Class / Patent application number | Description | Number of patent applications / Date published |
244039000 | Rotatable | 18 |
20090008500 | Radial venturi wing machine; apparatus for improved aircraft flight - Radial Venturi Wing machine, apparatus for improved aircraft flight with a circular wing, a round wing, and a circular fan having its blades affixed at the perimeter of the circle as opposed to its axis. | 01-08-2009 |
20090095838 | RETRACTABLE LIFTING BLADES FOR AIRCRAFT - A rotor blade assembly for providing vertical lift to an aircraft, having a rotor head and a plurality of blades, with each blade attached to a mechanism such as a cam surface, whereby movement of the mechanism causes the radial distance between the distal tip of the attached blade and the center of the rotor head to alter, decreasing or increasing the length of the lifting surface. The blades are moved from a fully extended position providing maximum lift, to a retracted position in which the blades are removed from the airstream. The pitch of the blades may be controlled by a pitch controller to achieve full helicopter responsiveness. A plurality of bladeletts may be positioned near the outer periphery of the rotor head. When they are moved into the airstream, passing air impacts the bladeletts exerting a pressure, causing rotational movement of the rotor blade assembly. | 04-16-2009 |
20090206195 | ROTATING AIR CARGO DELIVERY SYSTEM AND METHOD OF CONSTRUCTION - A system and method of constructing a system for delivering cargo by airdrop are provided. In short, the system uses rotor blades to slow the descent of cargo dropped from an aircraft. In one example of one embodiment, a frame is secured to a cargo pallet and at least one rotor blade is secured to the frame. The rotor blade is secured to the frame in a position such that it causes the cargo pallet and the frame to rotate in air when dropped from an elevation. In another embodiment, the rotor blade may be extendable and extend during flight. | 08-20-2009 |
20100155524 | MONOMOLECULAR CARBON-BASED FILM FOR FORMING LUBRICIOUS SURFACE ON AIRCRAFT PARTS - A monomolecular carbon-based film can be placed on an aircraft part, such as the leading edge designed to directly impinge against air during flight, ascent or descent, in order to form a smooth surface having increased lubricity and reduced air friction. The aircraft part may be in the form of a helicopter rotor, wing, propeller, fin, aileron, nose cone, and the like. The monomolecular carbon-based film can be deposited on the aircraft part, for example, using a reactor that includes a bed of silica and through which emissions from a diesel engine are passed. The monomolecular carbon-based film decreases air friction and increased lift of a modified aircraft that includes an aircraft part treated with the film. It also provides a structured shock absorber. | 06-24-2010 |
20120018572 | AIR VEHICLE AND METHOD FOR OPERATING AN AIR VEHICLE - An air vehicle is provided, including a body having a longitudinal axis, a wing arrangement rotatably mounted to the body with respect to the longitudinal axis, a direction control arrangement for controlling the direction of motion of the body, and an actuation mechanism operable for selectively and controllably rotating the wing arrangement with respect to the body through at least a desired first angular displacement about the longitudinal axis. Methods for operating air vehicles are also provided. | 01-26-2012 |
20120061509 | Co-Rotating Stacked Rotor Disks for Improved Hover Performance - The system of the present application represents a rotor hub for a rotorcraft and a rotorcraft incorporating the rotor hub. The rotor hub is represented as having multiple rotor disk assemblies, each rotor disk assembly rotating in the same direction about the same mast axis of rotation. In the preferred embodiment, each rotor disk assembly has three rotor blades. The upper rotor disc assembly and the lower rotor disk assembly are separated by approximately 2.5% of the rotor disk diameter, at least to take advantage of “wake contraction”. | 03-15-2012 |
20150028155 | WING ADJUSTING MECHANISM - The present invention relates to a device for generating aerodynamic lift and in particular an aircraft ( | 01-29-2015 |
20150115097 | Air Vehicle Flight Mechanism and Control Method - Heavier-than-air, aircraft having flapping wings, e.g., ornithopters, where angular orientation control is effected by variable differential sweep angles of deflection of the flappable wings in the course of sweep angles of travel and/or the control of variable wing membrane tension. | 04-30-2015 |
