by the mechanical linkage assembly between a stowed position and a drooped position. The mechanical linkage assembly provides a load path to the hinged panel. | 05-29-2014 |
20140151510 | Formvariable Aerodynamic Fairing Body For A Flap Actuator Mechanism Of An Aircraft - An aerodynamic fairing body for an aircraft, a corresponding aircraft and a corresponding method of manufacture for an aerodynamic fairing body are described. The fairing body is configured so as to accommodate a flap adjustment mechanism. Further, the fairing body is configured so as to be arranged at a predetermined distance from an engine of the aircraft, which produces a blast which varies depending on the flight phase. Furthermore, the fairing body is configured so as to be varied in shape in such a way that the fairing body is located outside the blast of the engine permanently. In other words, the fairing body can be varied in shape in such a way that it is located outside the engine blast in any flight phase of the aircraft. | 06-05-2014 |
20140166819 | Flap System For An Aircraft, Method For Adjusting The Lift Of An Aircraft And Aircraft Comprising A Main Wing And At Least One Flap System - A flap system for an aircraft includes a flow body, a trailing flap and a movement means. The flow body includes an upper surface and a lower surface, the lower surface having a recess. The movement means is attachable to the flow body and the trailing flap. The trailing flap includes a shape that corresponds to the recess in the lower surface. The movement means is adapted for conducting at least a chordwise movement of the trailing flap such that it is movable out of and into the recess of the flow body in absence of a gap between the leading edge of the trailing flap and the flow body. Thereby, a clear increase in a lift coefficient may be achieved, while at the same time maintaining a low complexity and a high reliability of the flap system. | 06-19-2014 |
20140312176 | COMBINATION COMPRISING AN AIRCRAFT WING TRAILING EDGE SECTION AND AN ADJUSTMENT BODY - A combination comprises an aircraft wing trailing edge section and an adjustment body. The adjustment body comprises a tapered cross section in a local chord axis direction of the wing trailing edge section, a lower adjustment body surface connected to a top surface of the aircraft wing trailing edge section and a back-end surface having a height. The adjustment body is positioned such that the back-end surface is flush with the trailing edge of the aircraft wing trailing edge section. Attaching the adjustment body onto a top surface of the wing trailing edge section leads to compensation of an offset rolling moment due to unavoidable structural shape deviations of the aircraft and eliminates additional structural reinforcement requirements on the trailing edge compared to edge wedges mounted on the bottom surface of trailing edges. The trailing edge section may comprise a flap. | 10-23-2014 |
20140339369 | COMPOSITE ANNULAR SEAL ASSEMBLY FOR BEARINGS IN AIRCRAFT - An edge flap arrangement is provided for an aircraft wing and includes a main flap element and an actuator for moving the main flap element relative to the wing. A linkage arrangement supports the main flap element from the aircraft wing for movement relative to the wing, and includes including a drop hinge link arrangement having a fixed strut secured to the aircraft wing and a drop link secured to the main flap element. The fixed strut and drop link are pivotally connected by a hinge point having a bearing installed therein. The bearing includes an outer race, an inner race and an annular seal assembly snap-fit into the outer race. The annular seal assembly includes first and second annular retaining rings and a resilient ring disposed between the first and second annular retaining rings. | 11-20-2014 |
20150090843 | HIGH-LIFT TRAILING EDGE FLAP SYSTEM FOR AN AIRCRAFT WING UNIT - A high-lift trailing edge flap system for an aircraft wing unit is provided. In high-lift trailing edge flap system, the backward movement and the inclination of the trailing edge flap in the extended position are dissociated in order to allow for the incorporation of the actuating mechanism into the wing in the stowed position. | 04-02-2015 |
20150144742 | AIRCRAFT - An aircraft ( | 05-28-2015 |
20150291275 | AIRPLANE WING, AN AIRPLANE AND A FLAP SYSTEM - An airplane wing comprises a main wing and a flap system that has a flap at the trailing edge of the main wing. An elongate flap track member is connected to the main wing in such a manner that it can be moved substantially in its longitudinal direction and is guided by supporting bearing elements relative to the main wing between a forward retracted position and a rearward extended position. The flap is rotatably connected to the rear end of the flap track member in such a manner that it can rotate about a rotation axis that extends substantially parallel to the trailing edge of the main wing, so that the flap moves together with the flap track member when the flap track member is moved and so that the flap can be rotated about the rotation axis mechanically independently of the movement of the flap track member. The flap system comprises an actuator system having two actuators. The first actuator is connected to the main wing and has an engagement member that engages the flap or the flap track member for moving the flap together with the flap track member so that the flap track member is move able between its retracted position and its extended position. The second actuator is connected to the flap track member so that the second actuator moves together with the flap track member when the flap track member is moved by means of the first actuator. The second actuator has an engagement member that engages the flap for rotating the flap about the rotation axis. | 10-15-2015 |