20150375858 | AUTOMATIC PITCH CHANGE ROTARY WING ROTOR SYSTEM AND METHOD OF ROTOR CONTROL - A helicopter main rotor control system includes a trunnion head mountable to a rotatable helicopter mast wherein the trunnion head has a control bar pivot supported by the trunnion head and pivotal about an axis substantially at a right angle to the helicopter mast. A control bar extends through the control bar pivot at a right angle thereto, and a pair of opposing leaf hinges are pivotal about the control bar and centered about said trunnion head. Each leaf hinge has a hinge plate extending from the control bar and defines a rotor blade mount hole therethrough. | 12-31-2015 |
20160009370 | ELEVON CONTROL SYSTEM | 01-14-2016 |
20160039300 | SYSTEMS AND METHODS FOR UAV BATTERY POWER BACKUP - Systems and methods are provided for swapping the battery on an unmanned aerial vehicle (UAV) while providing continuous power to at least one system on the UAV. The UAV may be able to identify and land on an energy provision station autonomously. The UAV may take off and/or land on the energy provision station. The UAV may communicate with the energy provision station. The energy provision station may store and charge batteries for use on a UAV. The UAV and/or the energy provision station may have a backup energy source to provide continuous power to the UAV. | 02-11-2016 |
20160152333 | LIFT-GENERATING DEVICE HAVING AXIAL FAN(S), AND HEAVIER-THAN-AIR AIRCRAFT FITTED WITH SUCH A DEVICE | 06-02-2016 |
20160152345 | Unmanned Aerial Vehicle With Lighting and Cooling Therefor | 06-02-2016 |
20160159471 | SYSTEM AND METHOD FOR OPERATION AND MANAGEMENT OF RECONFIGURABLE UNMANNED AIRCRAFT - A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base. A method of configuring an aircraft having a set of rotors on a mission to carry a payload comprises the steps of determining properties of the payload including at least mass properties, determining the manner in which the payload will be coupled to the aircraft, determining configuration for each of the rotors in the set of rotors at least partially in consideration of the properties of the payload, and positioning the set of rotors in the configuration for the aircraft to perform the mission. | 06-09-2016 |
20160159472 | RECONFIGURABLE UNMANNED AIRCRAFT SYSTEM - A reconfigurable unmanned aircraft system is disclosed. A system and method for configuring a reconfigurable unmanned aircraft and system and method for operation and management of a reconfigurable unmanned aircraft in an airspace are also disclosed. The aircraft is selectively reconfigurable to modify flight characteristics. The aircraft comprises a set of rotors. The position of at least one rotor relative to the base can be modified by at least one of translation of the rotor relative to the boom, pivoting of the boom relative to the base, and translation of the boom relative to the base; so that flight characteristics can be modified by configuration of position of at least one rotor relative to the base. A method of configuring an aircraft having a set of rotors on a mission to carry a payload comprises the steps of determining properties of the payload including at least mass properties, determining the manner in which the payload will be coupled to the aircraft, determining configuration for each of the rotors in the set of rotors at least partially in consideration of the properties of the payload, and positioning the set of rotors in the configuration for the aircraft to perform the mission. | 06-09-2016 |
20160185456 | POWER AND DATA TRANSMISSION OVER THIN CONDUCTOR FOR UNMANNED AERIAL VEHICLE - A system for tethered unmanned aerial vehicle having an unmanned aerial vehicle platform capable of flight. At least one propeller is mounted on the platform. A ground power system includes a low voltage direct current power supply for creating a low voltage direct current power signal and converting the low voltage direct current power signal to a higher voltage power signal. A tether physically and operatively couples the ground power system to the unmanned aerial vehicle platform and transmits the higher voltage power signals in alternating current voltage power signal to the unmanned aerial vehicle platform for powering the at least one propeller. | 06-30-2016 |
20160376014 | MULTIROTOR DRONE WITH VARIABLE CENTER OF LIFT - A system and method for efficiently maneuvering a multirotor drone having a control system, an electrical power source, a plurality of rotor assemblies each having a rotor boom, a rotor mast, at least one rotor blade, a rotor assembly adjustment apparatus, a plurality of electric motors, wherein each electric motor is connected to a rotor boom positioned in a substantially horizontal direction and drives a rotor mast positioned in a substantially vertical direction and connected to at least one rotor blade, with the position of said rotor boom automatically adjustable in a substantially horizontal direction by the adjustment apparatus and the control system. | 12-29-2016 |
20190144100 | AIRCRAFT WITH IN-FLIGHT FORM VARYING APPARATUS | 05-16-2019 |