20150329198 | LOAD-BEARING FAIRING ELEMENT FOR A FLAP ADJUSTMENT MECHANISM AND AIRCRAFT HAVING SUCH A FAIRING ELEMENT - A load-bearing fairing element for a flap adjustment mechanism of an aircraft comprises a shell-shaped fairing housing with an at least partly U-shaped profile with an open side, a closed side, and a direction of main extension, at least one first cover panel that along the direction of main extension covers part of the open side, and a load-bearing bridge element. The bridge element is arranged in the fairing housing and with a base area conforms so as to be flush against an internal surface of the fairing housing and extends towards the open side. The bridge element comprises an essentially planar cover area that covers the base area on the open side in order to produce a closed profile contour that is circumferential on the direction of main extension. The bridge element comprises means for holding a shaft feed-in of a central flap drive and means for holding an adjustment mechanism that is couplable to the shaft feed-in. Consequently there is no need to provide complex stiffening structures within the fairing element. | 11-19-2015 |
20150353188 | SLIDABLE DIVERGENT TRAILING EDGE DEVICE - A wing includes a trailing edge, and a divergent trailing edge device slideable along an aft surface of the trailing edge between a stowed position and a fully deployed position. The trailing edge device is located entirely within the trailing edge when stowed, and it increases lift over drag of the wing when deployed. | 12-10-2015 |
20150354631 | CAGE FOR HOURGLASS ROLLER BEARINGS - A cage for an hourglass roller bearing includes an annular ring having a first axial face and a second axial face. A plurality of first rails extend from the first axial face and a plurality of second rails extend from the second axial face. The cage includes a plurality of pockets. Each of the plurality of pockets is defined by opposing circumferentially facing walls of at least one of adjacent pairs of the first rails and adjacent pairs of the second rails. The circumferentially facing walls are arcuately formed so that each of the plurality of pockets is cylindrical. | 12-10-2015 |
20160059952 | TORQUE TUBE DOOR - A torque tube door and related method steps may include a door coupled to an inboard wing flap, such that the door is movable with the flap to selectively cover and uncover a torque tube opening in an aircraft fuselage. | 03-03-2016 |
20160068255 | FLAP SUPPORT - A flap support structure for an aircraft wing having a trailing edge flap, the flap support structure comprising: a flap support beam including an aerodynamic fairing; and a drive unit including a universal support structure which rotatably receives a drive shaft connected to a drive arm for moving the trailing edge flap, wherein the universal support structure also forms part of the flap support beam and supports the aerodynamic fairing. | 03-10-2016 |
20160200420 | SYSTEM AND METHOD FOR UNWANTED FORCE REJECTION AND VEHICLE STABILITY | 07-14-2016 |
20160251074 | SYSTEM AND METHOD FOR OPERATING A DROOP PANEL USING A PIN JOINT LINKAGE ASSEMBLY | 09-01-2016 |
244216000 | Variable gap type, e.g., "Fowler Flap" | 9 |
20100006707 | Advanced Trailing Edge Control Surface on the Wing of an Aircraft - An aircraft wing trailing edge control surface including a trailing edge flap adjustable to different positions, a sealing flap on the upper side between the wing and the flap, and a ventilation flap on the underside between the wing and the flap. The flap is adjustable downward through positive positions and upward through negative positions. The wing profile is closed on the upper side by the sealing flap and the underside by the ventilation flap when the flap is used as a control flap and adjusted between negative and low positive positions. The ventilation flap releases air flow from the wing underside to the upper side of the flap and the sealing flap is retracted to release an outflow of air from the upper side of the flap when the flap is used for increasing lift and the flap is adjusted between low and high positive positions. | 01-14-2010 |
20110127385 | TRAILING EDGE FLAP - A trailing edge flap arrangement for an aircraft wing, comprising an array of flap elements moveable collectively between a retracted and an extended position, wherein at least the leading flap element is rotatable about its axis independently of the collective array movement. Also, a method of operating the trailing edge flap arrangement, comprising collectively moving the array of flap elements between a retracted and an extended position, and rotating at least the leading flap element about its axis independently of the collective array movement. The flap arrangement can be deployed as a single slotted flap which can be vented to further improve lift performance. The flap arrangement can also be operated to provide variable camber across the performance envelope. | 06-02-2011 |
20110127386 | TRAILING EDGE FLAP - A single slotted trailing edge flap arrangement for an aircraft wing, comprising a main flap element and an auxiliary flap element sealed to and supported by the main flap element for movement between a retracted and an extended position relative to the main flap element so as to vary the planform area of the flap. The auxiliary flap element remains sealed to the main flap element when in its extended position, and movement of the auxiliary flap element relative to the main flap element is solely translational. The auxiliary flap element may be translationally deployed from the main flap element by sliding the auxiliary flap element out from the underside of the main flap element. Also, a method of operating the flap arrangement. | 06-02-2011 |
20110127387 | TRAILING EDGE FLAP - A trailing edge flap arrangement for an aircraft wing, comprising an array of flap elements each discretely moveable between a retracted and an extended position by a respective actuator, wherein the flap elements are arranged to be deployed so as to open up a through slot between an adjacent pair of the flap elements only when the aerodynamic leading element of the pair has reached its extended position. Also, a method of operating the trailing edge flap arrangement. | 06-02-2011 |
20110168850 | AEROFOILS - A two element aerofoil, and wing element based thereon, is provided, including a primary aerofoil element including a leading edge of the aerofoil and a secondary aerofoil element including a trailing edge of the aerofoil. A gap is provided between the primary aerofoil element and the secondary aerofoil element. The primary aerofoil element has at least one of a profile, orientation and location with respect to a respective at least one of a profile, orientation and location of the secondary aerofoil element that is configured for minimizing or avoiding accretion of contaminant on the secondary aerofoil element when subjected to an airflow that includes the contaminant, at least at one design set of conditions. A method for designing a two element aerofoil is also provided. | 07-14-2011 |
20120018588 | Aircraft Trailing Edge Devices, Including Devices Having Forwardly Positioned Hinge Lines, and Associated Methods - Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position. | 01-26-2012 |
20120153086 | Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction - A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings. | 06-21-2012 |
20130075537 | AIRCRAFT FLAP MECHANISM HAVING COMPACT LARGE FOWLER MOTION PROVIDING MULTIPLE CRUISE POSITIONS - A trailing edge flap mechanism incorporates a support beam, a flap carrier beam supporting an aerodynamic flap, a first link interconnecting a first and second rotation points and a second link interconnecting third and fourth rotation points. The support beam has a ground connection on a first fixed axis of rotation. A connecting link has a ground connection on a second fixed axis of rotation and is connected to the first link intermediate the first and second rotation points. An actuator is connected with a drive link pivotally engaged to the first link for initial forward and aft movement of a nose profile of the Fowler flap substantially parallel to the wing lower surface with extending aft movement providing a rapidly changing angle of the flap with respect to the wing upper surface. | 03-28-2013 |
20160137288 | AEROFOIL AND WINGS FOR AIR VEHICLES - Two element aerofoils are provided, having an aerofoil chord, a primary element having a first leading edge and a first trailing edge, a secondary element having a second leading edge and a second trailing edge, a gap between the primary element and the secondary element, and an axial overlap between the first trailing edge and the second leading edge. The secondary element is deflectable with respect to the primary element about a fixed hinge point by a flap deflection angle. The secondary element is configured to operate in airbrake mode when deflected by a respective the flap deflection angle corresponding to a design airbrake deflection angle wherein to generate an airbrake drag. In at least some examples, the axial overlap is numerically greater than −0.5% of the aerofoil chord, at least for the design airbrake deflection angle. Also disclosed are methods for operating air vehicles, and methods for designing two-element aerofoils. | 05-19-2016 |
244217000 | Plural, relatively pivotable | 5 |
20100320332 | SPOILER FOR AN AERODYNAMIC BODY OF AN AIRCRAFT - The invention pertains to a spoiler ( | 12-23-2010 |
20140077038 | AIRCRAFT FLAP SYSTEM AND ASSOCIATED METHOD - An aircraft flap system and an associated method are provided to facilitate ground roll breaking without compromising in-flight performance. The aircraft flap system includes a first flap and a panel pivotally attached to the first flap, such as to a rearward portion of the first flap. The aircraft flap system also includes an actuator configured to controllably position the panel in a stowed position and in a deployed position. In the stowed position, the panel serves as a continuation of the first flap, thereby contributing to the lift provided by the first flap during flight. Conversely, in the deployed position, a panel is articulated relative to the first flap, thereby reducing or eliminating the lift otherwise provided by the flap, following landing of the aircraft. | 03-20-2014 |
20140346282 | FLAP ARRANGEMENT FOR A WING OF AN AIRCRAFT AND AN AIRCRAFT WITH A WING COMPRISING SUCH A FLAP ARRANGEMENT - A flap arrangement for a wing of an aircraft includes a base member, at least one first flap, at least one second flap and at least one connecting assembly. The first flap is movably supported on the base member and the second flap is movably supported on the first flap. The connecting assembly is mechanically coupled with the base member and the second flap and is designed to move the second flap relative to the first flap when the first flap is moved relative to the base member. Due to the resulting forced guiding of a second flap relative to a first flap a separate actuator for moving the second flap and linkages extending outside of the shape defining contour of the flap arrangement may substantially be eliminated. | 11-27-2014 |
20160176507 | Trailing Edge Device with Bell Crank Mechanism | 06-23-2016 |
20160176508 | Cove Lip Door Slaved to Trailing Edge Control Device | 06-23-2016 |